JPH0583046B2 - - Google Patents

Info

Publication number
JPH0583046B2
JPH0583046B2 JP2904389A JP2904389A JPH0583046B2 JP H0583046 B2 JPH0583046 B2 JP H0583046B2 JP 2904389 A JP2904389 A JP 2904389A JP 2904389 A JP2904389 A JP 2904389A JP H0583046 B2 JPH0583046 B2 JP H0583046B2
Authority
JP
Japan
Prior art keywords
viscosity liquid
low viscosity
base material
varnish
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2904389A
Other languages
Japanese (ja)
Other versions
JPH02208009A (en
Inventor
Mitsuaki Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Takuma Research and Development Co Ltd
Original Assignee
Takuma Co Ltd
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, Takuma Research and Development Co Ltd filed Critical Takuma Co Ltd
Priority to JP1029043A priority Critical patent/JPH02208009A/en
Priority to KR1019890014226A priority patent/KR930001712B1/en
Priority to US07/430,329 priority patent/US5056457A/en
Priority to DE68915401T priority patent/DE68915401T2/en
Priority to EP89420444A priority patent/EP0369907B1/en
Publication of JPH02208009A publication Critical patent/JPH02208009A/en
Priority to US07/738,953 priority patent/US5137756A/en
Publication of JPH0583046B2 publication Critical patent/JPH0583046B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば電気絶縁板、化粧板等の積層
板の製造に使用される紙、布等の繊維質材からな
るシート状の基材にワニスを含浸させるための方
法及び装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sheet-like base material made of a fibrous material such as paper or cloth used for manufacturing laminates such as electrical insulating boards and decorative boards. The present invention relates to a method and apparatus for impregnating water with varnish.

〔従来の技術〕[Conventional technology]

一般に、繊維質材からなるシート状の基材にワ
ニスを含浸させる場合、ワニスが基材の繊維内部
にまで含浸され、各部のワニス量分布がむらなく
均一であることが重要であり、且つ基材中に残存
する気泡を可及的に少なくすることが望ましい。
Generally, when impregnating a sheet-like base material made of fibrous material with varnish, it is important that the varnish is impregnated into the inside of the fibers of the base material and that the amount of varnish is evenly distributed in each part. It is desirable to reduce the number of air bubbles remaining in the material as much as possible.

従来の含浸方法では、一般に、基材をこれに予
備含浸用の通常ワニスを予備含浸させた上で、タ
イミングロールを経てワニス槽に導いて、通常ワ
ニスを含浸させるようにしているのが普通であ
る。
In conventional impregnation methods, the substrate is generally pre-impregnated with an ordinary varnish for pre-impregnation, and then guided through a timing roll to a varnish tank where it is impregnated with an ordinary varnish. be.

ところが、このような含浸方法では、基材の内
部にまでワニスを均一且つ充分に含浸させること
が困難であり、ワニスを含浸させるに長時間を要
するといつた問題があつた。しかも、基材中に残
存する気泡を充分に少なくすることが困難であ
る。かかる問題は、特に高粘度のワニスを使用し
た場合に顕著となる。
However, with such an impregnation method, it is difficult to uniformly and sufficiently impregnate the inside of the base material with varnish, and there are problems in that it takes a long time to impregnate the base material with varnish. Furthermore, it is difficult to sufficiently reduce the number of bubbles remaining in the base material. This problem becomes particularly noticeable when a high viscosity varnish is used.

そこで、近時、上記した予備含浸用の通常ワニ
スに代えて溶剤若しくは溶剤を多量に含む稀薄な
ワニス(以下「予備含浸液」という)を貯溜した
予備含浸槽と通常ワニスを貯溜した本含浸槽とを
並置して、基材をガイドロールにより予備含浸
槽、本含浸槽を順次通過せしめるようにすること
が行われている。
Therefore, in recent years, instead of the normal varnish for preliminary impregnation mentioned above, a preliminary impregnation tank that stores a solvent or a dilute varnish containing a large amount of solvent (hereinafter referred to as "preliminary impregnation liquid") and a main impregnation tank that stores a normal varnish. It has been practiced to arrange these in parallel and allow the base material to pass through the preliminary impregnation tank and the main impregnation tank sequentially using guide rolls.

かかる含浸方法によれば、基材が予備含浸液中
を通過せしめられる間に、基材中の空気が予備含
浸液と置換されて排除されるから、基材を、これ
に含浸された予備含浸液を蒸発させつつワニス中
にもたらすと、ワニスを効率良く含浸させ得ると
共に、気泡の減少を図ることができる。
According to this impregnation method, while the substrate is passed through the pre-impregnating liquid, the air in the substrate is replaced with the pre-impregnating liquid and removed, so that the pre-impregnating liquid impregnated in the substrate is removed. When the liquid is introduced into the varnish while being evaporated, the varnish can be impregnated efficiently and bubbles can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、予備含浸液中からワニス中への
移行段階において、基材が空気に触れると共に両
槽間のガイドロールによる圧縮作用を受けること
から、基材中の空気の排除が充分に行われず、ワ
ニス含浸性、ボイドレス効果を余り期待できな
い。
However, in the transition stage from the pre-impregnating liquid to the varnish, the base material is exposed to air and is compressed by the guide rolls between the two tanks, so air in the base material is not removed sufficiently and the varnish is Impregnating properties and voidless effects cannot be expected.

すなわち、基材が上記ガイドロールに至ると、
基材を構成する繊維束に接触面圧力が作用して、
繊維束が開繊することになり、繊維束内の毛管力
により保持されている予備含浸液の液相が破壊さ
れる。そして、このガイドロールを通過した時点
で繊維束の圧縮は解除されるが、この解圧作用に
よつて開繊された繊維束は再形成される。このよ
うに、繊維束における含浸液相の破壊と開繊され
た繊維束の再形成とが空気中で行なわれることか
ら、予備含浸液中からワニス中への移行段階にお
いて基材には空気が再侵入する虞れがある。
That is, when the base material reaches the guide roll,
Contact surface pressure acts on the fiber bundles that make up the base material,
The fiber bundle is opened, and the liquid phase of the pre-impregnation liquid held by capillary forces within the fiber bundle is destroyed. The compression of the fiber bundle is released when it passes through this guide roll, but the opened fiber bundle is reformed by this decompression action. As described above, since the destruction of the impregnating liquid phase in the fiber bundle and the reformation of the opened fiber bundle take place in the air, air is present in the base material during the transition stage from the pre-impregnating liquid to the varnish. There is a risk of re-invasion.

本発明は、かかる点に鑑みてなされたもので、
基材におけるワニス含浸性、ボイドレス効果を大
幅に向上させ得るワニス含浸方法とこれを好適に
実施しうるワニス含浸装置とを提供することを目
的とするものである。
The present invention has been made in view of these points,
The object of the present invention is to provide a varnish impregnation method that can significantly improve the varnish impregnation properties and void-free effect in a base material, and a varnish impregnation apparatus that can suitably carry out the method.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決した本発明のワニス含浸方法
は、溶剤等の低粘性液を貯溜せる低粘性液貯溜領
域とワニスを貯溜せるワニス貯溜領域との間に、
両貯溜領域にその液面で液封された状態で連通す
る密閉状の熱サイホン領域を設けて、繊維質材か
らなるシート状の基材を低粘性液貯溜領域、熱サ
イホン領域、ワニス貯溜領域を順次通過させるよ
うにすると共に、熱サイホン領域において、基材
を加熱してこれに含浸された低粘性液を蒸発さ
せ、且つ該領域で発生した低粘性液蒸気を凝縮液
化させて、その凝縮液化された低粘性液を低粘性
液貯溜領域側に回収するようにし、更に熱サイホ
ン領域と低粘性液貯溜領域との連通部において低
粘性液を加熱蒸発させ、その蒸発量を該連通部に
おける液封面の変動に応じて制御させるようにし
たものである。
The varnish impregnation method of the present invention solves this problem by providing a varnish impregnation method between a low viscosity liquid storage area where a low viscosity liquid such as a solvent can be stored and a varnish storage area where varnish can be stored.
A sealed thermosiphon region is provided in both reservoir regions, which communicate with each other while being sealed with liquid at the liquid level, and a sheet-like base material made of a fibrous material is used as a low-viscosity liquid reservoir region, a thermosyphon region, and a varnish reservoir region. At the same time, in the thermosiphon region, the base material is heated to evaporate the low viscosity liquid impregnated therein, and the low viscosity liquid vapor generated in the region is condensed and liquefied. The liquefied low-viscosity liquid is collected into the low-viscosity liquid storage area, and the low-viscosity liquid is heated and evaporated in the communication area between the thermosiphon area and the low-viscosity liquid storage area, and the amount of evaporation is measured in the communication area. Control is performed according to fluctuations in the liquid sealing surface.

