JPH0818000B2 - Method for producing epoxy resin-based low electrical resistance material - Google Patents

Method for producing epoxy resin-based low electrical resistance material

Info

Publication number
JPH0818000B2
JPH0818000B2 JP62092487A JP9248787A JPH0818000B2 JP H0818000 B2 JPH0818000 B2 JP H0818000B2 JP 62092487 A JP62092487 A JP 62092487A JP 9248787 A JP9248787 A JP 9248787A JP H0818000 B2 JPH0818000 B2 JP H0818000B2
Authority
JP
Japan
Prior art keywords
epoxy resin
copper
solution
sulfide
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62092487A
Other languages
Japanese (ja)
Other versions
JPS63258675A (en
Inventor
光秋 田中
公洋 松川
泰三 宇野
誠 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP62092487A priority Critical patent/JPH0818000B2/en
Publication of JPS63258675A publication Critical patent/JPS63258675A/en
Publication of JPH0818000B2 publication Critical patent/JPH0818000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子部品材料(プリント配線基板、電極材
料等)、帯電防止衣料、或は面発熱体等に好適に用いら
れるエポキシ樹脂系低電気抵抗材料の新規な製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an epoxy resin-based resin suitable for use in electronic component materials (printed wiring boards, electrode materials, etc.), antistatic clothing, surface heating elements, etc. The present invention relates to a novel method for manufacturing an electric resistance material.

(従来の技術) エポキシ樹脂は、合成樹脂の軽量・安価である特性に
加え機械的強度が大きく、接着力も大であることから、
各種成形物や接着剤として広く用いられ、最近では電子
部品材料等にもその用途が広まりつつあることは周知の
通りである。ところでエポキシ樹脂、イソシアネート樹
脂やその他の合成樹脂は一般に絶縁体であることから、
電子部品関係の用途、特に電極材料やプリント配線基板
等に用いる場合には、これら樹脂成形物の表面を導電性
の金属膜や導電性塗料で被覆したりすることが必要とさ
れる。亦、合成樹脂は帯電性に富み、空気中の塵埃を吸
引し易い為、上記電子部品関係に限らず衣料等の分野に
おいてもこれに導電性を付与したりすることがなされ
る。
(Prior Art) Epoxy resin has a large mechanical strength and a large adhesive force in addition to the lightweight and inexpensive characteristics of synthetic resin,
It is well known that it is widely used as various molded products and adhesives, and recently its use is spreading to electronic component materials and the like. By the way, since epoxy resin, isocyanate resin and other synthetic resins are generally insulators,
When used for electronic parts, particularly for electrode materials and printed wiring boards, it is necessary to coat the surface of these resin molded products with a conductive metal film or a conductive paint. Moreover, since the synthetic resin is rich in electrostatic properties and easily attracts dust in the air, it is given conductivity not only in the above-mentioned electronic parts but also in the field of clothing and the like.

(発明が解決しようとする問題点) 上記の如き導電性被膜を形成する方法としては無電解
メッキ法、真空蒸着法、スパッタリング法、イオンプレ
ーティング法及び塗装法等があるが、これらの方法はい
ずれも複雑な工程及び高価な装置を必要とし、製造コス
トが高くなり合成樹脂の安価な特性が相殺され、しか
も、得られた被膜の密着性が弱く初期の性能が長く維持
されない、と云った欠点があった。特に最も多用されて
いる無電解メッキ法の場合を例に採ると、樹脂成形品の
表面を混酸で処理する表面粗化工程、表面の感度を上げ
るため粗化面にスズイオンを吸着させるセンシタイジン
グ工程、粗化面を活性化させる為スズイオンを白金に置
換させるアクチベーティング工程、白金の触媒作用を利
用して目的の金属を析出させる無電解メッキ工程等を必
要としその要する労力・時間及び資材等は極めて多大で
あった。
(Problems to be Solved by the Invention) There are electroless plating method, vacuum deposition method, sputtering method, ion plating method, coating method and the like as a method for forming a conductive coating as described above. Both require complicated steps and expensive equipment, the manufacturing cost is high, the cheap properties of the synthetic resin are offset, and the adhesion of the obtained coating is weak and the initial performance is not maintained for a long time. There was a flaw. Taking the case of electroless plating, which is most frequently used, as an example, the surface roughening process of treating the surface of the resin molded product with mixed acid, and sensitizing to adsorb tin ions on the roughened surface to increase the surface sensitivity. The process, the activating process for displacing tin ions with platinum to activate the roughened surface, and the electroless plating process for depositing the target metal using the catalytic action of platinum are required, and the labor, time and materials required. Etc. were extremely large.

