JPH02208009A - Impregnating process with varnish and its device - Google Patents
Impregnating process with varnish and its deviceInfo
- Publication number
- JPH02208009A JPH02208009A JP1029043A JP2904389A JPH02208009A JP H02208009 A JPH02208009 A JP H02208009A JP 1029043 A JP1029043 A JP 1029043A JP 2904389 A JP2904389 A JP 2904389A JP H02208009 A JPH02208009 A JP H02208009A
- Authority
- JP
- Japan
- Prior art keywords
- viscosity liquid
- base material
- varnish
- liquid
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002966 varnish Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 237
- 238000005470 impregnation Methods 0.000 claims abstract description 25
- 238000007789 sealing Methods 0.000 claims abstract description 11
- 239000002657 fibrous material Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 109
- 238000003860 storage Methods 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 59
- 230000007246 mechanism Effects 0.000 claims description 49
- 238000001816 cooling Methods 0.000 claims description 42
- 238000001704 evaporation Methods 0.000 claims description 25
- 230000008020 evaporation Effects 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 6
- 239000000835 fiber Substances 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 9
- 229920006395 saturated elastomer Polymers 0.000 abstract description 7
- 239000011555 saturated liquid Substances 0.000 abstract description 2
- 239000012466 permeate Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 24
- 230000007423 decrease Effects 0.000 description 13
- 238000009833 condensation Methods 0.000 description 11
- 230000005494 condensation Effects 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000025 natural resin Substances 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば電気絶縁板、化粧板等の積層板の製造
に使用される紙、布等の繊維質材からなるシート状の基
材にワニスを含浸させるための方法及び装置に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sheet-like base material made of a fibrous material such as paper or cloth used for manufacturing laminates such as electrical insulating boards and decorative boards. The present invention relates to a method and apparatus for impregnating water with varnish.
一般に、繊維質材からなるシート状の基材にワニスを含
浸させる場合、ワニスが基材の繊維内部にまで含浸され
、各部のワニス量分布がむらなく均一であることが重要
であり、且つ基材中に残存する気泡を可及的に少なくす
ることが望ましい。Generally, when impregnating a sheet-like base material made of fibrous material with varnish, it is important that the varnish is impregnated into the inside of the fibers of the base material and that the amount of varnish is evenly distributed in each part. It is desirable to reduce the number of air bubbles remaining in the material as much as possible.
従来の含浸方法では、一般に、基材をこれに予備含浸用
の通常ワニスを予備含浸させた上で、タイミングロール
を経てワニス槽に導いて1通常ワニスを含浸させるよう
にしているのが普通である。In conventional impregnation methods, the substrate is generally pre-impregnated with a regular varnish for pre-impregnation, and then led to a varnish tank via a timing roll to be impregnated with a regular varnish. be.
ところが、このような含浸方法では、基材の内部にまで
ワニスを均−且つ充分に含浸させることが困難であり、
ワニスを含浸させるに長時間を要するといった問題があ
った。しかも、基材中に残存する気泡を充分に少なくす
ることが困難である。However, with this impregnation method, it is difficult to uniformly and sufficiently impregnate the inside of the base material with the varnish.
There was a problem in that it took a long time to impregnate the varnish. Furthermore, it is difficult to sufficiently reduce the number of bubbles remaining in the base material.
かかる問題は、特に高粘度のワニスを使用した場合に顕
著となる。This problem becomes particularly noticeable when a high viscosity varnish is used.
そこで、近時、上記した予備含浸用の通常ワニスに代え
て溶剤若しくは溶剤を多量に含む稀薄なワニス(以下「
予備含浸液」という)を貯溜した予備含浸槽と通常ワニ
スを貯溜した本含浸槽とを並置して、基材をガイドロー
ルにより予備含浸槽。Therefore, recently, in place of the above-mentioned ordinary varnish for pre-impregnation, a dilute varnish containing a large amount of solvent or a solvent (hereinafter referred to as "
A pre-impregnating tank storing a pre-impregnating liquid (referred to as "pre-impregnating liquid") and a main impregnating tank storing a normal varnish are placed side by side, and the base material is moved to the pre-impregnating tank by guide rolls.
本含浸槽を順次通過せしめるようにすることが行われて
いる。This impregnation tank is passed through in sequence.
かかる含浸方法によれば、基材が予備含浸液中を通過せ
しめられる間に、基材中の空気が予備含浸液と置換され
て排除されるから、基材を、これに含浸された予備含浸
液を蒸発させつつワニス中にもたらすと、ワニスを効率
良く含浸させ得ると共に、気泡の減少を図ることができ
る。According to this impregnation method, while the substrate is passed through the pre-impregnating liquid, the air in the substrate is replaced with the pre-impregnating liquid and removed, so that the pre-impregnating liquid impregnated in the substrate is removed. When the liquid is introduced into the varnish while being evaporated, the varnish can be impregnated efficiently and bubbles can be reduced.
しかしながら、予備含浸液中からワニス中への移行段階
において、基材が空気に触れると共に両槽間のガイドロ
ールによる圧縮作用を受けることから、基材中の空気の
排除が充分に行われず、ワニス含浸性、ボイドレス効果
を余り期待できない。However, in the transition stage from the pre-impregnating liquid to the varnish, the base material is exposed to air and is compressed by the guide rolls between the two tanks, so air in the base material is not removed sufficiently and the varnish is Impregnating properties and voidless effects cannot be expected.
すなわち、基材が上記ガイドロールに至ると、基材を構
成する繊維束に接触面圧力が作用して、繊維束が開繊す
ることになり、繊維束内の毛管力により保持されている
予備含浸液の液相が破壊される。そして、このガイドロ
ールを通過した時点で繊維束の圧縮は解除されるが、こ
の解圧作用によって開繊された繊維束は再形成される。In other words, when the base material reaches the guide roll, contact surface pressure acts on the fiber bundles constituting the base material, causing the fiber bundles to open, and the reserve held by the capillary force within the fiber bundles to open. The liquid phase of the impregnating liquid is destroyed. The fiber bundle is decompressed when it passes through this guide roll, but the opened fiber bundle is reformed by this decompressing action.
このように、繊維束における含浸液相の破壊と開繊され
た繊維束の再形成とが空気中で行なわれることから、予
備含浸液中からワニス中への移行段階において基材には
空気が再侵入する虞れがある。As described above, since the destruction of the impregnating liquid phase in the fiber bundle and the reformation of the opened fiber bundle take place in the air, air is present in the base material during the transition stage from the pre-impregnating liquid to the varnish. There is a risk of re-invasion.
本発明は、かかる点に鑑みてなされたもので、基材にお
けるワニス含浸性、ボイドレス効果を大幅に向上させ得
るワニス含浸方法とこれを好適に実施しうるワニス含浸
装置とを提供することを目的とするものである。The present invention has been made in view of the above, and an object of the present invention is to provide a varnish impregnation method that can significantly improve the varnish impregnation properties and void-free effect in a base material, and a varnish impregnation apparatus that can suitably carry out the method. That is.