一方、かかる方法を実施するための本発明のワ
ニス含浸装置は、溶剤等の低粘性液を貯溜した低
粘性液貯溜槽と、ワニスを貯溜したワニス貯溜槽
と、各貯溜槽内の液面下において開口する筒状の
基材入口部入口部及び基材出口部を垂設した密閉
状の熱サイホン室と、繊維質材からなるシート状
の基材を低粘性液貯溜槽から基材入口部を経て熱
サイホン室に導き更に基材出口部からワニス貯溜
槽に導く基材走行ガイド機構と、熱サイホン室内
において基材を加熱して、これに含浸された低粘
性液を蒸発させる基材加熱機構と、熱サイホン室
内の低粘性液蒸気を凝縮液化する冷却機構と、該
冷却機構により凝縮液化された低粘性液を低粘性
液貯溜槽側に回収する凝縮液回収機構と、基材入
口部内の低粘性液溜に上下方向に延びる低粘性液
加熱面を配設して、低粘性液溜の液面変動に伴つ
て低粘性液の加熱蒸発量が変化するように構成さ
れた低粘性液加熱機構と、を具備するものであ
る。
On the other hand, the varnish impregnation apparatus of the present invention for carrying out such a method includes a low viscosity liquid storage tank storing a low viscosity liquid such as a solvent, a varnish storage tank storing varnish, and a liquid level below the liquid level in each storage tank. A closed thermosyphon chamber with a cylindrical base material inlet opening and a base material outlet vertically installed; A base material running guide mechanism that guides the base material through the thermosyphon chamber and further leads it from the base material outlet to the varnish storage tank, and a base material heating system that heats the base material in the thermosyphon chamber and evaporates the low-viscosity liquid impregnated into the base material. a cooling mechanism that condenses and liquefies the low-viscosity liquid vapor in the thermosiphon chamber; a condensate recovery mechanism that recovers the low-viscosity liquid condensed and liquefied by the cooling mechanism into the low-viscosity liquid storage tank; A low viscosity liquid configured such that a low viscosity liquid heating surface extending vertically is disposed in the low viscosity liquid reservoir so that the amount of heating and evaporation of the low viscosity liquid changes as the liquid level in the low viscosity liquid reservoir changes. A heating mechanism is provided.

〔作用〕[Effect]

基材が低粘性液貯溜槽内を通過する間におい
て、基材中の空気が低粘性液と置換されて排除さ
れる。
While the substrate passes through the low viscosity liquid reservoir, the air in the substrate is replaced with the low viscosity liquid and removed.

そして、低粘性液を含浸された基材は、引き続
き、基材入口部から熱サイホン室内にもたらされ
て基材加熱機構により加熱される。かかる基材の
加熱により、これに含浸された低粘性液は蒸発分
離される。
The base material impregnated with the low viscosity liquid is then brought into the thermosyphon chamber from the base material inlet and heated by the base material heating mechanism. By heating the base material, the low viscosity liquid impregnated therein is evaporated and separated.

このとき、熱サイホン室内の蒸気圧力は、基材
加熱機構及び低粘性液加熱機構による低粘性液の
蒸発量と冷却機構による凝縮量とが平衡状態にあ
る限り、一定範囲に保持されるが、基材走行速度
等のワニス含浸条件が変更、変動されると、上記
蒸発量と凝縮量とのバランスが崩れことから、熱
サイホン室内の蒸気圧力が変動して上記作用が良
好に行なわれなくなる虞れがある。
At this time, the vapor pressure in the thermosiphon chamber is maintained within a certain range as long as the amount of evaporation of the low viscosity liquid by the base material heating mechanism and the low viscosity liquid heating mechanism and the amount of condensation by the cooling mechanism are in equilibrium. If the varnish impregnation conditions, such as the running speed of the substrate, are changed or fluctuated, the balance between the amount of evaporation and the amount of condensation will be disrupted, which may cause the steam pressure in the thermosyphon chamber to fluctuate, making it impossible to perform the above-mentioned functions properly. There is.

しかし、熱サイホン室内の蒸気圧力が変動する
と、これに伴つて低粘性液溜の液面(及びワニス
溜の液面)も変動し、その変動量に応じて低粘性
液加熱機構による蒸発量が自動的に制御されるこ
とになる。すなわち、蒸気圧力が低下して、低粘
性液溜の液面が上昇すると、低粘性液溜における
低粘性液加熱面の浸漬量つまり低粘性液と低粘性
液加熱面との接触面積が増加し、その結果、低粘
性液加熱機構による蒸発量が蒸気圧力の低下量に
相当する量だけ増加し、熱サイホン室内の蒸気圧
力変動を阻止する。逆に、蒸気圧力が上昇した場
合には、低粘性液溜の液面が下降して、低粘性液
と低粘性液加熱面との接触面積が減少し、したが
つて低粘性液加熱機構による蒸発量が減少して、
蒸気圧力の上昇を阻止する。
However, when the steam pressure in the thermosiphon chamber fluctuates, the liquid level in the low-viscosity liquid reservoir (and the liquid level in the varnish reservoir) also fluctuates, and the amount of evaporation by the low-viscosity liquid heating mechanism changes accordingly. It will be automatically controlled. In other words, when the vapor pressure decreases and the liquid level in the low-viscosity liquid reservoir rises, the amount of immersion of the low-viscosity liquid heating surface in the low-viscosity liquid reservoir, that is, the contact area between the low-viscosity liquid and the low-viscosity liquid heating surface increases. As a result, the amount of evaporation caused by the low-viscosity liquid heating mechanism increases by an amount corresponding to the amount of decrease in steam pressure, thereby preventing fluctuations in steam pressure in the thermosyphon chamber. Conversely, when the steam pressure increases, the liquid level in the low viscosity liquid reservoir falls, and the contact area between the low viscosity liquid and the low viscosity liquid heating surface decreases, and therefore the low viscosity liquid heating mechanism The amount of evaporation decreases,
Prevents steam pressure from increasing.

このように、熱サイホン室内の蒸気圧力は、圧
力制御装置等を設けておかずとも自己制御され
て、常に一定範囲に保持されることになる。しか
も、運転停止により基材走行が停止された場合や
基材走行速度の変更、変動があつた場合等にあつ
て、冷却機構による凝縮量が基材加熱による蒸発
量を大幅に上回るような状態では、熱サイホン室
内が真空若しくは負圧になり、低粘性液及びワニ
スが基材入口部及び基材出口部から熱サイホン室
に吸い上げられるといつた不都合を生じる虞れが
あるが、このような場合にもかかる不都合は全く
生じない。
In this way, the steam pressure in the thermosiphon chamber is self-controlled and always maintained within a certain range without the need for a pressure control device or the like. Moreover, in cases such as when the base material travel is stopped due to an operational stop or when the base material travel speed is changed or fluctuated, the amount of condensation caused by the cooling mechanism significantly exceeds the amount of evaporation caused by heating the base material. However, there is a risk that the thermosiphon chamber will become vacuum or negative pressure, causing problems such as low viscosity liquid and varnish being sucked up into the thermosyphon chamber from the substrate inlet and substrate outlet. In this case, such inconvenience does not occur at all.