亦、導電性塗料にて導電性被膜を形成する場合(特に
電磁シールドを施したハウジング等に用いられてい
る)、密着性に難がある為、、剥離に伴う短絡などの問
題点があった。
Also, when a conductive coating is formed with a conductive paint (especially used for a housing with an electromagnetic shield), there is a problem such as a short circuit due to peeling due to poor adhesion. .

更に、プラスチックスの基板内にニクロム線を封蔵し
たり、導電性カーボンブラックを混練して面発熱体(例
えば、温熱床材、電気毛布等)とすることも行われてい
るが、使用材料や製品形状が自ずと限定される。亦、酸
化錫被膜により面状発熱体を得る方法もあるが、基板材
料に800℃以上もの熱処理を要する等によって基板材料
が必然的に制限されると云う難点があった。
Further, nichrome wire is enclosed in a plastic substrate, or conductive carbon black is kneaded to form a surface heating element (for example, heating floor material, electric blanket, etc.). The product shape is naturally limited. There is also a method of obtaining a planar heating element with a tin oxide coating, but there is a drawback in that the substrate material is necessarily limited by heat treatment of 800 ° C. or higher.

本発明は、上記に鑑みなされたもので、エポキシ樹脂
表面に化学結合により硫化銅の被膜を密着的に形成し、
上記のような用途及び他の新たな用途展開を可能とする
エポキシ樹脂系低電気抵抗材料の有効且つ簡易な製造方
法を提供せんとするものである。
The present invention has been made in view of the above, to form a copper sulfide coating film by chemical bonding on the epoxy resin surface,
It is intended to provide an effective and simple manufacturing method of an epoxy resin-based low electric resistance material which enables the above-mentioned applications and development of other new applications.

(問題点を解決する為の手段) 上記目的を達成する為の本発明の構成は、エポキシ樹
脂の表面を有する基材を、硫化水素を溶解した溶液に浸
漬若しくは硫化水素ガス雰囲気中に晒し、次いで該基材
を銅イオン含有溶液に浸漬し、該基材の上記樹脂表面上
に硫化銅の導電層を被着形成させるようにしたことを要
旨とするエポキシ樹脂系低電気抵抗材料の製造方法にあ
る。
(Means for Solving Problems) The constitution of the present invention for achieving the above-mentioned object is to immerse a base material having a surface of an epoxy resin in a solution in which hydrogen sulfide is dissolved or exposed to a hydrogen sulfide gas atmosphere, Then, the base material is immersed in a copper ion-containing solution to deposit a conductive layer of copper sulfide on the resin surface of the base material, and a method for producing an epoxy resin-based low electrical resistance material is characterized. It is in.

本発明方法で用いられる基材は、上記の如くエポキシ
樹脂そのものから成るもの、及び他の絶縁性材料にエポ
キシ樹脂を被覆して成るものであるが、前者はエポキシ
樹脂各種成形品(例えば、箱形、板状或は粉粒状成形品
等)、後者はガラス、プラスチックス、セラミックス、
木材、繊維等の絶縁性材料及びそれらの粉初状物の表面
をエポキシ樹脂にてコーティングしたものであり、用途
に応じ適宜選択される。
The base material used in the method of the present invention is composed of the epoxy resin itself as described above, or is composed of another insulating material coated with the epoxy resin. The former is various molded epoxy resin products (for example, a box). Shape, plate-like or powder-grained molded product, etc., the latter is glass, plastics, ceramics,
The surface of an insulating material such as wood or fiber and a powdery primary material thereof is coated with an epoxy resin, which is appropriately selected according to the application.