この課題を解決した本発明のワニス含浸方法は、溶剤等
の低粘性液を貯溜せる低粘性液貯溜領域とワニスを貯溜
せるワニス貯溜領域との間に、両貯溜領域にその液面で
液封された状態で連通ずる密閉状の熱サイホン領域を設
けて、繊維質材からなるシート状の基材を低粘性液貯溜
領域、熱サイホン領域、ワニス貯溜領域を順次通過させ
るようにすると共に、熱サイホン領域において、基材を
加熱してこれに含浸された低粘性液を蒸発させ、且つ該
領域で発生した低粘性液蒸気を凝縮液化させて、その凝
縮液化された低粘性液を低粘性液貯溜領域側に回収する
ようにし、更に熱サイホン領域と低粘性液貯溜領域との
連通部において低粘性液を加熱蒸発させ、その蒸発量を
該連通部における液封面の変動に応じて制御させるよう
にしたものである。The varnish impregnation method of the present invention solves this problem by providing a liquid seal between the low viscosity liquid storage area where a low viscosity liquid such as a solvent can be stored and the varnish storage area where the varnish can be stored. A sealed thermosyphon region is provided that communicates with the thermosyphon in a closed state, so that the sheet-like base material made of fibrous material passes through the low-viscosity liquid storage region, the thermosyphon region, and the varnish storage region in sequence. In the siphon area, the base material is heated to evaporate the low viscosity liquid impregnated into it, and the low viscosity liquid vapor generated in the area is condensed and liquefied, and the condensed and liquefied low viscosity liquid is converted into a low viscosity liquid. The low viscosity liquid is collected to the storage area side, and the low viscosity liquid is further heated and evaporated in the communication area between the thermosiphon area and the low viscosity liquid storage area, and the amount of evaporation is controlled according to the fluctuation of the liquid sealing surface in the communication area. This is what I did.
一方、かかる方法を実施するための本発明のワニス含浸
装置は、溶剤等の低粘性液を貯溜した低粘性液貯溜槽と
、ワニスを貯溜したワニス貯溜槽と、各貯溜槽内の液面
下において開口する筒状の基材入口部入口部及び基材出
口部を垂設した密閉状の熱サイホン室と、繊維質材から
なるシート状の基材を低粘性液貯溜槽から基材入口部を
経て熱サイホン室に導き更に基材出口部からワニス貯溜
槽に導く基材走行ガイド機構と、熱サイホン室内におい
て基材を加熱して、これに含浸された低粘性液を蒸発さ
せる基材加熱機構と、熱サイホン室内の低粘性液蒸気を
凝縮液化する冷却機構と、該冷却機構により凝縮液化さ
れた低粘性液を低粘性液貯溜槽側に回収する凝縮液回収
機構と、基材入口部内の低粘性液溜に上下方向に延びる
低粘性液加熱面を配設して、低粘性液溜の液面変動に伴
って低粘性液の加熱蒸発量が変化するように構成された
低粘性液加熱機構と、を具備するものである。On the other hand, the varnish impregnation apparatus of the present invention for carrying out such a method includes a low viscosity liquid storage tank storing a low viscosity liquid such as a solvent, a varnish storage tank storing varnish, and a liquid level below the liquid level in each storage tank. A closed thermosyphon chamber with a cylindrical base material inlet opening and a base material outlet vertically installed; A base material running guide mechanism that guides the base material through the thermosyphon chamber and further leads it from the base material outlet to the varnish storage tank, and a base material heating system that heats the base material in the thermosyphon chamber and evaporates the low-viscosity liquid impregnated into the base material. a cooling mechanism that condenses and liquefies the low-viscosity liquid vapor in the thermosiphon chamber; a condensate recovery mechanism that recovers the low-viscosity liquid condensed and liquefied by the cooling mechanism into the low-viscosity liquid storage tank; A low viscosity liquid configured such that a low viscosity liquid heating surface extending vertically is disposed in the low viscosity liquid reservoir so that the amount of heating and evaporation of the low viscosity liquid changes as the liquid level in the low viscosity liquid reservoir changes. A heating mechanism is provided.
基材が低粘性液貯溜槽内を通過する間において、基材中
の空気が低粘性液と置換されて排除される。While the substrate passes through the low viscosity liquid reservoir, the air in the substrate is replaced with the low viscosity liquid and removed.
そして、低粘性液を含浸された基材は、引き続き、基材
入口部から熱サイホン室内にもたらされて基材加熱機構
により加熱される。かかる基材の加熱により、これに含
浸された低粘性液は蒸発分離される。The base material impregnated with the low viscosity liquid is then brought into the thermosyphon chamber from the base material inlet and heated by the base material heating mechanism. By heating the base material, the low viscosity liquid impregnated therein is evaporated and separated.
このとき、熱サイホン室内の蒸気圧力は、基材加熱機構
及び低粘性液加熱機構による低粘性液の蒸発量と冷却機
構による凝縮量とが平衡状態にある限り、一定範囲に保
持されるが、基材走行速度等のワニス含浸条件が変更、
変動されると、上記蒸発量と凝縮量とのバランスが崩れ
ことがら、熱サイホン室内の蒸気圧力が変動して上記作
用が良好に行なわれなくなる虞れがある。At this time, the vapor pressure in the thermosiphon chamber is maintained within a certain range as long as the amount of evaporation of the low viscosity liquid by the base material heating mechanism and the low viscosity liquid heating mechanism and the amount of condensation by the cooling mechanism are in equilibrium. Changes in varnish impregnation conditions such as base material running speed,
If it fluctuates, the balance between the amount of evaporation and the amount of condensation will be disrupted, and the steam pressure in the thermosyphon chamber will fluctuate, which may result in the above-mentioned effects not being performed satisfactorily.
しかし、熱サイホン室内の蒸気圧力が変動すると、これ
に伴って低粘性液溜の液面(及びワニス溜の液面)も変
動し、その変動量に応じて低粘性液加熱機構による蒸発
量が自動的に制御されることになる。すなわち、蒸気圧
力が低下して、低粘性液溜の液面が上昇すると、低粘性
液溜における低粘性液加熱面の浸漬量つまり低粘性液と
低粘性液加熱面との接触面積が増加し、その結果、低粘
性液加熱機構による蒸発量が蒸気圧力の低下量に相当す
る量だけ増加し、熱サイホン室内の蒸気圧力変動を阻止
する。逆に、蒸気圧力が上昇した場合には、低粘性液溜
の液面が下降して、低粘性液と低粘性液加熱面との接触
面積が減少し、したがって低粘性液加熱機構による蒸発
量が減少して、蒸気圧力の上昇を阻止する。However, when the steam pressure in the thermosyphon chamber fluctuates, the liquid level in the low-viscosity liquid reservoir (and the liquid level in the varnish reservoir) also fluctuates, and the amount of evaporation by the low-viscosity liquid heating mechanism changes accordingly. It will be automatically controlled. In other words, when the vapor pressure decreases and the liquid level in the low-viscosity liquid reservoir rises, the amount of immersion of the low-viscosity liquid heating surface in the low-viscosity liquid reservoir, that is, the contact area between the low-viscosity liquid and the low-viscosity liquid heating surface increases. As a result, the amount of evaporation caused by the low-viscosity liquid heating mechanism increases by an amount corresponding to the amount of decrease in steam pressure, thereby preventing fluctuations in steam pressure in the thermosyphon chamber. Conversely, when the vapor pressure increases, the liquid level in the low-viscosity liquid reservoir falls, the contact area between the low-viscosity liquid and the low-viscosity liquid heating surface decreases, and the amount of evaporation due to the low-viscosity liquid heating mechanism decreases. decreases and prevents the steam pressure from increasing.
このように、熱サイホン室内の蒸気圧力は、圧力制御装
置等を設けておかずとも自己制御されて、常に一定範囲
に保持されることになる。しかも、運転停止により基材
走行が停止された場合や基材走行速度の変更、変動があ
った場合等にあって、冷却機構による凝縮量が基材加熱
による蒸発量を大幅に上回るような状態では、熱サイホ
ン室内が真空若しくは負圧になり、低粘性液及びワニス
が基材入口部及び基材出口部から熱サイホン室に吸い上
げられるといった不都合を生じる虞れがあるが、このよ
うな場合にもかかる不都合は全く生じない。In this way, the steam pressure in the thermosiphon chamber is self-controlled and always maintained within a certain range without the need for a pressure control device or the like. Furthermore, in cases such as when the base material travel is stopped due to an operational stop or when there is a change or fluctuation in the base material travel speed, the amount of condensation caused by the cooling mechanism may significantly exceed the amount of evaporation caused by heating the base material. In this case, there is a risk that the thermosyphon chamber becomes vacuum or negative pressure, causing problems such as low viscosity liquid and varnish being sucked up into the thermosyphon chamber from the substrate inlet and substrate outlet. Such inconvenience does not occur at all.