また、冷却機構で凝縮された低粘性液は低粘性
液貯溜槽側に回収されることから、低粘性液の損
失及びワニス貯溜槽への侵入は可及的に防止され
ることになる。
Further, since the low viscosity liquid condensed by the cooling mechanism is collected into the low viscosity liquid storage tank, the loss of the low viscosity liquid and the intrusion into the varnish storage tank are prevented as much as possible.

したがつて、熱サイホン領域においては、基材
が熱サイホンのウイツクとして良好に機能するこ
とになり、基材は低粘性液の飽和蒸気のみを含有
する状態で、熱サイホン領域からワニス貯溜領域
にもたらされることになる。すなわち、低粘性液
貯溜領域からワニス貯溜領域への移行段階におい
て基材に空気が侵入することがなく、ワニス領域
には空気を含有しない基材がもたらされることに
なる。
Therefore, in the thermosyphon region, the substrate will function well as a thermosiphon wick, and the substrate will flow from the thermosyphon region to the varnish reservoir region with only saturated vapor of a low viscosity liquid. It will be brought to you. That is, no air enters the substrate during the transition stage from the low viscosity liquid reservoir region to the varnish reservoir region, resulting in an air-free substrate in the varnish region.

その結果、基材がワニス貯溜領域にもたらされ
ると、基材へのワニス含浸が良好に行なわれ、基
材にはワニスが均一且つ充分に含浸せしめられる
ことになる。
As a result, when the substrate is brought to the varnish storage area, the impregnation of the substrate with varnish takes place well, and the substrate is evenly and thoroughly impregnated with varnish.

〔実施例〕〔Example〕

以下、本発明の構成を第1図に示す実施例に基
づいて具体的に説明する。
Hereinafter, the configuration of the present invention will be specifically explained based on the embodiment shown in FIG.

第1図に示すワニス含浸装置において、1は基
材、2は低粘性液貯溜槽、3はワニス貯溜槽、4
は熱サイホン室、5は基材加熱機構、6は冷却機
構、7は低粘性液蒸発機構、8は凝縮液回収機
構、9は基材走行ガイド機構である。
In the varnish impregnation apparatus shown in FIG. 1, 1 is a base material, 2 is a low viscosity liquid storage tank, 3 is a varnish storage tank, and 4
5 is a thermosiphon chamber, 5 is a substrate heating mechanism, 6 is a cooling mechanism, 7 is a low viscosity liquid evaporation mechanism, 8 is a condensate recovery mechanism, and 9 is a substrate travel guide mechanism.

基材1は繊維質材からなるシート状のもので、
合成、天然の有機、無機繊維からなる織布、不織
布、例えば紙、ガラス繊維布、ガラス繊維不織
布、カーボン繊維布、カーボン繊維不織布、アラ
ミド繊維布、アラミド繊維不織布等が使用され
る。
The base material 1 is a sheet-like material made of fibrous material,
Woven or nonwoven fabrics made of synthetic, natural, organic, or inorganic fibers, such as paper, glass fiber fabric, glass fiber nonwoven fabric, carbon fiber fabric, carbon fiber nonwoven fabric, aramid fiber fabric, aramid fiber nonwoven fabric, etc., are used.

低粘性液貯溜槽2は溶剤等の低粘性液12を所
定量貯溜した上面開放状のものであり、ワニス貯
溜槽3はワニス13を所定量貯溜した上面開放状
のものである。各貯溜槽2,3の側壁には溢流堰
2a,3b及び溢流溜2b,3bが設けられてい
て、各貯溜槽2,3における液面高さを一定に保
持するように工夫してある。なお、溢流堰2a,
3bの液は、図示しない返戻手段により貯溜槽
2,3に返戻されるようになつている。また、低
粘性液12及びワニス13は、夫々、図示しない
温度制御装置により所定温度に保持されている。
The low viscosity liquid storage tank 2 has an open top and stores a predetermined amount of a low viscosity liquid 12 such as a solvent, and the varnish storage tank 3 has an open top and stores a predetermined amount of varnish 13. Overflow weirs 2a, 3b and overflow basins 2b, 3b are provided on the side walls of each storage tank 2, 3, and the liquid level in each storage tank 2, 3 is kept constant. be. In addition, overflow weir 2a,
The liquid 3b is returned to the storage tanks 2 and 3 by a return means (not shown). Further, the low viscosity liquid 12 and the varnish 13 are each maintained at a predetermined temperature by a temperature control device (not shown).

ところで、低粘性液12としては、基材1に対
して充分な濡れ性を有するものが使用される。具
体的には、ワニス13より低粘度であり且つ
100cP以下の粘度の溶剤等を使用するが、含浸さ
せようとするワニスに配合された溶剤と同質のも
のを使用しておくことが好ましい。また、ワニス
13としては、一般に熱硬化性樹脂ワニスが使用
されるが、その他、熱可塑性樹脂、天然樹脂等の
ワニスや無溶剤の液状合成樹脂、液状天然樹脂等
も使用される。
By the way, as the low viscosity liquid 12, one having sufficient wettability to the base material 1 is used. Specifically, it has a lower viscosity than Varnish 13 and
A solvent with a viscosity of 100 cP or less is used, but it is preferable to use a solvent of the same quality as the solvent blended into the varnish to be impregnated. Further, as the varnish 13, a thermosetting resin varnish is generally used, but other varnishes such as thermoplastic resins, natural resins, solvent-free liquid synthetic resins, liquid natural resins, etc. can also be used.

熱サイホン室4は両貯溜槽2,3間の上方部位
に配設されており、底壁部に筒状の基材入口部4
a及び基材出口部4bを垂設してなる逆U字状の
サイホン管形状に構成されている。基材入口部4
a及び基材出口部4bは、夫々、低粘性液貯溜領
域2′及びワニス貯溜領域3′の液面12′,1
3′下において開口されていて、熱サイホン室4
内を液封により密閉された熱サイホン領域4′に
形成している。また熱サイホン室4には、不活性
ガスの供給管14、排気管15、抽気管16が接
続されている。抽気管16は低粘性液貯溜槽2に
導かれており、抽気弁16aが介設されている。
なお、基材入口部4a及び基材出口部4bを含む
熱サイホン室4の周壁は断熱壁に構成されてい
て、低粘性液蒸気が外界空気により冷却されて熱
サイホン室4の内壁面に凝縮付着するのを防止す
るように工夫してある。
The thermosiphon chamber 4 is disposed in the upper part between the two storage tanks 2 and 3, and has a cylindrical base material inlet part 4 on the bottom wall.
It has an inverted U-shaped siphon tube shape with a vertical base material outlet section 4a and a base material outlet section 4b. Base material entrance part 4
a and the base material outlet portion 4b, respectively, the liquid levels 12' and 1 of the low viscosity liquid storage area 2' and the varnish storage area 3'.
The thermosyphon chamber 4 is opened at the bottom 3'.
A thermosiphon region 4' is formed inside which is sealed by a liquid seal. Further, an inert gas supply pipe 14, an exhaust pipe 15, and a bleed pipe 16 are connected to the thermosiphon chamber 4. The air bleed pipe 16 is led to the low viscosity liquid storage tank 2, and is provided with an air bleed valve 16a.
Note that the peripheral wall of the thermosyphon chamber 4 including the substrate inlet section 4a and the substrate outlet section 4b is configured as a heat insulating wall, and the low viscosity liquid vapor is cooled by the outside air and condensed on the inner wall surface of the thermosyphon chamber 4. It is designed to prevent it from sticking.

