JPH0582750A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0582750A
JPH0582750A JP3239045A JP23904591A JPH0582750A JP H0582750 A JPH0582750 A JP H0582750A JP 3239045 A JP3239045 A JP 3239045A JP 23904591 A JP23904591 A JP 23904591A JP H0582750 A JPH0582750 A JP H0582750A
Authority
JP
Japan
Prior art keywords
layer
fin
fins
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3239045A
Other languages
Japanese (ja)
Other versions
JP3044861B2 (en
Inventor
Masaaki Higashiya
政昭 東谷
Toshimi Ikeda
稔美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3239045A priority Critical patent/JP3044861B2/en
Priority to DE69230156T priority patent/DE69230156T2/en
Priority to EP92112279A priority patent/EP0528183B1/en
Priority to EP97103295A priority patent/EP0782195B1/en
Priority to KR1019920013316A priority patent/KR960005243B1/en
Publication of JPH0582750A publication Critical patent/JPH0582750A/en
Priority to US08/141,691 priority patent/US5661340A/en
Application granted granted Critical
Publication of JP3044861B2 publication Critical patent/JP3044861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To keep the total height of a storage electrode having a multi-layer fin structure as low as possible and, further, avoid the degradation of a storage capacity caused by the hang of the fin. CONSTITUTION:A dynamic-type memory cell has a storage electrode 6 having a multilayer fin structure which is composed of a plurality of layers of fins which are provided in multistoried layers. Some of or all of a plurality of layers of the fins 6A, 6B and 6C have different thicknesses or at least the thickness of the uppermost layer fin 6C is larger than the thicknesses of the other fins 6A and 6B or, the higher the layer of the fin, the larger the thickness of the layer of the fin (tC> tB>tA).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶装置、特にダ
イナミック型メモリセルに具備せしめる多層フィン構造
キャパシタの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to the structure of a multilayer fin structure capacitor provided in a dynamic memory cell.

【0002】スタックト・キャパシタ型のDRAMセル
は、集積度の増大とともに1ビットセル当たりの専有面
積が縮小されてキャパシタの蓄積容量が減少し、ソフト
エラー耐性の劣化が顕著になってきている。そこで、蓄
積電極をフィン構造にして蓄積電極の表面積を確保し、
これによって必要な蓄積容量の確保がなされており、更
に一層の集積度の向上に際しては、蓄積電極のフィンの
層数を増やして所要の蓄積容量を確保する対策がとられ
る。
In the stacked capacitor type DRAM cell, the occupied area per 1-bit cell is reduced as the degree of integration is increased, the storage capacity of the capacitor is reduced, and the soft error resistance is significantly deteriorated. Therefore, the storage electrode has a fin structure to secure the surface area of the storage electrode,
As a result, the required storage capacity is secured, and in order to further improve the degree of integration, measures are taken to secure the required storage capacity by increasing the number of fin layers of the storage electrode.

【0003】一方、蓄積電極のフィンの層数を増やした
場合、フィンの垂れ下がりによる蓄積容量の減少という
問題が発生しており、対策が望まれている。
On the other hand, when the number of fin layers of the storage electrode is increased, there is a problem that the storage capacitance is decreased due to the fin sagging, and a countermeasure is desired.

【0004】[0004]