上記基材は、硫化水素を溶解せさた溶液に浸漬若しく
は硫化水素ガス雰囲気中に晒し、該基材に0〜100℃、
4〜40分間作用させ、上記樹脂の構造中にイオウ元素
(S)を化学的に結合させた上で、次の銅イオン含有溶
液中に浸漬される。
The above base material is immersed in a solution in which hydrogen sulfide is dissolved or exposed to a hydrogen sulfide gas atmosphere, and 0 to 100 ° C. is applied to the base material.
After being acted for 4 to 40 minutes to chemically bond the sulfur element (S) in the structure of the resin, it is immersed in the following copper ion-containing solution.

銅イオン含有溶液は、硫酸銅溶液、硝酸銅溶液、酢酸
銅溶液及び塩化第二銅溶液等より選ばれた塩類溶液の一
種若しくは数種と、l−アスコルビン酸、D−キシロー
ス、ホルムアルデヒド、亜硫酸ガス等の還元剤より選ば
れたいずれか一種若しくは数種を混合して調製される。
上記塩類溶液と還元剤とにより溶液中に主にCu+イオン
が生成されるが、この溶液中のCu+イオン濃度は0.01mol
/〜飽和濃度が適当であり、特に0.05〜1.5mol/が好
適な範囲であるが、必ずしもこの範囲に限定されるもの
ではない。更に、そのpHは7以下の酸性領域が適当であ
り、特にpH2〜5に調整されることが望ましい。また、
塩化第一銅溶液よりCu+イオンが生成されたものを使用
することもできる。
The copper ion-containing solution is one or several kinds of salt solutions selected from a copper sulfate solution, a copper nitrate solution, a copper acetate solution, a cupric chloride solution, etc., and 1-ascorbic acid, D-xylose, formaldehyde, and sulfurous acid gas. It is prepared by mixing any one or several kinds selected from reducing agents such as
Cu + ions are mainly produced in the solution by the salt solution and the reducing agent, and the Cu + ion concentration in this solution is 0.01 mol.
/ ~ Saturation concentration is suitable, particularly 0.05-1.5 mol / is a suitable range, but is not necessarily limited to this range. Further, the pH is suitably in the acidic region of 7 or less, and particularly preferably adjusted to pH 2-5. Also,
It is also possible to use a solution in which Cu + ions are produced from a cuprous chloride solution.

上記の他に、各種界面活性剤、プロピレンカーボネー
ト、エチレングリコール等の添加剤を適量加えれば、基
材表面に均一で且つ光沢に富んだ硫化銅の被膜を形成さ
せることが出来る。
In addition to the above, by adding an appropriate amount of various surfactants, additives such as propylene carbonate and ethylene glycol, it is possible to form a uniform and glossy copper sulfide film on the surface of the substrate.

(作用) 基材に硫化水素を作用させると、基材表面のエポキシ
樹脂の構造体中にSが化学的結合状態で組み込まれる。
この化学的反応は夫々次式で表される。
(Operation) When hydrogen sulfide is applied to the base material, S is incorporated into the structure of the epoxy resin on the surface of the base material in a chemically bonded state.
This chemical reaction is represented by the following equation, respectively.

エポキシ樹脂と硫化水素との反応; 上記の如く樹脂構造体中に化学的結合状態で組み込ま
れたSは、化学的に活性であり、これに上記の銅イオン
含有溶液を作用させると、Sと銅イオンとが結合して主
として表面に硫化銅(硫化第二銅を混合析出する場合も
若干あるが、以下ではこれを総称して硫化銅とする)が
クラスター状に生成される。
Reaction of epoxy resin with hydrogen sulfide; S incorporated in the resin structure in a chemically bonded state as described above is chemically active, and when the above-mentioned copper ion-containing solution is allowed to act on it, S and copper ions are bonded to each other, and mainly S Copper sulfide (in some cases, cupric sulfide is mixed and precipitated, but in the following, this is generically referred to as copper sulfide) is formed in clusters.