基材加熱機構5は、熱サイホン室4内に加熱ロ
ール5aを基材1の回行に追従すべく回転自在に
設けてなる。この加熱ロール5aは、熱サイホン
領域4′において基材1を低粘性液12の沸点以
上若しくはその近傍温度に加熱して、これに含浸
せる低粘性液12を蒸発させるものである。とこ
ろで、加熱ロール5aによる基材加熱温度は図示
しない温度制御装置により制御されようになつて
いるが、その蒸発能力は、基材1に含浸されて熱
サイホン室4内に持込まれる最大量の低粘性液を
蒸発させ得るに充分なものとされている。なお、
加熱ロール5aは基材1の通過方向に回転駆動さ
せるようにしておいてもよい。この場合、ロール
周速を基材1の走行速度に一致させておくことは
いうまでもない。
The substrate heating mechanism 5 includes a heating roll 5 a rotatably provided in the thermosiphon chamber 4 to follow the movement of the substrate 1 . This heating roll 5a heats the base material 1 to a temperature equal to or near the boiling point of the low-viscosity liquid 12 in the thermosyphon region 4', thereby evaporating the low-viscosity liquid 12 impregnated therein. By the way, the heating temperature of the base material by the heating roll 5a is controlled by a temperature control device (not shown), but its evaporation capacity is determined by the maximum amount of evaporation that is impregnated into the base material 1 and brought into the thermosyphon chamber 4. It is said to be sufficient to evaporate viscous liquids. In addition,
The heating roll 5a may be driven to rotate in the direction in which the base material 1 passes. In this case, it goes without saying that the peripheral speed of the roll should match the traveling speed of the base material 1.

冷却機構6は、熱サイホン領域4′における低
粘性液蒸気を冷却、凝縮させるためのものであつ
て、基材入口部4aにおける低粘性液溜12aの
上位に配設した第1冷却コイル6aと、基材出口
部4bにおけるワニス溜13aの上位に配設した
第2冷却コイル6bとからなる。ところで、第1
冷却コイル6aによる冷却能力つまり凝縮能力
は、加熱ロール5aにより蒸発された低粘性液を
全て凝縮し得るに充分なものとされている。すな
わち、加熱ロール5aの蒸発能力以上のものとさ
れている。また、第2冷却コイル6bの凝縮能力
は、第1冷却コイル6aの凝縮能力より低く、そ
の10〜20%程度としてある。なお、各冷却コイル
6a,6bと熱サイホン室4の周壁との間は断熱
してあつて、この周壁に冷却コイル6a,6bに
よる冷却作用が及ぶことによる不都合(低粘性液
蒸気の周壁内面への凝縮付着)を防止すべく図つ
ている。
The cooling mechanism 6 is for cooling and condensing the low-viscosity liquid vapor in the thermosyphon region 4', and includes a first cooling coil 6a disposed above the low-viscosity liquid reservoir 12a at the base material inlet portion 4a; , and a second cooling coil 6b disposed above the varnish reservoir 13a at the base material outlet portion 4b. By the way, the first
The cooling capacity, that is, the condensing capacity, of the cooling coil 6a is sufficient to condense all of the low viscosity liquid evaporated by the heating roll 5a. In other words, the evaporation capacity is greater than the evaporation capacity of the heating roll 5a. Further, the condensing capacity of the second cooling coil 6b is lower than that of the first cooling coil 6a, and is about 10 to 20% thereof. Note that the space between each cooling coil 6a, 6b and the peripheral wall of the thermosyphon chamber 4 is insulated, so that there is no inconvenience caused by the cooling action of the cooling coils 6a, 6b being applied to the peripheral wall (low viscosity liquid vapor is directed to the inner surface of the peripheral wall). The aim is to prevent condensation (condensation and adhesion).

低粘性液加熱機構7は、低粘性液溜12aの低
粘性液を加熱、蒸発させるもので、例えば内部に
加熱媒体を流動させる伝熱コイルで形成された上
下方向に延びる低粘性液加熱面7aを低粘性液溜
12aに配置してなる。ところで、この低粘性液
加熱機構7による加熱能力つまり低粘性液蒸発能
力は、少なくとも、両冷却コイル6a,6bによ
る凝縮量(総和量)に相当する蒸発量を確保し得
るに充分なものとしてある。なお、低粘性液加熱
面7aと熱サイホン室4の周壁との間は断熱され
ていて、低粘性液溜12aにおける熱がその周囲
の低粘性液12に伝わるのを極力防止すべく図つ
ている。
The low-viscosity liquid heating mechanism 7 heats and evaporates the low-viscosity liquid in the low-viscosity liquid reservoir 12a, and includes, for example, a vertically extending low-viscosity liquid heating surface 7a formed of a heat transfer coil that causes a heating medium to flow inside. is arranged in a low viscosity liquid reservoir 12a. By the way, the heating capacity of the low viscosity liquid heating mechanism 7, that is, the evaporation capacity of the low viscosity liquid, is sufficient to ensure at least the amount of evaporation equivalent to the amount of condensation (total amount) by both the cooling coils 6a and 6b. . Note that the space between the low-viscosity liquid heating surface 7a and the peripheral wall of the thermosiphon chamber 4 is insulated to prevent the heat in the low-viscosity liquid reservoir 12a from being transmitted to the surrounding low-viscosity liquid 12 as much as possible. .

凝縮液回収機構8は、第2冷却コイル6bの直
下位において基材出口部4bの内周部に凝縮液溜
8aを連設して、この凝縮溜8aから低粘性液貯
溜槽2(より具体的には、基材入口部4aの低粘
性液溜2b)に回収管8bを導くことによつて、
第2冷却コイル6bにより凝縮された低粘性液を
低粘性液溜2bに回収するように構成されてい
る。また、第1冷却コイル6aにより凝縮された
低粘性液については、基材入口部4aをそのまま
利用して低粘性液溜2bに回収するようになされ
ている。なお、前記凝縮溜8aの構成壁8cを、
基材1と第2冷却コイル6bとの間を断熱する断
熱壁に構成して、基材1が冷却コイル6bにより
放射冷却されることにより低粘性液蒸気が基材1
に凝縮付着するのを防止すべく図つている。
The condensate recovery mechanism 8 includes a condensate reservoir 8a connected to the inner circumferential portion of the base material outlet portion 4b immediately below the second cooling coil 6b, and a low viscosity liquid reservoir 2 (more specifically, Specifically, by guiding the collection pipe 8b to the low viscosity liquid reservoir 2b) at the base material inlet 4a,
The low viscosity liquid condensed by the second cooling coil 6b is collected into the low viscosity liquid reservoir 2b. Further, the low viscosity liquid condensed by the first cooling coil 6a is collected into the low viscosity liquid reservoir 2b using the base material inlet portion 4a as it is. Note that the constituent wall 8c of the condensation tank 8a is
A heat insulating wall is formed between the base material 1 and the second cooling coil 6b, and the base material 1 is radiatively cooled by the cooling coil 6b, so that low viscosity liquid vapor flows into the base material 1.
This is intended to prevent condensation and adhesion.