また、冷却機構で凝縮された低粘性液は低粘性液貯溜槽
側に回収されることから、低粘性液の損失及びワニス貯
溜槽への侵入は可及的に防止されることになる。Further, since the low viscosity liquid condensed by the cooling mechanism is collected into the low viscosity liquid storage tank, the loss of the low viscosity liquid and the intrusion into the varnish storage tank are prevented as much as possible.
したがって、熱サイホン領域においては、基材が熱サイ
ホンのウィックとして良好に機能することになり、基材
は低粘性液の飽和蒸気のみを含有する状態で、熱サイホ
ン領域からワニス貯溜領域にもたらされることになる。Therefore, in the thermosyphon region, the substrate will function well as a thermosiphon wick, and the substrate will be brought from the thermosyphon region to the varnish storage region in a state containing only saturated vapor of a low viscosity liquid. It turns out.
すなわち、低粘性液貯溜領域からワニス貯溜領域への移
行段階において基材に空気が侵入することがなく、ワニ
ス領域には空気を含有しない基材がもたらされることに
なる。That is, no air enters the substrate during the transition stage from the low viscosity liquid reservoir region to the varnish reservoir region, resulting in an air-free substrate in the varnish region.
その結果、基材がワニス貯溜領域にもたらされると、基
材へのりニス含浸が良好に行なわれ、基材にはワニスが
均−且つ充分に含浸せしめられることになる。As a result, when the substrate is brought into the varnish reservoir area, the substrate is better impregnated with the varnish, and the substrate is evenly and thoroughly impregnated with the varnish.
以下1本発明の構成を第1図に示す実施例に基づいて具
体的に説明する。The configuration of the present invention will be specifically explained below based on the embodiment shown in FIG.
第1図に示すワニス含浸装置において、1は基材、2は
低粘性液貯溜槽、3はワニス貯溜槽、4は熱サイホン室
、5は基材加熱機構、6は冷却機構、7は低粘性液蒸発
機構、8は凝縮液回収機構、9は基材走行ガイド機構で
ある。In the varnish impregnation apparatus shown in FIG. 1, 1 is a base material, 2 is a low viscosity liquid storage tank, 3 is a varnish storage tank, 4 is a thermosyphon chamber, 5 is a base material heating mechanism, 6 is a cooling mechanism, and 7 is a low viscosity liquid storage tank. A viscous liquid evaporation mechanism, 8 a condensate recovery mechanism, and 9 a base material traveling guide mechanism.
基材1は繊維質材からなるシート状のもので、合成、天
然の有機、無機繊維からなる織布、不織布、例えば紙、
ガラス繊維布、ガラス繊維不織布。The base material 1 is a sheet-like material made of a fibrous material, such as a woven fabric or a non-woven fabric made of synthetic, natural, organic, or inorganic fibers, such as paper,
Glass fiber cloth, glass fiber non-woven fabric.
カーボン繊維布、カーボン繊維不織布、アラミド繊維布
、アラミド繊維不織布等が使用される。Carbon fiber cloth, carbon fiber nonwoven fabric, aramid fiber cloth, aramid fiber nonwoven fabric, etc. are used.
低粘性液貯溜槽2は溶剤等の低粘性液12を所定量貯溜
した上面開放状のものであり、ワニス貯溜槽3はワニス
13を所定量貯溜した上面開放状のものである。各貯溜
槽2,3の側壁には溢流堰2a、3b及び溢流溜2b、
3bが設けられていて、各貯溜槽2,3における液面高
さを一定に保持するように工夫しである。なお、溢流溜
2b。The low viscosity liquid storage tank 2 has an open top and stores a predetermined amount of a low viscosity liquid 12 such as a solvent, and the varnish storage tank 3 has an open top and stores a predetermined amount of varnish 13. Overflow weirs 2a, 3b and overflow basins 2b are provided on the side walls of each storage tank 2, 3.
3b, and is designed to keep the liquid level height in each reservoir tank 2, 3 constant. In addition, overflow reservoir 2b.
3bの液は、図示しない返戻手段により貯溜槽2゜3に
返戻されるようになっている。また、低粘性液12及び
ワニス13は、夫々、図示しない温度制御装置により所
定温度に保持されている。The liquid 3b is returned to the storage tank 2.3 by a return means (not shown). Further, the low viscosity liquid 12 and the varnish 13 are each maintained at a predetermined temperature by a temperature control device (not shown).
ところで、低粘性液12としては、基材1に対して充分
な濡れ性を有するものが使用される。具体的には、ワニ
ス13より低粘度であり且つ100cP以下の粘度の溶
剤等を使用するが、含浸させようとするワニスに配合さ
れた溶剤と同質のものを使用しておくことが好ましい、
また、ワニス13としては、一般に熱硬化性樹脂ワニス
が使用されるが、その他、熱可塑性樹脂、天然樹脂等の
ワニスや無溶剤の液状合成樹脂、液状天然樹脂等も使用
される。By the way, as the low viscosity liquid 12, one having sufficient wettability to the base material 1 is used. Specifically, a solvent with a viscosity lower than Varnish 13 and 100 cP or less is used, but it is preferable to use a solvent of the same quality as the solvent blended in the varnish to be impregnated.
Further, as the varnish 13, a thermosetting resin varnish is generally used, but other varnishes such as thermoplastic resins, natural resins, solvent-free liquid synthetic resins, liquid natural resins, etc. can also be used.
熱サイホン室4は両針溜槽2,3間の上方部位に配設さ
れており、底壁部に筒状の基材入口部4a及び基材出口
部4bを垂設してなる逆U字状のサイホン管形状に構成
されている。基材入口部4a及び基材出口部4bは、夫
々、低粘性液貯溜領域2′及びワニス貯溜領域3′の液
面12’、13’下において開口されていて、熱サイホ
ン室4内を液封により密閉された熱サイホン領域4′に
形成している。また熱サイホン室4には、不活性ガスの
供給管14.排気管15.油気管16が接続されている
。油気管16は低粘性液貯溜槽2に導かれており、抽気
弁16aが介設されている。なお、基材入口部4a及び
基材出口部4bを含む熱サイホン室4の周壁は断熱壁に
構成されていて、低粘性液蒸気が外界空気により冷却さ
れて熱サイホン室4の内壁面に凝縮付着するのを防止す
るように工夫しである。The thermosiphon chamber 4 is disposed above the two needle reservoirs 2 and 3, and has an inverted U-shape with a cylindrical base material inlet portion 4a and a base material outlet portion 4b vertically disposed on the bottom wall. It is constructed in the shape of a siphon tube. The base material inlet part 4a and the base material outlet part 4b are opened below the liquid levels 12' and 13' of the low-viscosity liquid storage area 2' and the varnish storage area 3', respectively, and are configured to open the liquid inside the thermosyphon chamber 4. It is formed in a thermosyphon region 4' that is sealed by a seal. The thermosyphon chamber 4 also has an inert gas supply pipe 14. Exhaust pipe 15. An oil air pipe 16 is connected. The oil pipe 16 is led to the low viscosity liquid storage tank 2, and is provided with a bleed valve 16a. Note that the peripheral wall of the thermosyphon chamber 4 including the substrate inlet section 4a and the substrate outlet section 4b is configured as a heat insulating wall, and the low viscosity liquid vapor is cooled by the outside air and condensed on the inner wall surface of the thermosyphon chamber 4. It is designed to prevent it from sticking.