【従来の技術】図5は従来の多層フィン構造キャパシタ
を有するDRAMセルの模式断面図で、例えば、図中、
51はp型シリコン(Si)基板、52はセル領域、53はフィー
ルド酸化膜、54はゲート酸化膜、55はゲート電極(ワー
ド線)、55′は他セルのワード線、56はビット線が接続
される第1のn+ 型ソース/ドレイン(S/D)領域、
57は蓄積ノードとなる第2のn+ 型S/D領域、58は第
1の層間絶縁膜、59は窒化シリコン(Si3N4) 膜、60は第
1のコンタクト窓、61は多層フィン構造蓄積電極、62は
誘電体膜、63は対向電極(セルプレート)、64は第2の
層間絶縁膜、65は第2のコンタクト窓、66はビット線
(アルミニウム配線)、67は第3の層間絶縁膜、68はセ
ル領域上から周辺部上に延在する配線、TTはトランスフ
ァトランジスタ、TCは蓄積キャパシタを示す。
2. Description of the Related Art FIG. 5 is a schematic sectional view of a DRAM cell having a conventional multilayer fin structure capacitor.
51 is a p-type silicon (Si) substrate, 52 is a cell region, 53 is a field oxide film, 54 is a gate oxide film, 55 is a gate electrode (word line), 55 'is a word line of another cell, and 56 is a bit line. A first n + type source / drain (S / D) region connected,
57 is a second n + type S / D region which serves as a storage node, 58 is a first interlayer insulating film, 59 is a silicon nitride (Si 3 N 4 ) film, 60 is a first contact window, and 61 is a multi-layer fin. Structure storage electrode, 62 dielectric film, 63 counter electrode (cell plate), 64 second interlayer insulating film, 65 second contact window, 66 bit line (aluminum wiring), 67 third An interlayer insulating film, 68 is a wiring extending from the cell region to the peripheral portion, TT is a transfer transistor, and TC is a storage capacitor.

【0005】この図に示すような多層フィン構造キャパ
シタを有するDRAMセルにおいて、集積度が高まっ
て、セルが微細化し且つフィンの総数が増すと、エッチ
ングの際のアスペクト比が高まってフィン状構造蓄積電
極60の加工が困難になると同時に、セル領域2上面と周
辺部の上面との段差(h) が大きくなり、セル領域2上か
ら周辺部上に延在する配線68等をパターニングする際の
フォーカスマージンが減少するという問題を生ずる。
In a DRAM cell having a multilayer fin structure capacitor as shown in this figure, as the degree of integration increases, the cell becomes finer and the total number of fins increases, the aspect ratio at the time of etching increases, and fin-shaped structure accumulation occurs. At the same time that the processing of the electrode 60 becomes difficult, the step (h) between the upper surface of the cell region 2 and the upper surface of the peripheral portion becomes large, and the focus when patterning the wiring 68 and the like extending from the cell region 2 to the peripheral portion. This causes a problem that the margin is reduced.

【0006】そこで、フィンの総数を増す際には、各々
のフィンの膜厚を可能な限り薄くして、蓄積電極の高さ
を低く抑えることが重要になるが、従来の多層フィン構
造の蓄積電極61では、図6の模式断面図に示すように、
各層のフィンの厚さ例えば第1層フィン61A の厚さ
(tA ) と第2層フィン61B の厚さ(tB ) が総て同一の厚
さに形成されていたので、層数を増やす際には、全体の
高さを低く抑えるために、各層のフィンの膜厚が一様に
薄く形成されていた。なお、図6中の他の符号は図5と
同一対象物を示す。
Therefore, when increasing the total number of fins, it is important to reduce the thickness of each fin as much as possible to keep the height of the storage electrode low. In the electrode 61, as shown in the schematic sectional view of FIG.
Thickness of fins of each layer eg thickness of fin 61A of the first layer
Since the thickness (t A ) and the thickness (t B ) of the second layer fin 61B are all the same, when increasing the number of layers, in order to keep the total height low, The fins had a uniform thin film thickness. Note that the other reference numerals in FIG. 6 indicate the same objects as those in FIG.

【0007】一方、従来の多層フィン構造の蓄積電極
は、図7の工程断面図を参照して示す下記の方法により
形成される。 図7(a) 参照 即ち、Si基板51(詳しくは第2のS/D領域57)上に形
成された例えば層間絶縁膜58上にエッチングストッパと
なるSi3N4 膜59を形成し、次いでその上に第1のスペー
サ用絶縁膜69を形成し、次いでその上に第1層フィン61
A になる第1のポリSi層70を形成し、次いでその上に第
2のスペーサ用絶縁膜71を形成し、次いで上記積層膜に
Si基板51(第2のS/D領域57)面を表出する第1のコ
ンタクト窓60を形成する。
On the other hand, a conventional storage electrode having a multi-layer fin structure is formed by the following method shown with reference to the process sectional view of FIG. See FIG. 7A. That is, a Si 3 N 4 film 59 serving as an etching stopper is formed on, for example, an interlayer insulating film 58 formed on a Si substrate 51 (specifically, a second S / D region 57), and then, A first spacer insulating film 69 is formed thereon, and then the first-layer fin 61 is formed thereon.
A first poly-Si layer 70 to be A is formed, then a second spacer insulating film 71 is formed thereon, and then the above-mentioned laminated film is formed.
A first contact window 60 exposing the surface of the Si substrate 51 (second S / D region 57) is formed.