基材走行ガイド機構9は、少なくとも各貯溜槽
2,3内に配設したガイドロール9a……,9b
……からなり、基材1が基材供給源(図示せず)
から低粘性液貯溜槽2内に至り、基材入口部4a
から低粘性液加熱面7a及び第1冷却コイル6a
を通過して熱サイホン室4内に至り、加熱ロール
5a及び第2冷却コイル6bを通過して基材出口
部4bからワニス貯溜槽3内に至り、ワニス貯溜
槽3上のワニス含浸量調整機構17を通過せしめ
られるようにガイドするものである。なお、各貯
溜領域2′,3′に配設されているガイドロール9
a……,9b……の一部は、基材1にその幅方向
への伸展力を付与しうるエキスパンダ式のものに
構成されていて、基材1の進行方向に対して直角
方向の、低粘性液貯溜領域2′における空気と低
粘性液との置換及びワニス貯溜領域3′における
ワニス含浸を、夫々促進させるように図つてい
る。また、ワニス含浸量調整機構17はスクイズ
ロール又はスクイズバーからなるもので、ワニス
貯溜槽3を経過した基材1をスクイズして、その
ワニス含浸量を調整する。
The base material traveling guide mechanism 9 includes at least guide rolls 9a..., 9b disposed in each storage tank 2, 3.
..., and the base material 1 is the base material supply source (not shown)
to the low viscosity liquid storage tank 2, and the base material inlet part 4a
to the low viscosity liquid heating surface 7a and the first cooling coil 6a.
It passes through the thermosyphon chamber 4, passes through the heating roll 5a and the second cooling coil 6b, and reaches the inside of the varnish storage tank 3 from the base material outlet section 4b, and the varnish impregnation amount adjustment mechanism on the varnish storage tank 3. 17. Note that the guide rolls 9 disposed in each storage area 2', 3'
A part of a..., 9b... is configured as an expander type that can apply stretching force to the base material 1 in its width direction, and is configured to have an expander type that can apply stretching force to the base material 1 in the width direction. , the replacement of air and low viscosity liquid in the low viscosity liquid storage area 2' and the impregnation of varnish in the varnish storage area 3' are promoted. The varnish impregnation amount adjustment mechanism 17 is composed of a squeeze roll or a squeeze bar, and squeezes the base material 1 that has passed through the varnish storage tank 3 to adjust the varnish impregnation amount.

次に、以上のように構成されたワニス含浸装置
を用いて、本発明の方法を具体的に説明する。
Next, the method of the present invention will be specifically explained using the varnish impregnation apparatus configured as described above.

装置を起動させるに当たつては、次のようにし
て、熱サイホン室4内を低粘性液の飽和蒸気で充
満させると共に、その蒸気圧力を一定範囲に保持
させておく。
To start up the device, the inside of the thermosyphon chamber 4 is filled with saturated steam of a low viscosity liquid and the pressure of the steam is maintained within a certain range as follows.

すなわち、供給管14から熱サイホン室4に不
活性ガスを供給し、熱サイホン室4内の空気を排
気管15から排除する。このとき、熱サイホン室
4内は大気圧に保持される。したがつて、低粘性
液溜12a及びワニス溜13aの液面12′a,
13′aは貯溜槽2,3の液面12′,13′と同
一高さに位置されている(第1図実線参照)。
That is, inert gas is supplied to the thermosiphon chamber 4 from the supply pipe 14, and air in the thermosyphon chamber 4 is removed from the exhaust pipe 15. At this time, the inside of the thermosiphon chamber 4 is maintained at atmospheric pressure. Therefore, the liquid level 12'a of the low viscosity liquid reservoir 12a and the varnish reservoir 13a,
13'a is located at the same height as the liquid levels 12', 13' of the storage tanks 2, 3 (see solid line in FIG. 1).

次に、各加熱機構5,7を作動させ、主とし
て、低粘性液加熱機構7により熱サイホン室4内
に低粘性液蒸気を発生させる。同時に、低冷却能
力の第2冷却コイル6bのみを作動させて、低粘
性液蒸気を凝縮させる。したがつて、高冷却能力
の第1冷却コイル6aが作動されていないことか
ら、両加熱機構5,7による蒸発量が第2冷却コ
イル6bによる凝縮量を上回り、熱サイホン室4
内の蒸気圧力は上昇していく。
Next, each of the heating mechanisms 5 and 7 is operated, and low viscosity liquid vapor is mainly generated in the thermosiphon chamber 4 by the low viscosity liquid heating mechanism 7. At the same time, only the second cooling coil 6b with low cooling capacity is operated to condense the low viscosity liquid vapor. Therefore, since the first cooling coil 6a with high cooling capacity is not operated, the amount of evaporation by both heating mechanisms 5 and 7 exceeds the amount of condensation by the second cooling coil 6b, and the thermosiphon chamber 4
The steam pressure inside increases.

このとき、抽気弁16aを強制的に開くと、熱
サイホン室4内の余剰蒸気が抽気管16から低粘
性液貯溜槽2に排除されて、熱サイホン室4内は
大気圧に保持される。一方、各封液面12′a,
13′aは変動せず、そのまま第1図の実線位置
に維持される。また、第2冷却コイル6bにより
凝縮された低粘性液は、凝縮液溜8aに捕集さ
れ、回収管8bから低粘性液溜12aに回収され
る。これによつて、低粘性液蒸気がワニス貯溜領
域3′側に凝縮するのが防止される。
At this time, when the bleed valve 16a is forcibly opened, excess steam in the thermosyphon chamber 4 is removed from the bleed pipe 16 to the low-viscosity liquid storage tank 2, and the inside of the thermosyphon chamber 4 is maintained at atmospheric pressure. On the other hand, each sealing liquid surface 12'a,
13'a does not change and is maintained at the position shown by the solid line in FIG. Further, the low viscosity liquid condensed by the second cooling coil 6b is collected in the condensed liquid reservoir 8a, and is recovered from the recovery pipe 8b into the low viscosity liquid reservoir 12a. This prevents the low viscosity liquid vapor from condensing on the varnish storage area 3' side.

このような作用が繰返されることによつて熱サ
イホン室4内の不活性ガスが追い出され、該室4
内は低粘性液蒸気で充満されることになる。
By repeating this action, the inert gas in the thermosyphon chamber 4 is expelled, and the thermosiphon chamber 4 is
The interior will be filled with low viscosity liquid vapor.

熱サイホン室4内が低粘性液蒸気で充満される
と、抽気弁16aを強制的に閉じて、熱サイホン
室4内の圧力を上昇させる。このとき、熱サイホ
ン室4内の圧力上昇に伴つて、各封液面12′a,
13′aは下降していく(第1図鎖線参照)。そし
て、低粘性液溜12aの液面12′aの下降に伴
つて、低粘性液溜12aにおける低粘性液加熱面
7aの浸漬深さしたがつて該加熱面7aと低粘性
液との接触面積が減少して、低粘性液加熱機構7
による蒸発量が減少していき、第2冷却コイル6
bの凝縮量と平衡することになる。
When the inside of the thermosyphon chamber 4 is filled with low viscosity liquid vapor, the bleed valve 16a is forcibly closed, and the pressure inside the thermosyphon chamber 4 is increased. At this time, as the pressure inside the thermosyphon chamber 4 increases, each sealing liquid surface 12'a,
13'a descends (see the chain line in Figure 1). As the liquid level 12'a of the low-viscosity liquid reservoir 12a falls, the immersion depth of the low-viscosity liquid heating surface 7a in the low-viscosity liquid reservoir 12a decreases, and the contact area between the heating surface 7a and the low-viscosity liquid increases. decreases, and the low viscosity liquid heating mechanism 7
As the amount of evaporation decreases, the second cooling coil 6
It will be in equilibrium with the amount of condensation b.