基材加熱機構5は、熱サイホン室4内に加熱ロール5a
を基材1の回行に追従すべく回転自在に設けてなる。こ
の加熱ロール5aは、熱サイホン領域4′において基材
1を低粘性液12の沸点以上若しくはその近傍温度に加
熱して、これに含浸せる低粘性液12を蒸発させるもの
である。ところで、加熱ロール5aによる基材加熱温度
は図示しない温度制御装置により制御されようになって
いるが、その蒸発能力は、基材1に含浸されて熱サイホ
ン室4内に持込まれる最大量の低粘性液を蒸発させ得る
に充分なものとされている。なお、加熱ロール5aは基
材1の通過方向に回転駆動させるようにしておいてもよ
い、この場合、ロール周速を基材1の走行速度に一致さ
せておくことはいうまでもない。The base material heating mechanism 5 includes a heating roll 5a in the thermosyphon chamber 4.
is rotatably provided to follow the rotation of the base material 1. This heating roll 5a heats the base material 1 to a temperature equal to or near the boiling point of the low-viscosity liquid 12 in the thermosyphon region 4', thereby evaporating the low-viscosity liquid 12 impregnated therein. By the way, the heating temperature of the base material by the heating roll 5a is controlled by a temperature control device (not shown), but its evaporation capacity is determined by the maximum amount of evaporation that is impregnated into the base material 1 and brought into the thermosyphon chamber 4. It is said to be sufficient to evaporate viscous liquids. Note that the heating roll 5a may be driven to rotate in the direction in which the substrate 1 passes.In this case, it goes without saying that the circumferential speed of the roll is made to match the traveling speed of the substrate 1.
冷却機構6は、熱サイホン領域4′における低粘性液蒸
気を冷却、凝縮させるためのものであって、基材入口部
4aにおける低粘性液溜12aの上位に配設した第1冷
却コイル6aと、基材出口部4bにおけるワニス溜13
aの上位に配設した第2冷却コイル6bとからなる。と
ころで、第1冷却コイル6aによる冷却能力つまり凝縮
能力は、加熱ロール5aにより蒸発された低粘性液を全
て凝縮し得るに充分なものとされている。すなわち、加
熱ロール5aの蒸発能力以上のものとされている。また
、第2冷却コイル6bの凝縮能力は、第1冷却コイル6
aの凝縮能力より低く、その10〜20%程度としであ
る。なお、各冷却コイル6a、6bと熱サイホン室4の
周壁との間は断熱してあって、この周壁に冷却コイル6
a、6bによる冷却作用が及ぶことによる不都合(低粘
性液蒸気の周壁内面への凝縮付着)を防止すべく図って
いる。The cooling mechanism 6 is for cooling and condensing the low-viscosity liquid vapor in the thermosiphon region 4', and includes a first cooling coil 6a disposed above the low-viscosity liquid reservoir 12a at the base material inlet section 4a; , varnish reservoir 13 at the base material outlet section 4b
It consists of a second cooling coil 6b disposed above the cooling coil 6a. By the way, the cooling capacity, that is, the condensing capacity, of the first cooling coil 6a is sufficient to condense all the low-viscosity liquid evaporated by the heating roll 5a. In other words, the evaporation capacity is greater than the evaporation capacity of the heating roll 5a. Further, the condensing capacity of the second cooling coil 6b is the same as that of the first cooling coil 6b.
It is lower than the condensing capacity of A, and is about 10 to 20% of that. Note that each cooling coil 6a, 6b and the peripheral wall of the thermosyphon chamber 4 are insulated, and the cooling coil 6 is connected to this peripheral wall.
This is intended to prevent inconveniences (condensation and adhesion of low-viscosity liquid vapor to the inner surface of the peripheral wall) due to the cooling effect of a and 6b.
低粘性液加熱機構7は、低粘性液溜12aの低粘性液を
加熱、蒸発させるもので1例えば内部に加熱媒体を流動
させる伝熱コイルで形成された上下方向に延びる低粘性
液加熱面7aを低粘性液溜12aに配置してなる。とこ
ろで、この低粘性液加熱機構7による加熱能力つまり低
粘性液蒸発能力は、少なくとも、両冷却コイル6a、6
bによる凝縮量(総和量)に相当する蒸発量を確保し得
るに充分なものとしである。なお、低粘性液加熱面7a
と熱サイホン室4の周壁との間は断熱されていて、低粘
性液溜12aにおける熱がその周囲の低粘性液12に伝
わるのを極力防止すべく図っている。The low-viscosity liquid heating mechanism 7 heats and evaporates the low-viscosity liquid in the low-viscosity liquid reservoir 12a, and includes a vertically extending low-viscosity liquid heating surface 7a formed of, for example, a heat transfer coil through which a heating medium flows. is arranged in a low viscosity liquid reservoir 12a. By the way, the heating ability of the low viscosity liquid heating mechanism 7, that is, the low viscosity liquid evaporation ability, is limited to at least the cooling coils 6a, 6.
This is sufficient to ensure the amount of evaporation equivalent to the amount of condensation (total amount) due to b. Note that the low viscosity liquid heating surface 7a
The space between the thermosiphon chamber 4 and the surrounding wall of the thermosyphon chamber 4 is insulated to prevent heat in the low viscosity liquid reservoir 12a from being transmitted to the surrounding low viscosity liquid 12 as much as possible.
凝縮液回収機構8は、第2冷却コイル6bの直下位にお
いて基材出口部4bの内周部に凝縮液溜8aを連設して
、この凝縮量8aから低粘性液貯溜槽2(より具体的に
は、基材入口部4aの低粘性液溜2b)に回数管8bを
導くことによって。The condensed liquid recovery mechanism 8 has a condensed liquid reservoir 8a connected to the inner peripheral part of the base material outlet section 4b directly below the second cooling coil 6b, and collects the low viscosity liquid reservoir 2 (more specifically) from this condensed amount 8a. Specifically, by guiding the tube 8b into the low viscosity liquid reservoir 2b) at the base material inlet portion 4a.
第2冷却コイル6bにより凝縮された低粘性液を低粘性
液溜2bに回収するように構成されている。The low viscosity liquid condensed by the second cooling coil 6b is collected into the low viscosity liquid reservoir 2b.
また、第1冷却コイル6aにより凝縮された低粘性液に
ついては、基材入口部4aをそのまま利用して低粘性液
溜2bに回収するようになされている。なお、前記凝縮
量8aの構成壁8Cを、基材1と第2冷却コイル6bと
の間を断熱する断熱壁に構成して、基材1が冷却コイル
6bにより放射冷却されることにより低粘性液蒸気が基
材1に凝縮付着するのを防止すべく図っている。Further, the low viscosity liquid condensed by the first cooling coil 6a is collected into the low viscosity liquid reservoir 2b using the base material inlet portion 4a as it is. The wall 8C constituting the condensation amount 8a is configured as a heat insulating wall that insulates the space between the base material 1 and the second cooling coil 6b, and the base material 1 is radiatively cooled by the cooling coil 6b, thereby achieving low viscosity. This is intended to prevent liquid vapor from condensing and adhering to the base material 1.