【0008】図7(b) 参照 次いで、コンタクト窓60の内面を含む第2のスペーサ用
絶縁膜71上に第2層フィン61B になる第1のポリSi層70
と等しい厚さの第2のポリSi層72を形成する。
Next, referring to FIG. 7B, the first poly-Si layer 70 to be the second layer fin 61B is formed on the second spacer insulating film 71 including the inner surface of the contact window 60.
Forming a second poly-Si layer 72 having a thickness equal to

【0009】図7(c) 参照 次いで、前記Si3N4 膜59をストッパにし、第2のポリSi
層72、第2のスペーサ用絶縁膜71、第1のポリSi層70、
第1のスペーサ用絶縁膜69を一括蓄積電極形状73にパタ
ーニングする。
Referring to FIG. 7C, the Si 3 N 4 film 59 is used as a stopper to remove the second poly-Si film.
Layer 72, second insulating film 71 for spacer, first poly-Si layer 70,
The first spacer insulating film 69 is patterned into the collective storage electrode shape 73.

【0010】図7(d) 参照 次いで、第1のスペーサ用絶縁膜69及び第2のスペーサ
用絶縁膜71をウェットエッチング手段で除去し、例えば
第1のポリSi層70からなる第1層フィン61A 及び第2の
ポリSi層72からなる第2層フィン61B を有する多層フィ
ン構造の蓄積電極61を形成する方法である。
Next, referring to FIG. 7D, the first spacer insulating film 69 and the second spacer insulating film 71 are removed by a wet etching means, for example, a first-layer fin made of a first poly-Si layer 70. This is a method of forming a storage electrode 61 having a multi-layer fin structure having a second-layer fin 61B composed of 61A and a second poly-Si layer 72.

【0011】[0011]

【発明が解決しようとする課題】しかし上記形成工程に
よると、従来のように各層フィンの膜厚が一様な場合、
蓄積電極61のフィンの層数を増し、且つその高さを低く
抑えるためにフィン61A、61B 等の膜厚を薄くして行っ
た際には、図8に示すように、下層の例えば第1層フィ
ン61A の垂れ下がりが皆無或いは僅かであっても、最上
層の例えば第2層フィン61B が大きく垂れ下がってその
先端部が下層のフィン61A 上に接触し、蓄積容量の低下
を招くという問題があった。
However, according to the above forming process, when the film thickness of each layer fin is uniform as in the conventional case,
When the number of fin layers of the storage electrode 61 is increased and the fins 61A, 61B, etc. are thinned in order to suppress the height thereof, as shown in FIG. Even if the layer fins 61A have no or only a small amount of sagging, the uppermost layer, for example, the second layer fins 61B, drastically sags, and the tip end thereof contacts the fins 61A of the lower layer, which causes a decrease in storage capacity. It was

【0012】そこで本発明は、全体の高さを極力低く抑
え、且つフィンの垂れ下がりによる蓄積容量の低下を防
止し得る多層蓄積電極の構造を提供することを目的とす
る。
[0012] Therefore, an object of the present invention is to provide a structure of a multi-layer storage electrode capable of suppressing the entire height as low as possible and preventing the storage capacitance from being lowered due to the hanging of fins.