斯くして生成された硫化銅は、上記樹脂表面に安定し
た導電層として被着形成される。この事実は、上記処理
品を光電子分光法(ESCA)により分析した結果、エポキ
シ樹脂の官能基に代わり硫化銅が発現することにより明
らかとされた。この銅イオン含有溶液による化学的作用
は、樹脂構造に組み込まれたSと銅イオンとの反応であ
るから、余剰の硫化銅が溶液中に析出することがなく、
従って該溶液は銅イオンがなくなるまで繰り返し使用す
ることが出来る。亦、形成される硫化銅の被膜は樹脂表
面に化学的に結合しているから、耐剥離強度の大な極め
て安定した層である。
The copper sulfide thus produced is deposited on the resin surface as a stable conductive layer. This fact was clarified by the analysis of the treated product by photoelectron spectroscopy (ESCA), which revealed that copper sulfide appeared in place of the functional group of the epoxy resin. Since the chemical action of the copper ion-containing solution is a reaction between S incorporated in the resin structure and copper ions, excess copper sulfide does not precipitate in the solution,
Therefore, the solution can be used repeatedly until the copper ions are exhausted. Moreover, since the formed copper sulfide coating is chemically bonded to the resin surface, it is a very stable layer with high peel resistance.

更に、上記の如き添加剤を加えておくと、エポキシ樹
脂表面のぬれ性が良くなり、硫化銅被膜が均一に形成さ
れると共に硫化銅の粒子が均一微細となり透明性及び光
沢性に優れた被膜が形成される。
Furthermore, by adding the additives as described above, the wettability of the epoxy resin surface is improved, the copper sulfide film is formed uniformly and the particles of the copper sulfide are uniformly fine, and the film has excellent transparency and gloss. Is formed.

得られた処理品の表面抵抗値は、101〜104Ω、大くの
場合102Ωである。従って、電子部品材料や発熱体等の
ようなものに適用した場合、その要求性能を充分に充足
させることが出来るものである。
The surface resistance value of the obtained treated product is 10 1 to 10 4 Ω, and 10 2 Ω in most cases. Therefore, when applied to a material such as an electronic component material or a heating element, the required performance can be sufficiently satisfied.

(実施例) 以下に実施例により本発明を更に詳述する。(Example) Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例−2) (1)基材の調製; ポリカーボネート板上に、エポキシ樹脂〔主剤(ビス
フェノールA系、エポキシ当量190)及び硬化剤(ポリ
アミド樹脂、活性水素当量75)を当量ずつ混合〕を塗布
し、120℃で10分硬化させてエポキシ樹脂の被膜を形成
させた。
(Example-2) (1) Preparation of substrate: Epoxy resin [a main agent (bisphenol A type, epoxy equivalent 190) and a curing agent (polyamide resin, active hydrogen equivalent 75) are mixed in equivalent amounts on a polycarbonate plate] It was applied and cured at 120 ° C. for 10 minutes to form an epoxy resin film.

(2)銅イオン含有溶液の調製;1mol/の硝酸銅溶液に
当量のD−キシロースを加えてこれを銅イオン含有溶液
とした。
(2) Preparation of copper ion-containing solution: An equivalent amount of D-xylose was added to a 1 mol / copper nitrate solution to prepare a copper ion-containing solution.

(3)導電化処理; 0℃の硫化水素飽和水溶液に上記基材を10分間浸漬
し、次いでこれを0℃の上記銅イオン含有溶液に10分間
浸漬した。
(3) Conductivity treatment: The above substrate was immersed in a saturated hydrogen sulfide aqueous solution at 0 ° C for 10 minutes, and then immersed in the above copper ion-containing solution at 0 ° C for 10 minutes.

(4)表面抵抗値の測定;測定値…タケダ理研(株)
製、DIGITAL MULTIMETER TR−6843 電極…銅板 測定法…電極間に処理試料をはさみ、電極間距離を2cm
一定とし、測定器に導線により両極を接続し、抵抗値を
測定した。
(4) Measurement of surface resistance value; measured value ... Takeda Riken Co., Ltd.
Manufactured by DIGITAL MULTIMETER TR-6843 Electrodes ... Copper plate Measurement method ... Placing the treated sample between the electrodes, the distance between the electrodes is 2 cm
The resistance was measured by setting the value constant and connecting both electrodes to the measuring instrument with a conductor.