基材走行ガイド機構9は、少なくとも各貯溜槽2.3内
に配設したガイドロール9a・・・、9b・・・からな
り、基材1が基材供給源(図示せず)から低粘性液貯溜
槽2内に至り、基材入口部4aから低粘性液加熱面7a
及び第1冷却コイル6aを通過して熱サイホン室4内に
至り、加熱ロール5a及び第2冷却コイル6bを通過し
て基材出口部4bからワニス貯溜槽3内に至り、ワニス
貯溜槽3上のワニス含浸量調整機構17を通過せしめら
れるようにガイドするものである。なお、各貯溜領域2
’、3’に配設されているガイドロール9a・・・9b
・・・の一部は、基材1にその幅方向への伸展力を付与
しうるエキスパンダ式のものに構成されていて、基材1
の進行方向に対して直角方向の、低粘性液貯溜領域2′
における空気と低粘性液との置換及びワニス貯溜領域3
′におけるワニス含浸を、夫々促進させるように図って
いる。また、ワニス含浸量調整機構17はスクイズロー
ル又はスクイズバーからなるもので、ワニス貯溜槽3を
経過した基材1をスクイズして、そのワニス含浸量を調
整する。The base material traveling guide mechanism 9 consists of guide rolls 9a..., 9b... arranged at least in each storage tank 2.3, and the base material 1 is supplied from a base material supply source (not shown) with low viscosity. The low viscosity liquid heating surface 7a extends into the liquid storage tank 2 from the base material inlet 4a.
It passes through the first cooling coil 6a and reaches the inside of the thermosiphon chamber 4, passes through the heating roll 5a and the second cooling coil 6b, reaches the inside of the varnish storage tank 3 from the base material outlet part 4b, and reaches the top of the varnish storage tank 3. The varnish impregnated amount adjustment mechanism 17 is guided so as to pass through the varnish impregnated amount adjustment mechanism 17. In addition, each storage area 2
Guide rolls 9a...9b arranged at ', 3'
A part of the base material 1 is configured as an expander type that can apply stretching force in the width direction to the base material 1.
A low viscosity liquid storage area 2' in a direction perpendicular to the direction of movement of the
Replacement of air with low viscosity liquid and varnish storage area 3
It is intended to accelerate the varnish impregnation in . The varnish impregnation amount adjustment mechanism 17 is composed of a squeeze roll or a squeeze bar, and squeezes the base material 1 that has passed through the varnish storage tank 3 to adjust the varnish impregnation amount.
次に、以上のように構成されたワニス含浸装置を用いて
、本発明の方法を具体的に説明する。Next, the method of the present invention will be specifically explained using the varnish impregnation apparatus configured as described above.
装置を起動させるに当たっては、次のようにして、熱サ
イホン室4内を低粘性液の飽和蒸気で充満させると共に
、その蒸気圧力を一定範囲に保持させておく。To start up the device, the inside of the thermosyphon chamber 4 is filled with saturated steam of a low viscosity liquid, and the pressure of the steam is maintained within a certain range as follows.
すなわち、供給管14から熱サイホン室4に不活性ガス
を供給し、熱サイホン室4内の空気を排気管15から排
除する。このとき、熱サイホン室4内は大気圧に保持さ
れる。したがって、低粘性液溜12a及びワニス溜13
aの液面12’a、13’aは貯溜槽2,3の液面12
’、13’と同一高さに位置されている(第1図実線参
照)。That is, inert gas is supplied to the thermosiphon chamber 4 from the supply pipe 14, and air in the thermosyphon chamber 4 is removed from the exhaust pipe 15. At this time, the inside of the thermosiphon chamber 4 is maintained at atmospheric pressure. Therefore, the low viscosity liquid reservoir 12a and the varnish reservoir 13
The liquid levels 12'a and 13'a of a are the liquid levels 12 of the storage tanks 2 and 3.
', 13' (see solid line in Figure 1).
次に、各加熱機構5,7を作動させ、主として。Next, each heating mechanism 5, 7 is operated, mainly.
低粘性液加熱機構7により熱サイホン室4内に低粘性液
蒸気を発生させる。同時に、低冷却能力の第2冷却コイ
ル6bのみを作動させて、低粘性液蒸気を凝縮させる。A low viscosity liquid heating mechanism 7 generates low viscosity liquid vapor within the thermosyphon chamber 4. At the same time, only the second cooling coil 6b with low cooling capacity is operated to condense the low viscosity liquid vapor.
したがって、高冷却能力の第1冷却コイル6aが作動さ
れていないことから、面加熱機構5,7による蒸発量が
第2冷却コイル6bによる凝縮量を上回り、熱サイホン
室4内の蒸気圧力は上昇していく。Therefore, since the first cooling coil 6a with high cooling capacity is not operated, the amount of evaporation caused by the surface heating mechanisms 5 and 7 exceeds the amount of condensation caused by the second cooling coil 6b, and the vapor pressure in the thermosyphon chamber 4 increases. I will do it.
このとき、油気弁16aを強制的に開くと、熱サイホン
室4内の余剰蒸気が抽気管16から低粘性液貯溜槽2に
排除されて、熱サイホン室4内は大気圧に保持される。At this time, when the oil valve 16a is forcibly opened, the excess steam in the thermosyphon chamber 4 is removed from the bleed pipe 16 to the low viscosity liquid storage tank 2, and the inside of the thermosyphon chamber 4 is maintained at atmospheric pressure. .
一方、各封液面12’a、13’ aは変動せず、その
まま第1図の実線位置に維持される。また、第2冷却コ
イル6bにより凝縮された低粘性液は、凝縮液溜8aに
捕集され1回収管8bから低粘性液溜12aに回収され
る。これによって、低粘性液蒸気がワニス貯溜領域3′
側に凝縮するのが防止される。On the other hand, the sealing liquid levels 12'a and 13'a do not vary and are maintained at the solid line positions in FIG. 1. Further, the low viscosity liquid condensed by the second cooling coil 6b is collected in the condensed liquid reservoir 8a, and is recovered into the low viscosity liquid reservoir 12a from the first recovery pipe 8b. This causes the low viscosity liquid vapor to flow into the varnish storage area 3'.
Condensation on the sides is prevented.
3ような作用が繰返されることによって、熱サイホン室
4内の不活性ガスが追い出され、該室4内は低粘性液蒸
気で充満されることになる。By repeating the actions described in 3, the inert gas in the thermosyphon chamber 4 is expelled, and the chamber 4 is filled with low-viscosity liquid vapor.
熱サイホン室4内が低粘性液蒸気で充満されると、抽気
弁16aを強制的に閉じて、熱サイホン室4内の圧力を
上昇させる。このとき、熱サイホン室4内の圧力上昇に
伴って、各封液面12’ a 。When the inside of the thermosyphon chamber 4 is filled with low viscosity liquid vapor, the bleed valve 16a is forcibly closed, and the pressure inside the thermosyphon chamber 4 is increased. At this time, as the pressure within the thermosiphon chamber 4 increases, each sealing liquid surface 12'a.
13′aは下降していく(第1図鎖線参照)、そして、
低粘性液溜12aの液面12′aの下降に伴って、低粘
性液溜12aにおける低粘性液加熱面7aの浸漬深さし
たがって該加熱面7aと低粘性液との接触面積が減少し
て、低粘性液加熱機構7による蒸発量が減少していき、
第2冷却コイル6bの凝縮量と平衡することになる。13'a descends (see the dashed line in Figure 1), and
As the liquid level 12'a of the low-viscosity liquid reservoir 12a falls, the immersion depth of the low-viscosity liquid heating surface 7a in the low-viscosity liquid reservoir 12a, and therefore the contact area between the heating surface 7a and the low-viscosity liquid, decreases. , the amount of evaporation by the low viscosity liquid heating mechanism 7 decreases,
This balances the amount of condensation in the second cooling coil 6b.
引き続き、第1冷却コイル6aを作動させると。Subsequently, when the first cooling coil 6a is operated.