引き続き、第1冷却コイル6aを作動させる
と、低粘性液蒸気の凝縮量が増大して、熱サイホ
ン室4内の圧力が低下し、各封液面12′a,1
3′が上昇する。低粘性液溜12aの液面12′a
の上昇に伴つて、低粘性液加熱面7aと低粘性液
との接触面積が増大して、低粘性液加熱機構7に
よる蒸発量が増加していき、冷却コイル6a,6
bの凝縮量と平衡することになり、熱サイホン室
4内の蒸気圧力は一定範囲に保持される。
Subsequently, when the first cooling coil 6a is operated, the amount of condensation of the low-viscosity liquid vapor increases, the pressure inside the thermosyphon chamber 4 decreases, and each sealing liquid surface 12'a, 1
3' rises. Liquid level 12'a of low viscosity liquid reservoir 12a
As the temperature rises, the contact area between the low viscosity liquid heating surface 7a and the low viscosity liquid increases, and the amount of evaporation by the low viscosity liquid heating mechanism 7 increases, causing the cooling coils 6a, 6
This results in equilibrium with the condensation amount of b, and the steam pressure within the thermosyphon chamber 4 is maintained within a certain range.

このような状態にした上で、基材1の走行させ
ると、次のようにして基材1へのワニス含浸が行
なわれる。
When the base material 1 is run in this state, the base material 1 is impregnated with varnish in the following manner.

すなわち、基材1は基材供給源から低粘性液貯
溜槽2内にもたらされて、低粘性液12中に浸漬
され、基材1中の空気が低粘性液12と置換され
る。このとき、基材1が低粘性液12の液面1
2′に至ると、低粘性液12が毛細管現象により
基材1を構成する繊維束に浸漬し、同時に、その
浸透力によつて繊維束中の空気は押出される。か
かる浸透作用は、繊維束における浸透抵抗のため
或る段階で停止する。つまり、浸透作用の停止
は、基材1の走行速度つまり繊維束の低粘性液1
2への侵入速度が浸透速度より大きい場合は液面
上で生じ、逆の場合は液面下で生じる。したがつ
て、基材1が低粘性液貯溜領域2′を通過する間
に、繊維束中の空気はすべて低粘性液12と置換
されて排除されることになる。
That is, the substrate 1 is brought into the low viscosity liquid storage tank 2 from the substrate supply source and immersed in the low viscosity liquid 12, and the air in the substrate 1 is replaced with the low viscosity liquid 12. At this time, the base material 1 is at the liquid level 1 of the low viscosity liquid 12.
2', the low viscosity liquid 12 impregnates the fiber bundle constituting the base material 1 by capillary action, and at the same time, the air in the fiber bundle is pushed out by its penetrating force. Such osmotic action stops at some stage due to osmotic resistance in the fiber bundle. In other words, the stopping of the permeation action is determined by the traveling speed of the base material 1, that is, the low viscosity liquid 1 of the fiber bundle.
If the rate of entry into 2 is greater than the rate of penetration, it will occur above the liquid surface, and vice versa, it will occur below the liquid surface. Therefore, while the base material 1 passes through the low-viscosity liquid storage area 2', all the air in the fiber bundle is replaced with the low-viscosity liquid 12 and eliminated.

そして、低粘性液12を含浸された基材1は、
基材入口部4aから熱サイホン室4内にもたらさ
れ、加熱ロール5aにより加熱されて、基材1に
含浸されている低粘性液12が蒸発除去される。
The base material 1 impregnated with the low viscosity liquid 12 is
The low viscosity liquid 12 impregnated into the base material 1 is evaporated and removed by being brought into the thermosyphon chamber 4 from the base material inlet portion 4a and heated by the heating roll 5a.

このとき、基材1はその進行速度で低粘性液1
2を基材加熱部5aへ供給し続けることから、基
材1は熱サイホンとしてのウイツクのの役割を果
たすことになる。
At this time, the base material 1 moves through the low viscosity liquid 1 at its advancing speed.
Since the base material 2 continues to be supplied to the base material heating section 5a, the base material 1 plays the role of a thermosiphon.

一方、熱サイホン室4内の蒸気圧力は、次のよ
うな自己制御により一定範囲に保持される。
On the other hand, the steam pressure in the thermosiphon chamber 4 is maintained within a certain range by the following self-control.

すなわち、熱サイホン室4内の蒸気圧力が変動
すると、これに伴つて低粘性液溜12aの液面1
2′a(及びワニス溜13aの液面13′a)も変
動し、その変動量に応じて低粘性液加熱機構7に
よる蒸発量が自動的に制御されることになる。例
えば、蒸気圧力が低下して液封面12′aが上昇
すると、低粘性液溜12aにおける低粘性液と低
粘性液加熱面7aとの接触面積が増加し(例え
ば、実線状態)、低粘性液加熱機構7による蒸発
量が蒸気圧力の低下量に相当する量だけ増加し、
熱サイホン室4内の蒸気圧力低下を阻止する。逆
に、蒸気圧力が上昇した場合には、封液面12′
aが下降して、低粘性液と低粘性液加熱面7aと
の接触面積が減少し(例えば、鎖線状態)、低粘
性液加熱機構7による蒸発量が減少して、蒸気圧
力の上昇を阻止する。
That is, when the steam pressure in the thermosyphon chamber 4 changes, the liquid level 1 of the low viscosity liquid reservoir 12a changes accordingly.
2'a (and the liquid level 13'a of the varnish reservoir 13a) also fluctuates, and the amount of evaporation by the low-viscosity liquid heating mechanism 7 is automatically controlled according to the amount of fluctuation. For example, when the vapor pressure decreases and the liquid sealing surface 12'a rises, the contact area between the low viscosity liquid in the low viscosity liquid reservoir 12a and the low viscosity liquid heating surface 7a increases (for example, a solid line state), and the low viscosity liquid The amount of evaporation caused by the heating mechanism 7 increases by an amount corresponding to the amount of decrease in steam pressure,
This prevents a drop in steam pressure within the thermosyphon chamber 4. Conversely, if the steam pressure increases, the sealing liquid surface 12'
a decreases, the contact area between the low viscosity liquid and the low viscosity liquid heating surface 7a decreases (for example, in a chain line state), the amount of evaporation by the low viscosity liquid heating mechanism 7 decreases, and a rise in vapor pressure is prevented. do.

また、基材加熱機構5による発生蒸気の殆どは
第1冷却コイル6aにより凝縮されて、基材入口
部4aから低粘性液溜12aに回収される。一
方、基材出口部4bにおいては、第2冷却コイル
6bにより低粘性液蒸気が凝縮され、その凝縮液
は回収管8bから低粘性液溜12aに回収され
る。その結果、上記した蒸気圧力の自己制御と相
俟つて、基材1からの低粘性液分離が良好に行な
われると共に、低粘性液12の損失及びワニス貯
溜槽3への侵入は可及的に防止されることにな
る。
Further, most of the steam generated by the base material heating mechanism 5 is condensed by the first cooling coil 6a and collected from the base material inlet portion 4a into the low viscosity liquid reservoir 12a. On the other hand, at the base material outlet section 4b, the low viscosity liquid vapor is condensed by the second cooling coil 6b, and the condensed liquid is collected into the low viscosity liquid reservoir 12a from the collection pipe 8b. As a result, in combination with the above-mentioned self-control of the steam pressure, the low viscosity liquid is successfully separated from the base material 1, and the loss of the low viscosity liquid 12 and the intrusion into the varnish storage tank 3 are minimized. This will be prevented.

したがつて、熱サイホン室4で加熱された基材
1は低粘性液12の飽和蒸気を含有するのみとな
り、空気を含まない状態で基材出口部4bからワ
ニス貯溜槽3内にもたらされ、ワニス13中に浸
漬される。
Therefore, the base material 1 heated in the thermosyphon chamber 4 only contains saturated vapor of the low viscosity liquid 12, and is brought into the varnish storage tank 3 from the base material outlet portion 4b in a state containing no air. , immersed in varnish 13.