【0013】[0013]

【課題を解決するための手段】上記課題は、階層状に形
成された複数層のフィンを有する多層フィン構造の蓄積
電極を備えたダイナミック型メモリセルを有し、該複数
層のフィンの一部の層若しくは総ての層の厚さが異なっ
ている本発明による半導体記憶装置、若しくは階層状に
形成された複数層のフィンを有する多層フィン構造の蓄
積電極を備えたダイナミック型メモリセルを有し、該複
数層のフィンの中の少なくとも最上層のフィンが、他の
層のフィンよりも厚く形成されている本発明による半導
体記憶装置、若しくは階層状に形成された複数層のフィ
ンを有する多層フィン構造の蓄積電極を備えたダイナミ
ック型メモリセルを有し、該複数層のフィンの厚さが、
上層のフィンほど厚く形成されている本発明による半導
体記憶装置によって解決される。
SUMMARY OF THE INVENTION The above problems include a dynamic memory cell having a storage electrode having a multi-layer fin structure having a plurality of fins formed in a hierarchical structure, and a part of the fins of the plurality of layers. A semiconductor memory device according to the present invention in which the thickness of all layers is different, or a dynamic memory cell having a storage electrode of a multilayer fin structure having fins of a plurality of layers formed in a layered manner. A semiconductor memory device according to the present invention in which at least the uppermost fin of the plurality of layers of fins is formed thicker than the fins of the other layers, or a multi-layered fin having a plurality of layers of fins formed in layers. A dynamic memory cell having a storage electrode having a structure, the thickness of the fins of the plurality of layers is
This is solved by the semiconductor memory device according to the present invention in which the fins in the upper layer are formed thicker.

【0014】[0014]

【作用】図1は本発明の原理説明用模式断面図で、(a)
は本発明に係る第1の構造、(b) は第2の構造である。
[Operation] FIG. 1 is a schematic sectional view for explaining the principle of the present invention.
Is the first structure according to the present invention, and (b) is the second structure.

【0015】同図において、1は半導体基板、2は蓄積
ノード拡散層、3は絶縁膜、4は蓄積電極パターニング
の際のエッチングストッパ膜、5はコンタクト窓、6は
多層フィン構造蓄積電極、6Aは第1層フィン、6Bは第2
層フィン、6Cは第3層(最上層)フィン、6Sは支軸部を
示す。
In the figure, 1 is a semiconductor substrate, 2 is a storage node diffusion layer, 3 is an insulating film, 4 is an etching stopper film for patterning the storage electrode, 5 is a contact window, 6 is a multilayer fin structure storage electrode, and 6A. Is the first layer fin, 6B is the second
Layer fins, 6C are third layer (uppermost layer) fins, and 6S is a spindle.

【0016】従来の問題点で述べたように、多層フィン
構造蓄積電極において、各層のフィンを一様な厚さに形
成し、且つその厚さを極度に薄くして行った場合には、
それを形成する工程において、スペーサ用絶縁膜とフィ
ン用の導電膜とが交互に積層された際に下部からの応力
を最も大きく受けており、且つスペーサ用絶縁膜をエッ
チング除去する際に下部に向かう応力を最も大きく受け
ると思われる最上層のフィンに垂れ下がり変形が最も多
く発生し、その変形の度合いは、前記応力が順次小さく
なると思われる下層のフィン程小さくなるという現象が
ある。
As described in the conventional problems, in the multi-layer fin structure storage electrode, when the fins of each layer are formed to have a uniform thickness and the thickness is extremely thin,
In the process of forming it, when the spacer insulating film and the fin conductive film are alternately laminated, the stress from the lower part is most received, and when the spacer insulating film is removed by etching, the stress is applied to the lower part. There is a phenomenon that the fins in the uppermost layer, which are considered to receive the largest amount of stress, undergo the most sagging deformation, and the degree of the deformation decreases as the fins in the lower layer, in which the stress is considered to decrease gradually.

【0017】そこで本発明に係る第1の構造において
は、図1(a) に示すように前記垂れ下がり変形の最も生
じ易い最上層(第3層)フィン6Cを垂れ下がりの応力に
耐え得る程度に厚く形成し、最上層フィン6Cに比べて変
形の生じにくい最上層以外の総ての層のフィン即ち第2
層フィン6Bと第1層フィン6Cの厚さを、最上層フィン6C
よりも薄く、且つ最上層以外の層において垂れ下がり変
形を生じない程度の最小の厚さに均一に形成し、これに
よって蓄積電極6の全体の高さ(h6)を極力低く抑えつ
つ、フィンの垂れ下がり変形による蓄積容量の減少の防
止がなされる。
Therefore, in the first structure according to the present invention, as shown in FIG. 1A, the uppermost fin (third layer) fin 6C, which is most susceptible to the drooping deformation, is thick enough to withstand the drooping stress. The fins of all layers other than the uppermost layer that are formed and are less likely to be deformed than the uppermost fin 6C, that is, the second fin
The thickness of the layer fins 6B and the first layer fins 6C is set to the uppermost layer fins 6C.
Is thinner than the uppermost layer, and is uniformly formed to a minimum thickness that does not cause sagging deformation in the layers other than the uppermost layer, thereby keeping the overall height (h 6 ) of the storage electrode 6 as low as possible and The reduction of the storage capacity due to the drooping deformation is prevented.