低粘性液蒸気の凝縮量が増大して、熱サイホン室4内の
圧力が低下し、各封液面12’a、13’が上昇する。The amount of condensation of the low-viscosity liquid vapor increases, the pressure within the thermosyphon chamber 4 decreases, and the sealing liquid surfaces 12'a, 13' rise.
低粘性液溜12aの液面12′aの上昇に伴って、低粘
性液加熱面7aと低粘性液との接触面積が増大して、低
粘性液加熱機構7による蒸発量が増加していき、冷却コ
イル6a、6bの凝縮量と平衡することになり、熱サイ
ホン室4内の蒸気圧力は一定範囲に保持される。As the liquid level 12'a of the low-viscosity liquid reservoir 12a rises, the contact area between the low-viscosity liquid heating surface 7a and the low-viscosity liquid increases, and the amount of evaporation by the low-viscosity liquid heating mechanism 7 increases. , the amount of condensation in the cooling coils 6a, 6b is balanced, and the steam pressure in the thermosyphon chamber 4 is maintained within a certain range.
このような状態にした上で、基材1の走行させると、次
のようにして基材1へのワニス含浸が行なわれる。When the base material 1 is run in this state, the base material 1 is impregnated with varnish in the following manner.
すなわち、基材1は基材供給源から低粘性液貯溜槽2内
にもたらされて、低粘性液12中に浸漬され、基材1中
の空気が低粘性液12と置換される。このとき、基材1
が低粘性液12の液面12′に至ると、低粘性液12が
毛細管現象により基材1を構成する繊維束に浸透し、同
時に、その浸透力によって繊維束中の空気は押出される
。かかる浸透作用は、繊維束における浸透抵抗のため成
る段階で停止する。つまり、浸透作用の停止は、基材1
の走行速度つまり繊維束の低粘性液12への侵入速度が
浸透速度より大きい場合は液面上で生じ、逆の場合は液
面下で生じる。したがって、基材1が低粘性液貯溜領域
2′を通過する間に、繊維束中の空気はすべて低粘性液
12と置換されて排除されることになる。That is, the substrate 1 is brought into the low viscosity liquid storage tank 2 from the substrate supply source and immersed in the low viscosity liquid 12, and the air in the substrate 1 is replaced with the low viscosity liquid 12. At this time, base material 1
When the liquid reaches the liquid surface 12' of the low-viscosity liquid 12, the low-viscosity liquid 12 penetrates into the fiber bundle constituting the base material 1 by capillary action, and at the same time, the air in the fiber bundle is pushed out by the penetrating force. Such osmotic action stops at a stage due to osmotic resistance in the fiber bundle. In other words, the cessation of osmosis occurs when the base material 1
When the traveling speed of the fiber bundle, that is, the speed at which the fiber bundle enters the low-viscosity liquid 12 is higher than the permeation speed, it occurs above the liquid surface, and in the opposite case, it occurs below the liquid surface. Therefore, while the base material 1 passes through the low-viscosity liquid storage area 2', all the air in the fiber bundle is replaced with the low-viscosity liquid 12 and eliminated.
そして、低粘性液12を含浸された基材1は、基材入口
部4aから熱サイホン室4内にもたらされ、加熱ロール
5aにより加熱されて、基材1に含浸されている低粘性
液12が蒸発除去される。Then, the base material 1 impregnated with the low viscosity liquid 12 is brought into the thermosyphon chamber 4 from the base material inlet 4a, heated by the heating roll 5a, and the low viscosity liquid impregnated into the base material 1 is heated by the heating roll 5a. 12 is removed by evaporation.
このとき、基材1はその進行速度で低粘性液12を基材
加熱部5aへ供給し続けることがら、基材1は熱サイホ
ンとしてのウィックの役割を果たすことになる。At this time, since the base material 1 continues to supply the low viscosity liquid 12 to the base material heating section 5a at its advancing speed, the base material 1 plays the role of a wick as a thermosiphon.
一方、熱サイホン室4内の蒸気圧力は、次のような自己
制御により一定範囲に保持される。On the other hand, the steam pressure in the thermosiphon chamber 4 is maintained within a certain range by the following self-control.
すなわち、熱サイホン室4内の蒸気圧力が変動すると、
これに伴って低粘性液溜12aの液面12′a(及びワ
ニス溜13aの液面13’a)も変動し、その変動量に
応じて低粘性液加熱機構7による蒸発量が自動的に制御
されることになる1例えば、蒸気圧力が低下して液封面
12′aが上昇すると、低粘性液溜12aにおける低粘
性液と低粘性液加熱面7aとの接触面積が増加しく例え
ば、実線状態)、低粘性液加熱機構7による蒸発量が蒸
気圧力の低下量に相当する量だけ増加し、熱サイホン室
4内の蒸気圧力低下を阻止する。逆に、蒸気圧力が上昇
した場合には、封液面12′aが下降して、低粘性展と
低粘性液加熱面7aとの接触面積が減少しく例えば、鎖
線状態)、低粘性液加熱機構7による蒸発量が減少して
、蒸気圧力の上昇を阻止する。That is, when the steam pressure inside the thermosiphon chamber 4 fluctuates,
Along with this, the liquid level 12'a of the low-viscosity liquid reservoir 12a (and the liquid level 13'a of the varnish reservoir 13a) also changes, and the amount of evaporation by the low-viscosity liquid heating mechanism 7 is automatically adjusted according to the amount of fluctuation. For example, when the steam pressure decreases and the liquid sealing surface 12'a rises, the contact area between the low viscosity liquid in the low viscosity liquid reservoir 12a and the low viscosity liquid heating surface 7a increases. state), the amount of evaporation by the low-viscosity liquid heating mechanism 7 increases by an amount corresponding to the amount of decrease in steam pressure, and a decrease in steam pressure in the thermosyphon chamber 4 is prevented. Conversely, when the steam pressure increases, the sealing liquid surface 12'a falls, and the contact area between the low viscosity expansion and the low viscosity liquid heating surface 7a decreases (for example, the state shown by the chain line), and the low viscosity liquid heating The amount of evaporation caused by the mechanism 7 is reduced, preventing an increase in steam pressure.
また、基材加熱機構5による発生蒸気の殆どは第1冷却
コイル6aにより凝縮されて、基材入口部4aから低粘
性液溜12aに回収される。一方、基材出口部4bにお
いては、第2冷却コイル6bにより低粘性液蒸気が凝縮
され、その凝縮液は回収管8bから低粘性液溜12aに
回収される。その結果、上記した蒸気圧力の自己制御と
相俟って。Further, most of the steam generated by the base material heating mechanism 5 is condensed by the first cooling coil 6a and collected from the base material inlet portion 4a into the low viscosity liquid reservoir 12a. On the other hand, at the base material outlet section 4b, the low viscosity liquid vapor is condensed by the second cooling coil 6b, and the condensed liquid is collected into the low viscosity liquid reservoir 12a from the collection pipe 8b. As a result, in conjunction with the self-control of steam pressure mentioned above.
基材1からの低粘性液分離が良好に行なわれると共に、
低粘性液12の損失及びワニス貯溜槽3への侵入は可及
的に防止されることになる。The low viscosity liquid is successfully separated from the base material 1, and
Loss of the low viscosity liquid 12 and intrusion into the varnish reservoir 3 will be prevented as much as possible.
したがって、熱サイホン室4で加熱された基材1は低粘
性液12の飽和蒸気を含有するのみとなり、空気を含ま
ない状態で基材出口部4bからワニス貯溜槽3内にもた
らされ、ワニス13中に浸潰される。Therefore, the base material 1 heated in the thermosyphon chamber 4 only contains saturated vapor of the low viscosity liquid 12, and is brought into the varnish storage tank 3 from the base material outlet part 4b without containing air, and the varnish is It is immersed in 13.