そして、基材1に含まれた低粘性液飽和蒸気は
ワニス貯溜領域3′に侵入する際、微量の低粘性
液飽和液となつてワニス13中に拡散する。
Then, when the low-viscosity liquid-saturated vapor contained in the base material 1 enters the varnish storage region 3', it becomes a trace amount of low-viscosity liquid-saturated liquid and diffuses into the varnish 13.

したがつて、基材1がワニス貯溜領域3′を通
過する間において、基材1にはワニス13が均一
且つ充分に含浸せしめられることになる。
Therefore, while the base material 1 passes through the varnish storage area 3', the base material 1 is uniformly and sufficiently impregnated with the varnish 13.

このとき、上記した如く、熱サイホン室4で発
生する低粘性液蒸気の殆どが低粘性液貯溜槽2側
に回収されること、及び基材1によつて直接ワニ
ス貯溜槽3内に持ち込まれる低粘性液飽和蒸気が
微量であることから、ワニス貯溜槽3内のワニス
粘度が低下するようなことはない。また、基材1
にはエキスパンダ式ガイドロール9a,9bを通
過する際に幅方向への伸展力が加わり、この伸展
力がロール通過後に解消されるため、低粘性液1
2及びワニス13中で幅方向の繊維束も拡繊・再
収束が行なわれて、幅方向における空気・低粘性
液の置換及びワニスの含浸性も向上することにな
る。その結果、基材1の繊維束内部にまで充分に
ワニス13が含浸されることになる。
At this time, as described above, most of the low-viscosity liquid vapor generated in the thermosyphon chamber 4 is recovered to the low-viscosity liquid storage tank 2 side, and is brought directly into the varnish storage tank 3 by the base material 1. Since the amount of low viscosity liquid saturated steam is small, the viscosity of the varnish in the varnish storage tank 3 does not decrease. In addition, base material 1
When passing through the expander type guide rolls 9a and 9b, a stretching force is applied in the width direction, and this stretching force is canceled after passing through the rolls, so that the low viscosity liquid 1
2 and the varnish 13, the fiber bundles in the width direction are also expanded and reconverged, thereby improving air/low viscosity liquid replacement and varnish impregnation in the width direction. As a result, the inside of the fiber bundle of the base material 1 is sufficiently impregnated with the varnish 13.

〔発明の効果〕〔Effect of the invention〕

以上の説明から容易に理解されるように、本発
明の方法によれば、基材にワニスを均一且つ充分
に短時間で含浸させることができ、しかも基材中
の起泡を皆無とすることができる。かかる効果
は、高粘度のワニスを含浸させる場合に著しい。
As can be easily understood from the above explanation, according to the method of the present invention, a base material can be impregnated with varnish uniformly and in a sufficiently short time, and there is no foaming in the base material. I can do it. This effect is significant when impregnating high viscosity varnishes.

しかも、本発明の方法によれば、熱サイホン領
域における蒸気圧力の変動を低粘性液貯溜領域と
の連通部における液封面の変動として捉え、この
液封面の変動に応じて低粘性液蒸気の発生量を制
御するようにしたから、基材速度等のワニス含浸
条件の変更、変動に拘らず、常に、熱サイホン領
域の蒸気圧力を一定範囲に保持し得て、良好なワ
ニス含浸を行なうことができる。
Moreover, according to the method of the present invention, fluctuations in the steam pressure in the thermosiphon region are interpreted as fluctuations in the liquid sealing surface in the communication portion with the low viscosity liquid storage region, and low viscosity liquid vapor is generated in accordance with the fluctuations in the liquid sealing surface. Since the amount is controlled, the steam pressure in the thermosiphon region can always be maintained within a certain range, and good varnish impregnation can be performed regardless of changes or fluctuations in varnish impregnation conditions such as substrate speed. can.

さらに、低粘性液中からワニス中への移行段階
において基材を加熱し、低粘性液を殆ど蒸発分離
するので、低粘性液の損失及びワニスの稀釈化を
効果的に防止しうると共に含浸作用の異なる促進
を図りうる。しかも、基材における低粘性液使用
量が極く僅かとなり、ワニス含浸後の乾燥工程に
おける乾燥炉排気量を大幅に減ずることができ
る。
Furthermore, in the transition stage from the low viscosity liquid to the varnish, the substrate is heated and most of the low viscosity liquid is evaporated and separated, so loss of the low viscosity liquid and dilution of the varnish can be effectively prevented, and the impregnation effect can be effectively prevented. It is possible to promote different types of activities. Moreover, the amount of low viscosity liquid used in the base material is extremely small, and the amount of exhaust air from the drying oven in the drying process after impregnation with varnish can be significantly reduced.

また、本発明の装置によれば、上記方法を好適
に実施することができ、特に、熱サイホン室内の
蒸気圧力を低粘性液溜における低粘性液と低粘性
液加熱面との接触面積の変動により自己制御させ
るようにしたから、高精度の圧力制御装置等を全
く必要とせず、装置構造を徒に複雑化、大型化す
ることがない。しかも、熱サイホン室の蒸気圧力
制御を、圧力制御装置等による場合に比して、よ
り確実且つ正確に行なうことができる。さらに、
運転停止時等において熱サイホン室内が真空若し
くは負圧状態になるような場合にあつても、この
ような事態の発生を未然に防止して、低粘性液や
ワニスが熱サイホン室に吸い上げられるといつた
不都合を全く生じさせない。
Further, according to the apparatus of the present invention, the above method can be carried out suitably, and in particular, the steam pressure in the thermosiphon chamber can be adjusted to change the contact area between the low viscosity liquid and the low viscosity liquid heating surface in the low viscosity liquid reservoir. Since the system is self-controlled, there is no need for a high-precision pressure control device or the like, and the device structure does not become unnecessarily complicated or large. Furthermore, the steam pressure in the thermosiphon chamber can be controlled more reliably and accurately than when using a pressure control device or the like. moreover,
Even if the thermosyphon chamber becomes a vacuum or negative pressure state, such as when the operation is stopped, we can prevent this situation from occurring and prevent low viscosity liquids and varnish from being sucked up into the thermosyphon chamber. It does not cause any inconvenience at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るワニス含浸装置の一実施
例を示す断面図である。 1……基材、2……低粘性液貯溜槽、2′……
低粘性液貯溜領域、3……ワニス貯溜槽、3′…
…ワニス貯溜領域、4……熱サイホン室、4′…
…熱サイホン領域、4a……熱サイホン領域と低
粘性液貯溜領域との連通部である基材入口部、4
b……熱サイホン領域とワニス貯溜領域との連通
部である基材出口部、5……基材加熱機構、5a
……加熱ロール、6……冷却機構、6a……第1
冷却コイル、6b……第2冷却コイル、7……低
粘性液加熱機構、7a……低粘性液加熱面、8…
…凝縮液回収機構、9……基材走行ガイド機構、
12……低粘性液、12a……低粘性液溜、1
2′a……液封面たる低粘性液溜の液面、13…
…ワニス、13a……ワニス溜、13′a……液
封面たるワニス溜の液面。
FIG. 1 is a sectional view showing an embodiment of a varnish impregnating apparatus according to the present invention. 1...Base material, 2...Low viscosity liquid storage tank, 2'...
Low viscosity liquid storage area, 3...varnish storage tank, 3'...
...Varnish storage area, 4...Thermosyphon chamber, 4'...
...thermosyphon region, 4a...base material inlet portion, which is a communication part between the thermosiphon region and the low viscosity liquid storage region, 4
b...Base material outlet part which is a communication part between the thermosiphon region and the varnish storage region, 5...Base material heating mechanism, 5a
...heating roll, 6...cooling mechanism, 6a...first
Cooling coil, 6b...Second cooling coil, 7...Low viscosity liquid heating mechanism, 7a...Low viscosity liquid heating surface, 8...
...Condensed liquid recovery mechanism, 9...Base material traveling guide mechanism,
12...Low viscosity liquid, 12a...Low viscosity liquid reservoir, 1
2'a...Liquid level of low viscosity liquid reservoir which is liquid sealing surface, 13...
...Varnish, 13a...Varnish reservoir, 13'a...Liquid level of varnish reservoir, which is a liquid sealing surface.