【0018】また本発明に係る第2の構造においては、
前記垂れ下がり変形の最も激しい最上層のフィン6Cの膜
厚を変形に耐え得るように最も厚く形成し、且つ前記応
力によると考えられる垂れ下がり変形の度合いが順次小
さくなる第2層フィン6B、第1層フィン6Aに行くに従っ
て、変形を生じない程度にフィンの膜厚を順次減少せし
め、これによって蓄積電極の全体の高さを極力低く抑え
つつ、フィンの垂れ下がり変形による蓄積容量の減少の
防止がなされる。
In the second structure according to the present invention,
The second-layer fin 6B, the first layer, in which the thickness of the uppermost fin 6C, which has the most drooping deformation, is formed to be the thickest so as to withstand the deformation, and the degree of the drooping deformation, which is considered to be caused by the stress, gradually decreases. As it goes to the fins 6A, the film thickness of the fins is sequentially reduced to the extent that deformation does not occur, thereby preventing the decrease of the storage capacitance due to the sagging deformation of the fins while keeping the overall height of the storage electrode as low as possible. ..

【0019】[0019]

【実施例】以下本発明を、実施例について、製造工程に
従って説明する。図2及び図3は本発明に係る第1の構
造の一実施例に係る工程断面図、図4は本発明に係る第
2の構造の一実施例に係る工程断面図である。
EXAMPLES The present invention will be described below with reference to examples of manufacturing steps. 2 and 3 are process cross-sectional views according to one embodiment of the first structure according to the present invention, and FIG. 4 is a process cross-sectional view according to one embodiment of the second structure according to the present invention.

【0020】全図を通じ同一対象物は同一符合で示す。 図2(a) 参照 本発明に係る第1の構造を有する例えば3層フィン構造
の蓄積電極を用いて構成される蓄積キャパシタを有する
DRAMセルは、例えば、p型Si基板11面に通常の方法
によりセル領域12を画定表出するフィールド酸化膜13を
形成し、素子領域12上に、ゲート酸化膜14を介してゲー
ト電極15を形成し、ゲート電極15をマスクにして不純物
を導入してセル領域12に、ビット線が接続される第1の
+ 型S/D領域16及び蓄積ノードとなる第2のn+
S/D領域17を形成することによりトランスファトラン
ジスタ(TT)を形成した後、CVD 法を用いて、上記基板上
に例えばCVD-SiO2からなる厚さ3000Å程度の第1の層間
絶縁膜18、蓄積電極パターニングの際のエッチングスト
ッパとなる厚さ 400〜600 Å程度のSi3N4 膜19、厚さ 3
00Å程度の第1のSiO2スペーサ膜20、厚さ 200Å程度の
第1のn+ 型ドープドポリSi層21、厚さ 300Å程度の第
2のSiO2スペーサ膜22、厚さ 200Å程度の第2のn+
ドープドポリSi層23、厚さ 300Å程度の第3のSiO2スペ
ーサ膜24を順次形成する。
Throughout the drawings, the same objects are designated by the same reference numerals. See FIG. 2 (a). A DRAM cell having a first structure according to the present invention, which has a storage capacitor configured by using a storage electrode having, for example, a three-layer fin structure, is formed on a surface of a p-type Si substrate 11 by a conventional method. To form a field oxide film 13 that demarcates and exposes the cell region 12, and a gate electrode 15 is formed on the element region 12 with the gate oxide film 14 interposed therebetween. In the region 12, a transfer transistor (TT) is formed by forming a first n + type S / D region 16 to which a bit line is connected and a second n + type S / D region 17 serving as a storage node. After that, using the CVD method, the first interlayer insulating film 18 made of, for example, CVD-SiO 2 and having a thickness of about 3000 Å, and the thickness of 400 to 600 Å serving as an etching stopper at the time of patterning the storage electrode are formed. Si 3 N 4 film 19, thickness 3
The first SiO 2 spacer film 20 having a thickness of about 00Å, the first n + -type doped poly-Si layer 21 having a thickness of about 200Å, the second SiO 2 spacer film 22 having a thickness of about 300Å, and the second SiO 2 film having a thickness of about 200Å An n + -type doped poly-Si layer 23 and a third SiO 2 spacer film 24 having a thickness of about 300Å are sequentially formed.