そして、基材1に含まれた低粘性液飽和蒸気はワニス貯
溜領域3′に侵入する際、微量の低粘性液飽和液となっ
てワニス13中に拡散する。Then, when the low-viscosity liquid-saturated vapor contained in the base material 1 enters the varnish storage region 3', it becomes a trace amount of low-viscosity liquid-saturated liquid and diffuses into the varnish 13.
したがって、基材1がワニス貯溜領域3′を通過する間
において、基材1にはワニス13が均−且つ充分に含浸
せしめられることになる。Therefore, while the base material 1 passes through the varnish storage area 3', the base material 1 is evenly and sufficiently impregnated with the varnish 13.
このとき、上記した如く、熱サイホン室4で発生する低
粘性液蒸気の殆どが低粘性液貯溜槽2側に回収されるこ
と、及び基材1によって直接ワニス貯溜槽3内に持ち込
まれる低粘性液飽和蒸気が微量であることから、ワニス
貯溜槽3内のワニス粘度が低下するようなことはない、
また、基材lにはエキスパンダ式ガイドロール9a、9
bを通過する際に幅方向への伸展力が加わり、この伸展
力がロール通過後に解消されるため、低粘性液12及び
ワニス13中で幅方向の繊維束も拡繊・再収束が行なわ
れて1幅方向における空気・低粘性液の置換及びワニス
の含浸性も向上することになる。その結果、基材1の繊
維束内部にまで充分にワニス13が含浸されることにな
る。At this time, as described above, most of the low-viscosity liquid vapor generated in the thermosyphon chamber 4 is recovered to the low-viscosity liquid storage tank 2 side, and the low-viscosity liquid vapor is directly brought into the varnish storage tank 3 by the base material 1. Since the amount of liquid saturated steam is small, the viscosity of the varnish in the varnish storage tank 3 will not decrease.
Further, the base material l has expander type guide rolls 9a, 9.
A stretching force in the width direction is applied when passing through b, and this stretching force is canceled after passing through the rolls, so that the fiber bundles in the width direction are also expanded and reconverged in the low viscosity liquid 12 and varnish 13. This also improves the displacement of air and low viscosity liquid in the width direction and the impregnability of varnish. As a result, the inside of the fiber bundle of the base material 1 is sufficiently impregnated with the varnish 13.
以上の説明から容易に理解されるように、本発明の方法
によれば、基材にワニスを均−且つ充分に短時間で含浸
させることができ、しかも基材中の気泡を皆無とするこ
とができる。かかる効果は、高粘度のワニスを含浸させ
る場合に著しい。As can be easily understood from the above explanation, according to the method of the present invention, it is possible to impregnate a base material with varnish evenly and in a sufficiently short time, and moreover, it is possible to completely eliminate air bubbles in the base material. Can be done. This effect is significant when impregnating high viscosity varnishes.
しかも1本発明の方法によれば、熱サイホン領域におけ
る蒸気圧力の変動を低粘性液貯溜領域との連通部におけ
る液封面の変動として捉え、との液封面の変動に応じて
低粘性液蒸気の発生量を制御するようにしたから、基材
速度等のワニス含浸条件の変更、変動に拘らず、常に、
熱サイホン領域の蒸気圧力を一定範囲に保持し得て、良
好なワニス含浸を行なうことができる。Moreover, according to the method of the present invention, fluctuations in steam pressure in the thermosiphon region are interpreted as fluctuations in the liquid sealing surface in the communication portion with the low-viscosity liquid storage region, and low-viscosity liquid vapor is Since the amount generated is controlled, regardless of changes or fluctuations in varnish impregnation conditions such as substrate speed,
The steam pressure in the thermosyphon region can be maintained within a certain range, and good varnish impregnation can be achieved.
さらに、低粘性液中からワニス中への移行段階において
基材を加熱し、低粘性液を殆ど蒸発分離するので、低粘
性液の損失及びワニスの稀釈化を効果的に防止しうると
共に含浸作用の更なる促進を図りうる。しかも、基材に
おける低粘性液使用量が極く僅かとなり、ワニス含浸後
の乾燥工程における乾燥炉排気量を大幅に減することが
できる。Furthermore, in the transition stage from the low viscosity liquid to the varnish, the substrate is heated and most of the low viscosity liquid is evaporated and separated, so loss of the low viscosity liquid and dilution of the varnish can be effectively prevented, and the impregnation effect can be effectively prevented. It is possible to further promote this. Moreover, the amount of low viscosity liquid used in the base material is extremely small, and the amount of exhaust air from the drying oven in the drying step after impregnation with varnish can be significantly reduced.
また1本発明の装置によれば、上記方法を好適に実施す
ることができ、特に、熱サイホン室内の蒸気圧力を低粘
性液溜における低粘性液と低粘性液加熱面との接触面積
の変動により自己制御させるようにしたから、高精度の
圧力制御装置等を全く必要とせず、装置構造を徒に複雑
化、大型化することがない、しかも、熱サイホン室の蒸
気圧力制御を、圧力制御装置等による場合に比して、よ
り確実且つ正確に行なうことができる。さらに。In addition, according to the apparatus of the present invention, the above method can be carried out suitably, and in particular, the steam pressure in the thermosiphon chamber can be changed by changing the contact area between the low viscosity liquid and the low viscosity liquid heating surface in the low viscosity liquid reservoir. Since the steam pressure control in the thermosiphon chamber is self-controlled, there is no need for a high-precision pressure control device, etc., and the structure of the device does not become unnecessarily complicated or large. This can be done more reliably and accurately than when using a device or the like. moreover.
運転停止時等において熱サイホン室内が真空若しくは負
圧状態になるような場合にあっても、このような事態の
発生を未然に防止して、低粘性液やワニスが熱サイホン
室に吸い上げられるといった不都合を全く生じさせない
。Even if the thermosyphon chamber becomes a vacuum or negative pressure state when the operation is stopped, etc., this situation can be prevented and low viscosity liquids and varnishes can be sucked up into the thermosyphon chamber. Does not cause any inconvenience.
第1図は本発明に係るワニス含浸装置の一実施例を示す
断面図である。
1・・・基材、2・・・低粘性液貯溜槽、2′・・・低
粘性液貯溜領域、3・・・ワニス貯溜槽、3′・・・ワ
ニス貯溜領域、4・・・熱サイホン室、4′・・・熱サ
イホン領域、4a・・・熱サイホン領域と低粘性液貯溜
領域との連通部である基材入口部、4b・・・熱サイホ
ン領域とワニス貯溜領域との連通部である基材出口部、
5・・・基材加熱機構、5a・・・加熱ロール、6・・
・冷却機構、6a・・・第1冷却コイル、6b・・・第
2冷却コイル。
7・・・低粘性液加熱機構、7a・・・低粘性液加熱面
。
8・・・凝縮液回収機構、9・・・基材走行ガイド機構
。
12・・・低粘性液、12a・・・低粘性液溜、12′
a・・・液封面たる低粘性液溜の液面、13・・・ワニ
ス、13a・・・ワニス溜、13′a・・・液封面たる
ワニス溜の液面。
、.1.、’y
パ″ノ
56一FIG. 1 is a sectional view showing an embodiment of a varnish impregnating apparatus according to the present invention. 1... Base material, 2... Low viscosity liquid storage tank, 2'... Low viscosity liquid storage area, 3... Varnish storage tank, 3'... Varnish storage area, 4... Heat Siphon chamber, 4'...Thermosiphon region, 4a...Base material inlet portion which is a communication part between the thermosiphon region and the low viscosity liquid storage region, 4b...Communication between the thermosyphon region and the varnish storage region a base material outlet section,
5... Base material heating mechanism, 5a... Heating roll, 6...