その結果、320Ωの表面抵抗値を得た。 As a result, a surface resistance value of 320Ω was obtained.

(実施例−3) (1)基材の調製; ポリカーボネート板上に、エポキシ樹脂(実施例−2
と同じ)を塗布し、120℃で60分硬化させてエポキシ樹
脂の被膜を形成させた。
(Example-3) (1) Preparation of base material; epoxy resin (Example-2) on a polycarbonate plate.
The same) was applied and cured at 120 ° C. for 60 minutes to form a film of epoxy resin.

(2)銅イオン含有溶液の調製;実施例2と同様 (3)導電化処理;20℃の硫化水素飽和水溶液に上記基
材を10分間浸漬し、次いでこれを20℃の上記銅イオン含
有溶液に10分間浸漬した。
(2) Preparation of copper ion-containing solution; same as in Example 2 (3) Conducting treatment; dipping the above base material in a saturated hydrogen sulfide aqueous solution at 20 ° C for 10 minutes, and then subjecting it to the above copper ion containing solution at 20 ° C. And soaked for 10 minutes.

(4)表面抵抗値の測定;実施例−2と同様に測定し
た。その結果、460Ωの表面抵抗値を得た。
(4) Measurement of surface resistance value: Measured in the same manner as in Example-2. As a result, a surface resistance value of 460Ω was obtained.

(実施例−4) 添加材による硫化銅被膜の外観の違いを調べた。(Example-4) The difference in the appearance of the copper sulfide coating film depending on the additive was examined.

(1)基材の調製; ガラス板上に、エポキシ樹脂〔主材(ビスフェノール
A系、エポキシ当量190)及び硬化剤(ポリアミド系樹
脂)を当量ずつ混合〕を塗布し、80℃で10分、次いで12
0℃で15分硬化させてエポキシ樹脂の被膜を形成させ
た。
(1) Preparation of base material: Epoxy resin [main material (bisphenol A type, epoxy equivalent 190) and curing agent (polyamide type resin) are mixed in equal amounts] is applied on a glass plate, and the mixture is applied at 80 ° C. for 10 minutes. Then 12
It was cured at 0 ° C for 15 minutes to form an epoxy resin film.

(2)銅イオン含有溶液の調製; 実施例−2の銅イオン含有溶液に、プロピレンカーボ
ネート及びエチレングリコールを第1表の如き割合で添
加した。
(2) Preparation of Copper Ion-Containing Solution: Propylene carbonate and ethylene glycol were added to the copper ion-containing solution of Example-2 in the proportions shown in Table 1.

(3)導電化処理;20℃の硫化水素飽和水溶液に上記基
材を10分間浸漬し、次いでこれを20℃の上記銅イオン含
有溶液に10分間浸漬した。
(3) Conductivity treatment: The above substrate was immersed in a saturated hydrogen sulfide aqueous solution at 20 ° C for 10 minutes, and then immersed in the above copper ion-containing solution at 20 ° C for 10 minutes.

(4)表面抵抗値の測定及び外観の観察; 上記同様に表面抵抗値を測定すると共に外観を目視に
て比較した。その結果を第1表に示す。
(4) Measurement of surface resistance value and observation of appearance: The surface resistance value was measured in the same manner as above, and the appearance was visually compared. The results are shown in Table 1.

但し、*1は銅イオン含有溶液に対する添加剤の割合
を示す。また、A及びBは夫々プロピレンカーボネート
及びエチレングリコールを示す。更に硫化銅被膜の外観
の欄の優・良・可はブランク(添加材無添加)に対する
目視による相対評価を示す。
However, * 1 shows the ratio of the additive to the copper ion-containing solution. Further, A and B represent propylene carbonate and ethylene glycol, respectively. Furthermore, "Excellent", "Good", and "Good" in the column of the appearance of the copper sulfide coating show relative evaluation by visual observation with respect to the blank (without addition of an additive).

第1表の結果から、添加剤により硫化銅被膜の外観が
向上することが理解される。
From the results in Table 1, it is understood that the additive improves the appearance of the copper sulfide coating.