【0021】図2(b) 参照 次いで、上記第1の層間絶縁膜18、Si3N4 膜19、第1の
SiO2スペーサ膜20、第1のn+ 型ドープドポリSi層21、
第2のSiO2スペーサ膜22、第2のn+ 型ドープドポリSi
層23、第3のSiO2スペーサ膜24にリアクティブイオンエ
ッチング(RIE)処理により、それらを貫通し第2のn+
型S/D領域17面を表出する第1のコンタクト窓25を形
成する。ここで、RIE 処理のエッチングガスには、例え
ば、絶縁膜、SiO2膜、Si3N4 膜に(CF4+CHF3) ガスが、
ポリSi層には(HBr) ガスがそれぞれ用いられる。
Next, referring to FIG. 2B, the first interlayer insulating film 18, the Si 3 N 4 film 19 and the first
SiO 2 spacer film 20, first n + -type doped poly-Si layer 21,
Second SiO 2 spacer film 22, second n + -type doped poly Si
The layer 23 and the third SiO 2 spacer film 24 are penetrated through them by the reactive ion etching (RIE) process to obtain the second n +
A first contact window 25 exposing the surface of the mold S / D region 17 is formed. Here, as the etching gas for the RIE process, for example, (CF 4 + CHF 3 ) gas is used for the insulating film, the SiO 2 film, and the Si 3 N 4 film,
(HBr) gas is used for each poly-Si layer.

【0022】図2(c) 参照 次いで、CVD 法により、第1のコンタクト窓25の内面及
び第3のSiO2スペーサ膜24上に厚さ 500Å程度の第3の
+ 型ドープドポリSi層26を形成する。
Next, as shown in FIG. 2C, a third n + -type doped poly-Si layer 26 having a thickness of about 500 Å is formed on the inner surface of the first contact window 25 and the third SiO 2 spacer film 24 by the CVD method. Form.

【0023】図2(d) 参照 次いで、エッチングにRIE 処理を用いるフォトリソグラ
フィ手段により、Si3N 4 膜19の上部の積層膜をSi3N4
19をエッチングストッパにして例えば3000Å□程度の蓄
積電極形状27にパターニングする。エッチングガスに
は、例えば、前記コンタクト窓25形成の場合と同様のガ
スが用いられる。
Next, referring to FIG. 2 (d), a photolithography method using a RIE process for etching is performed.
By means of Si3N FourThe laminated film on top of the film 19 is3NFourfilm
Using 19 as an etching stopper, for example, about 3000 Å □
The product electrode shape 27 is patterned. For etching gas
Is similar to the case of forming the contact window 25, for example.
Are used.

【0024】図3(a) 参照 次いで、弗酸系の液によるウェットエッチングにより、
第1、第2、第3のSiO2スペーサ膜20、22、24を除去し
て、厚さ500Å程度の厚い第3のn+ 型ドープドポリSi
層26からなる第3層(際上層)フィン28F3と支軸28S を
有し、この支軸28S に支えられた、厚さ 200Å程度の第
1のn+ 型ドープドポリSi層21からなる第1層フィン28
F1及び、同様の厚さの第2のn+ 型ドープドポリSi層23
からなる第2層フィン28F2を有する3層フィン構造蓄積
電極28を形成する。
Next, referring to FIG. 3 (a), by wet etching with a hydrofluoric acid-based solution,
By removing the first, second, and third SiO 2 spacer films 20, 22, and 24, a thick third n + -type doped poly-Si having a thickness of about 500Å is formed.
A first layer composed of a first n + -type doped poly-Si layer 21 having a thickness of about 200 Å and having a third layer (uppermost layer) fin 28F 3 composed of the layer 26 and a support shaft 28S and supported by the support shaft 28S. Layer fin 28
F 1 and a second n + -type doped poly-Si layer 23 of similar thickness
A three-layer fin structure storage electrode 28 having a second-layer fin 28F 2 is formed.