- Cooling mechanism, 6a...first cooling coil, 6b...second cooling coil. 7...Low viscosity liquid heating mechanism, 7a...Low viscosity liquid heating surface. 8... Condensed liquid recovery mechanism, 9... Base material traveling guide mechanism. 12...Low viscosity liquid, 12a...Low viscosity liquid reservoir, 12'
a... Liquid level of a low viscosity liquid reservoir serving as a liquid sealing surface, 13... Varnish, 13a... Varnish reservoir, 13'a... Liquid level of a varnish reservoir serving as a liquid sealing surface. ,. 1. ,'y pa″ノ561
Claims (2)
ワニスを貯溜せるワニス貯溜領域との間に、両貯溜領域
にその液面で液封された状態で連通する密閉状の熱サイ
ホン領域を設けて、繊維質材からなるシート状の基材を
低粘性液貯溜領域、熱サイホン領域、ワニス貯溜領域を
順次通過させるようにすると共に、熱サイホン領域にお
いて、基材を加熱してこれに含浸された低粘性液を蒸発
させ、且つ該領域で発生した低粘性液蒸気を凝縮液化さ
せて、その凝縮液化された低粘性液を低粘性液貯溜領域
側に回収するようにし、更に熱サイホン領域と低粘性液
貯溜領域との連通部において低粘性液を加熱蒸発させ、
その蒸発量を該連通部における液封面の変動に応じて制
御させるようにしたことを特徴とするワニス含浸方法。(1) A hermetic heat source that communicates between a low-viscosity liquid storage area that stores low-viscosity liquids such as solvents and a varnish storage area that stores varnish in a state where both storage areas are sealed at the liquid level. A siphon area is provided so that the sheet-like base material made of a fibrous material passes through a low viscosity liquid storage area, a thermosyphon area, and a varnish storage area in sequence, and the base material is heated in the thermosiphon area. The low viscosity liquid impregnated in this is evaporated, the low viscosity liquid vapor generated in the area is condensed and liquefied, and the condensed and liquefied low viscosity liquid is collected into the low viscosity liquid storage area, and further The low viscosity liquid is heated and evaporated in the communication area between the thermosyphon area and the low viscosity liquid storage area,
A varnish impregnation method characterized in that the amount of evaporation is controlled in accordance with fluctuations in a liquid sealing surface in the communication portion.
ワニスを貯溜したワニス貯溜槽と、各貯溜槽内の液面下
において開口する筒状の基材入口部入口部及び基材出口
部を垂設した密閉状の熱サイホン室と、繊維質材からな
るシート状の基材を低粘性液貯溜槽から基材入口部を経
て熱サイホン室に導き更に基材出口部からワニス貯溜槽
に導く基材走行ガイド機構と、熱サイホン室内において
基材を加熱して、これに含浸された低粘性液を蒸発させ
る基材加熱機構と、熱サイホン室内の低粘性液蒸気を凝
縮液化する冷却機構と、該冷却機構により凝縮液化され
た低粘性液を低粘性液貯溜槽側に回収する凝縮液回収機
構と、基材入口部内の低粘性液溜に上下方向に延びる低
粘性液加熱面を配設して、低粘性液溜の液面変動に伴っ
て低粘性液の加熱蒸発量が変化するように構成された低
粘性液加熱機構と、を具備することを特徴とするワニス
含浸装置。(2) a low viscosity liquid storage tank storing a low viscosity liquid such as a solvent;
A varnish storage tank that stores varnish, a sealed thermosiphon chamber with a cylindrical base material inlet and a base material outlet that open below the liquid level in each storage tank, and a fibrous material. A base material traveling guide mechanism that guides a sheet-like base material from a low-viscosity liquid storage tank through a base material inlet to a thermosyphon chamber, and then leads it from a base material outlet to a varnish storage tank, and heats the base material in the thermosiphon chamber. and a base material heating mechanism that evaporates the low viscosity liquid impregnated into the base material, a cooling mechanism that condenses and liquefies the low viscosity liquid vapor in the thermosiphon chamber, and a base material heating mechanism that evaporates the low viscosity liquid impregnated into the base material, and a cooling mechanism that condenses and liquefies the low viscosity liquid vapor in the thermosyphon chamber. A condensate recovery mechanism that collects condensate on the liquid storage tank side and a low-viscosity liquid heating surface that extends vertically in the low-viscosity liquid reservoir in the base material inlet are installed to reduce the condensate as the liquid level changes in the low-viscosity liquid reservoir. A varnish impregnation device comprising: a low viscosity liquid heating mechanism configured to change the amount of heating and evaporation of the viscous liquid.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1029043A JPH02208009A (en) | 1989-02-08 | 1989-02-08 | Impregnating process with varnish and its device |
KR1019890014226A KR930001712B1 (en) | 1988-11-18 | 1989-10-04 | Varnish impregnation method and apparatus |
US07/430,329 US5056457A (en) | 1988-11-18 | 1989-11-02 | Varnish impregnation method and apparatus |
EP89420444A EP0369907B1 (en) | 1988-11-18 | 1989-11-15 | A varnish impregnation method and apparatus |
DE68915401T DE68915401T2 (en) | 1988-11-18 | 1989-11-15 | Method and device for impregnation with varnish. |
US07/738,953 US5137756A (en) | 1988-11-18 | 1991-08-01 | Varnish impregnation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1029043A JPH02208009A (en) | 1989-02-08 | 1989-02-08 | Impregnating process with varnish and its device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02208009A true JPH02208009A (en) | 1990-08-17 |
JPH0583046B2 JPH0583046B2 (en) | 1993-11-24 |
Family
ID=12265366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1029043A Granted JPH02208009A (en) | 1988-11-18 | 1989-02-08 | Impregnating process with varnish and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02208009A (en) |
-
1989
- 1989-02-08 JP JP1029043A patent/JPH02208009A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0583046B2 (en) | 1993-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4424633A (en) | Apparatus for heating and drying articles | |
US5056457A (en) | Varnish impregnation method and apparatus | |
US3078589A (en) | Xerographic fusing apparatus | |
JP2009514668A (en) | Membrane distillation process and membrane distillation apparatus | |
US5062927A (en) | Method of operating a still | |
US4421794A (en) | Solvent removal via continuously superheated heat transfer medium | |
KR970703519A (en) | Vacuum dewatering of desiccant brines | |
DD283941A5 (en) | METHOD FOR THE EVAPORATIVE CONCENTRATION OF A FLUID | |
JP3023380B2 (en) | Method for processing a surgical suture, apparatus for performing the method, and surgical suture | |
JPH02208009A (en) | Impregnating process with varnish and its device | |
EP0444819A2 (en) | Varnish impregnation method and apparatus | |
AU7085881A (en) | Liquid evaporation process and apparatus | |
JPH02214614A (en) | Method and equipment for varnishing | |
JPH02214613A (en) | Varnishing method and device therefor | |
WO1991000760A1 (en) | Process and apparatus for cooling a fluid | |
NO146560B (en) | EVAPORATING COOLING EVAPORATION OF INDUCTIVE ELECTRICAL APPLIANCE | |
KR20000028990A (en) | Vaporization equipment | |
JPH02214615A (en) | Method and equipment for varnishing | |
CA1279483C (en) | Air conditioning process and apparatus | |
JPH0248930A (en) | Method and apparatus for impregnating with varnish | |
JPH039813A (en) | Infiltration method and its device for varnish | |
KR20200066344A (en) | Solvent dewatering system and solvent dewatering method | |
DE4242923C2 (en) | Ironing machine with a device for moistening the items to be ironed | |
JPS5579992A (en) | Heat transfer device | |
US2382123A (en) | Refrigeration |