(密着性試験) 実施例−2乃至−3の処理品における硫化銅被膜の密
着性を調べた。
(Adhesion test) The adhesion of the copper sulfide coating in the treated products of Examples-2 to -3 was examined.

(1)評価法; 10×10mm碁盤目クロスカッテンィング法。(1) Evaluation method: 10 × 10 mm cross-cutting method.

(2)結果;結果を第2表に示す。(2) Results; Table 2 shows the results.

第2表から硫化銅被膜のエポキシ樹脂に対する密着性
が良好であることが理解される。他、前述した如くESCA
の解析結果からこの硫化銅被膜はエポキシ樹脂と化学的
に結合しており、極めて安定したものである。
It is understood from Table 2 that the adhesion of the copper sulfide coating to the epoxy resin is good. Others, as mentioned above, ESCA
From the analysis result of 1., the copper sulfide coating is chemically bonded to the epoxy resin and is extremely stable.

尚、上記実施例以外でも、例えばエポキシ樹脂の単独
板についても同様の処理をしたが、上記と略同様の結果
が得られた。亦、硫化水素による処理を、硫化水素ガス
雰囲気中で行った場合も同様の結果を得た。
In addition to the above examples, the same process was performed on a single plate of epoxy resin, for example, but substantially the same results as above were obtained. Similar results were also obtained when the treatment with hydrogen sulfide was performed in a hydrogen sulfide gas atmosphere.

(発明の効果) 叙上の如く、本発明の邸電気抵抗材料の製造方法は、
エポキシ樹脂の表面を有する基材を硫化水素にて処理
し、次いで銅イオン含有溶液を作用させるようにしてい
るから、硫化水素処理によって樹脂構造中に化学的結合
状態で組み込まれたイオウ元素と銅イオン含有溶液中の
銅イオンとが化学結合し、基材表面に極めて安定した硫
化銅の導電被膜が被着形成される。しかもその製造要領
は極めて簡易であり、従来の無電解メッキ法その他導電
化処理法に比べ製造コスト、要する労力が著減され、設
備費用等も割安となり、更に導イオン含有溶液中の銅イ
オンは上記イオウ元素と当量的に反応するから、余剰の
硫化銅等が析出することが無く、銅イオンがなくならな
い限り銅イオン含有溶液の繰り返し使用が可能で、従っ
てこれらの生産工程の設計に当っては、硫化水素処理か
ら導電化処理に至る一連の工程を自動化することも可能
とされる。亦、本発明方法により得た低電気抵抗材料
は、硫化銅の密着性の高い安定した導電被膜により低レ
ベルの表面抵抗値が維持され、エポキシ樹脂の優れた特
性(特に種々の材料に対する良好な接着特性)と相俟っ
て種々の材料選択による所望の製品形状を可能ならしめ
る様々な価値ある用途を約束されるものである。…など
の著効を奏するものでその産業的有用性は極めて大であ
る。
(Effects of the Invention) As described above, the method for manufacturing the residence electrical resistance material of the present invention is
Since the base material having the surface of the epoxy resin is treated with hydrogen sulfide and then the copper ion-containing solution is allowed to act, the sulfur element and the copper which are chemically bonded to the resin structure by the hydrogen sulfide treatment are incorporated. The copper ions in the ion-containing solution are chemically bonded to form a very stable conductive film of copper sulfide on the surface of the base material. Moreover, the manufacturing procedure is extremely simple, the manufacturing cost and labor required are remarkably reduced as compared with the conventional electroless plating method and other conductive treatment methods, and the facility cost is also cheaper. Since it reacts with the sulfur element in an equivalent amount, excess copper sulfide, etc. does not precipitate, and the copper ion-containing solution can be repeatedly used as long as copper ions do not disappear, and therefore, in designing these production processes. It is also possible to automate a series of steps from hydrogen sulfide treatment to conductivity treatment. The low electric resistance material obtained by the method of the present invention maintains a low level surface resistance value due to the stable conductive coating having high adhesion of copper sulfide, and has excellent properties of the epoxy resin (especially good properties for various materials). In combination with the adhesive properties), various valuable uses that promise desired product shapes by various material selections are promised. It has remarkable effects such as ... and its industrial utility is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/20 Z H01C 17/06 M H05B 3/14 B 7512−3K (72)発明者 中平 誠 大阪府大阪市東区安土町2丁目30番地 タ キロン株式会社内 (56)参考文献 特開 昭61−40362(JP,A) 特開 昭61−273804(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01B 1/20 Z H01C 17/06 MH05B 3/14 B 7512-3K (72) Inventor Nakahira Makoto, Takiron Co., Ltd., 2-30 Azuchi-cho, Higashi-ku, Osaka City, Osaka Prefecture (56) Reference JP-A-61-40362 (JP, A) JP-A-61-273804 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エポキシ樹脂の表面を有する基材を、硫化
水素を溶解した溶液に浸漬若しくは硫化水素ガス雰囲気
中に晒し、次いで該基材を銅イオン含有溶液に浸漬し、
該基材の上記樹脂表面上に硫化銅の導電層を被着形成さ
せるようにしたエポキシ樹脂系低電気抵抗材料の製造方
1. A substrate having an epoxy resin surface is immersed in a solution in which hydrogen sulfide is dissolved or exposed to a hydrogen sulfide gas atmosphere, and then the substrate is immersed in a solution containing copper ions.
Method for producing an epoxy resin-based low electrical resistance material in which a conductive layer of copper sulfide is formed on the resin surface of the base material by deposition.
JP62092487A 1987-04-15 1987-04-15 Method for producing epoxy resin-based low electrical resistance material Expired - Lifetime JPH0818000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092487A JPH0818000B2 (en) 1987-04-15 1987-04-15 Method for producing epoxy resin-based low electrical resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092487A JPH0818000B2 (en) 1987-04-15 1987-04-15 Method for producing epoxy resin-based low electrical resistance material