【0025】なお、ここで第3層フィンの厚さを第1、
第2のフィンと等しい200Åの厚さにしていた従来の構
造において30%程度の割合で頻発していた第3層フィン
の下層フィンに達する垂れ下がり変形は、この実施例に
おいては皆無であった。
Here, the thickness of the third layer fin is set to the first,
In the present example, there was no sagging deformation reaching the lower fin of the third layer fin, which frequently occurred at a rate of about 30% in the conventional structure having a thickness of 200Å equal to that of the second fin.

【0026】図3(b) 参照 次いで従来通り、3層フィン構造蓄積電極28の表面に、
厚さ50Å程度のSi3N4 膜を形成し、その表面部を熱酸化
することにより(Si3N4+SiO2) 構造の誘電体膜29を形成
し、次いでこの基板上にCVD 法により厚さ1000Å程度の
第4のn+ 型ドープドポリSi層を形成し、RIE 処理によ
りこのポリSi層のパターニングを行ってn+ 型ドープド
ポリSiからなるセルプレート(対抗電極)30を形成す
る。
Next, as shown in FIG. 3B, on the surface of the three-layer fin structure storage electrode 28 in the conventional manner,
A Si 3 N 4 film with a thickness of about 50Å is formed, and the surface of the film is thermally oxidized to form a dielectric film 29 having a (Si 3 N 4 + SiO 2 ) structure. A fourth n + -type doped poly-Si layer having a thickness of about 1000 Å is formed, and this poly-Si layer is patterned by RIE to form a cell plate (counter electrode) 30 made of n + -type doped poly-Si.

【0027】図3(c) 参照 次いで従来通りの方法により、上記基板上に第2の層間
絶縁膜31を形成し、この第2の層間絶縁膜31及び前記Si
3N4 膜19、第1の層間絶縁膜18等を貫通して第1のn+
型S/D領域16を表出する第2のコンタクト窓32を形成
し、このコンタクト窓32上にAl等からなるビット線33を
形成し、本発明の第1の構造に係る蓄積キャパシタを有
するDRAMセルが完成する。
Next, as shown in FIG. 3C, a second interlayer insulating film 31 is formed on the substrate by a conventional method, and the second interlayer insulating film 31 and the Si film are formed.
The 3 N 4 film 19 and the first interlayer insulating film 18 are penetrated to form the first n + film.
A second contact window 32 exposing the mold S / D region 16 is formed, a bit line 33 made of Al or the like is formed on the contact window 32, and the storage capacitor according to the first structure of the present invention is provided. The DRAM cell is completed.

【0028】図4(a) 参照 また、本発明の第2の構造に係る蓄積キャパシタを有す
るDRAMを形成するに際しては、前記実施例同様、ト
ランスファトランジスタ(TT)の形成された基板上に第1
の層間絶縁膜18とSi3N4 膜19を形成した後、その上に、
厚さ 300Å程度の第1のSiO2スペーサ膜20、厚さ 200Å
程度の第1のn+ 型ドープドポリSi層21、厚さ 300Å程
度の第2のSiO2スペーサ膜22、厚さ 350Å程度の第2の
+ 型ドープドポリSi層23′、厚さ 300Å程度の第3の
SiO2スペーサ膜24を順次形成し、次いで前記実施例同様
の方法により第1のコンタクト窓25を形成する。
As shown in FIG. 4 (a), when forming a DRAM having a storage capacitor according to the second structure of the present invention, the first transistor is formed on the substrate on which the transfer transistor (TT) is formed, as in the above embodiment.
After forming the interlayer insulating film 18 and the Si 3 N 4 film 19 of
First SiO 2 spacer film 20 with a thickness of about 300Å, thickness 200Å
The first n + -type doped poly Si layer 21 having a thickness of about 300 Å, the second SiO 2 spacer film 22 having a thickness of about 300 Å, the second n + type doped poly Si layer 23 ′ having a thickness of about 350 Å, and the third layer having a thickness of about 300 Å. 3's
The SiO 2 spacer film 24 is sequentially formed, and then the first contact window 25 is formed by the same method as in the above embodiment.