Claims (1)

【特許請求の範囲】 1 溶剤等の低粘性液を貯溜せる低粘性液貯溜領
域とワニスを貯溜せるワニス貯溜領域との間に、
両貯溜領域にその液面で液封された状態で連通す
る密閉状の熱サイホン領域を設けて、繊維質材か
らなるシート状の基材を低粘性液貯溜領域、熱サ
イホン領域、ワニス貯溜領域を順次通過させるよ
うにすると共に、熱サイホン領域において、基材
を加熱してこれに含浸された低粘性液を蒸発さ
せ、且つ該領域で発生した低粘性液蒸気を凝縮液
化させて、その凝縮液化された低粘性液を低粘性
液貯溜領域側に回収するようにし、更に熱サイホ
ン領域と低粘性液貯溜領域との連通部において低
粘性液を加熱蒸発させ、その蒸発量を該連通部に
おける液封面の変動に応じて制御させるようにし
たことを特徴とするワニス含浸方法。 2 溶剤等の低粘性液を貯溜した低粘性液貯溜槽
と、ワニスを貯溜したワニス貯溜槽と、各貯溜槽
内の液面下において開口する筒状の基材入口部及
び基材出口部を垂設した密閉状の熱サイホン室
と、繊維質材からなるシート状の基材を低粘性液
貯溜槽から基材入口部を経て熱サイホン室に導き
更に基材出口部からワニス貯溜槽に導く基材走行
ガイド機構と、熱サイホン室内において基材を加
熱して、これに含浸された低粘性液を蒸発させる
基材加熱機構と、熱サイホン室内の低粘性液蒸気
を凝縮液化する冷却機構と、該冷却機構により凝
縮液化された低粘性液を低粘性液貯溜槽側に回収
する凝縮液回収機構と、基材入口部内の低粘性液
溜に上下方向に延びる低粘性液加熱面を配設し
て、低粘性液溜の液面変動に伴つて低粘性液の加
熱蒸発量が変化するように構成された低粘性液加
熱機構と、を具備することを特徴とするワニス含
浸装置。
[Claims] 1. Between a low viscosity liquid storage area where a low viscosity liquid such as a solvent can be stored and a varnish storage area where varnish can be stored,
A sealed thermosiphon region is provided in both reservoir regions, which communicate with each other while being sealed with liquid at the liquid level, and a sheet-like base material made of a fibrous material is used as a low-viscosity liquid reservoir region, a thermosyphon region, and a varnish reservoir region. At the same time, in the thermosiphon region, the base material is heated to evaporate the low viscosity liquid impregnated therein, and the low viscosity liquid vapor generated in the region is condensed and liquefied. The liquefied low-viscosity liquid is collected into the low-viscosity liquid storage area, and the low-viscosity liquid is heated and evaporated in the communication area between the thermosiphon area and the low-viscosity liquid storage area, and the amount of evaporation is measured in the communication area. A varnish impregnation method characterized by controlling according to fluctuations in a liquid sealing surface. 2 A low viscosity liquid storage tank that stores low viscosity liquid such as a solvent, a varnish storage tank that stores varnish, and a cylindrical base material inlet and base material outlet that open below the liquid level in each storage tank. A vertically installed hermetic thermosiphon chamber and a sheet-like base material made of fibrous material are guided from a low-viscosity liquid storage tank through a base material inlet to a thermosiphon chamber, and then guided from a base material outlet to a varnish storage tank. a base material traveling guide mechanism, a base material heating mechanism that heats the base material in a thermosyphon chamber to evaporate a low viscosity liquid impregnated therein, and a cooling mechanism that condenses and liquefies the low viscosity liquid vapor in the thermosyphon chamber. , a condensed liquid recovery mechanism that collects the low viscosity liquid condensed and liquefied by the cooling mechanism into the low viscosity liquid storage tank side, and a low viscosity liquid heating surface extending vertically in the low viscosity liquid reservoir in the base material inlet section. A varnish impregnation device comprising: a low viscosity liquid heating mechanism configured to change the amount of heating and evaporation of the low viscosity liquid as the liquid level of the low viscosity liquid reservoir changes.
JP1029043A 1988-11-18 1989-02-08 Impregnating process with varnish and its device Granted JPH02208009A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1029043A JPH02208009A (en) 1989-02-08 1989-02-08 Impregnating process with varnish and its device
KR1019890014226A KR930001712B1 (en) 1988-11-18 1989-10-04 Varnish impregnation method and apparatus
US07/430,329 US5056457A (en) 1988-11-18 1989-11-02 Varnish impregnation method and apparatus
DE68915401T DE68915401T2 (en) 1988-11-18 1989-11-15 Method and device for impregnation with varnish.
EP89420444A EP0369907B1 (en) 1988-11-18 1989-11-15 A varnish impregnation method and apparatus
US07/738,953 US5137756A (en) 1988-11-18 1991-08-01 Varnish impregnation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029043A JPH02208009A (en) 1989-02-08 1989-02-08 Impregnating process with varnish and its device

Publications (2)

Publication Number Publication Date
JPH02208009A JPH02208009A (en) 1990-08-17
JPH0583046B2 true JPH0583046B2 (en) 1993-11-24

Family

ID=12265366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029043A Granted JPH02208009A (en) 1988-11-18 1989-02-08 Impregnating process with varnish and its device

Country Status (1)

Country Link
JP (1) JPH02208009A (en)

Also Published As

Publication number Publication date
JPH02208009A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
US5056457A (en) Varnish impregnation method and apparatus
US4421794A (en) Solvent removal via continuously superheated heat transfer medium
KR930005387B1 (en) Method for impregnating a fibrous base material with a substantially air-free varnish
JPH0583046B2 (en)
JP2598329B2 (en) Method and apparatus for pre-impregnation of a reinforcing member for reinforcing a composite material
EP1608807B1 (en) Method and machine for treating textile materials by ammonia or other liquids
AU7085881A (en) Liquid evaporation process and apparatus
KR100614131B1 (en) Vaporization equipment
JPH0581408B2 (en)
JPH02214614A (en) Method and equipment for varnishing
WO1991000760A1 (en) Process and apparatus for cooling a fluid
JPH02214615A (en) Method and equipment for varnishing
JPH0248930A (en) Method and apparatus for impregnating with varnish
NO146560B (en) EVAPORATING COOLING EVAPORATION OF INDUCTIVE ELECTRICAL APPLIANCE
US3124937A (en) Pressure control in storage tanks
EP1126068A2 (en) Method for finishing fabrics or knitwear in ammonia and relative device
WO2006046265A1 (en) Method and system for cooling and treating textile materials with ammonia or other liquid products
US4332151A (en) Apparatus for heat treatment of synthetic yarns and fibers
JPH039813A (en) Infiltration method and its device for varnish
KR20180121800A (en) Vacuum Degreaser
US1174995A (en) Apparatus for saturating fabric.
US3511697A (en) Method of applying reactive coating to glass fiber
US3771954A (en) Method for liquid treatment of textile material
FI62627C (en) APPARATUS FOER AOTERVINNING AV ORGANISKA FOERENINGAR I AONGFORM SOM ANVAENDS I EN PROCESS FOER OEKNING AV TOBAKS FYLLNINGSKAPACITET
US2382123A (en) Refrigeration