Publications (2)

Publication Number Publication Date
JPS63258675A JPS63258675A (en) 1988-10-26
JPH0818000B2 true JPH0818000B2 (en) 1996-02-28

Family

ID=14055662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092487A Expired - Lifetime JPH0818000B2 (en) 1987-04-15 1987-04-15 Method for producing epoxy resin-based low electrical resistance material

Country Status (1)

Country Link
JP (1) JPH0818000B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215005A (en) * 1984-04-10 1985-10-28 Nippon Sanmou Senshoku Kk Electroconductive material
JPS61273804A (en) * 1985-05-29 1986-12-04 三菱レイヨン株式会社 Conducting epoxy resin material

Also Published As

Publication number Publication date
JPS63258675A (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US3865699A (en) Electrodeposition on non-conductive surfaces
EP0082438B1 (en) Process for the activation of surfaces for electroless metallization
US4781980A (en) Copper powder for use in conductive paste
US5840432A (en) Electroconductive paste
US4122143A (en) Process for producing cured products
EP0107863A2 (en) A shielding material of electromagnetic waves
JPS63500624A (en) Conductive composition and conductive powder used therein
EP0259754A2 (en) Flexible circuits
JPH0753843B2 (en) Conductive paint that can be soldered
US5158657A (en) Circuit substrate and process for its production
JPH0818000B2 (en) Method for producing epoxy resin-based low electrical resistance material
EP2791388B1 (en) Electroless plating of silver onto graphite
JPH058528B2 (en)
JPS62179566A (en) Electrically conductive resin composition
JPS59179650A (en) Heat-resistant, electrically conductive paste composition
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPS58118830A (en) Preparation of molding for chemical plating
EP0336304A1 (en) Ultra thin, electrically conductive coatings having high transparency and method for producing same
JPH0969313A (en) Conductive paste and its manufacture, and electric circuit device using conductive paste and its manufacture
WO1991009151A1 (en) Method of metallizing substrates by chemical redox
JPS6389577A (en) Electrically conductive paint
DE2623695A1 (en) Hardened conductors having good initial and long term conductivity - mfd. from copper powder, copper cpd., reducing agent and resin binder
JP2003068139A (en) Conductive paste
JPH03152803A (en) Solderable conductive paste
JPS6251106A (en) Manufacture of highly conducting resin film