【0029】図4(b) 参照 次いで前記実施例同様、第1のコンタクト窓25の内面及
び第3のSiO2スペーサ膜24上に厚さ 500Å程度の第3の
+ 型ドープドポリSi層26を形成し、Si3N4 膜19の上部
の積層膜をSi3N4 膜19をエッチングストッパにして例え
ば3000Å□程度の蓄積電極形状27にパターニングし、弗
酸系の液によるウェットエッチングにより、第1、第
2、第3のSiO2スペーサ膜20、22、24を除去して、厚さ
500Å程度の厚い第3のn+ 型ドープドポリSi層26から
なる第3層(際上層)フィン28F3と支軸28S を有し、こ
の支軸28S に支えられた、厚さ 350Å程度の第2のn+
型ドープドポリSi層23′からなる第2層フィン28F2及び
厚さ200 Å程度の第1のn+ 型ドープドポリSi層21から
なる第1層フィン28F1を有する3層フィン構造蓄積電極
28′を形成する。
Next, as shown in FIG. 4B, a third n + -type doped poly-Si layer 26 having a thickness of about 500 Å is formed on the inner surface of the first contact window 25 and the third SiO 2 spacer film 24 as in the above embodiment. formed by patterning the upper portion of the laminated film of the Si 3 N 4 film 19 to Si 3 N 4 accumulating layer 19 degree □ example 3000Å as an etching stopper electrode shape 27, by wet etching using a liquid of hydrofluoric acid, the By removing the first, second and third SiO 2 spacer films 20, 22, 24, the thickness
A third layer (uppermost layer) made of a third n + -type doped poly-Si layer 26 having a thickness of about 500 Å has a fin 28F 3 and a support shaft 28S, and a second support having a thickness of about 350 Å supported by the support shaft 28S. N +
Three-layer fin structure storage electrode having a first layer fin 28F 1 consisting of the first n + -type doped poly Si layer 21 of the second layer fin 28F 2 and a thickness of about 200 Å consisting -type doped poly Si layer 23 '
28 'is formed.

【0030】なお、ここで第3層フィンの厚さを第1、
第2のフィンと等しい200Åの厚さにしていた従来の構
造において頻発していた第3層フィンの下層フィンに達
する垂れ下がり変形は、前記実施例同様皆無であると共
に、従来構造において稀に発生していた第2層フィンの
垂れ下がり変形も皆無であった。
Here, the thickness of the third layer fin is set to the first,
The sagging deformation reaching the lower layer fin of the third layer fin, which frequently occurred in the conventional structure having the thickness of 200 Å equal to that of the second fin, is none as in the above embodiment, and rarely occurs in the conventional structure. There was no sagging deformation of the second layer fins.

【0031】以後、前記実施例同様の工程を経て、本発
明の第2の構造に係る蓄積キャパシタを有するDRAM
セルは完成する。
After that, the DRAM having the storage capacitor according to the second structure of the present invention is subjected to the same steps as in the above-described embodiment.
The cell is complete.

【0032】[0032]

【発明の効果】以上実施例において述べたように、本発
明に係る多層フィン構造の蓄積電極においては、蓄積電
極全体の高さを低く抑えてDRAM表面の段差を軽減
し、且つその形成に際して、上層のフィンが下層のフィ
ンに接触するような垂れ下がり変形を生ぜずDRAMを
構成するすべてのセルの蓄積電極の蓄積容量を所定の値
に均一に保つことができる。従って本発明は、DRAM
の歩留り及び信頼性を向上するうえに極めて有効であ
る。
As described in the above embodiments, in the storage electrode of the multi-layer fin structure according to the present invention, the height of the storage electrode as a whole is kept low to reduce the step difference on the DRAM surface, and at the time of formation thereof, The storage capacitors of the storage electrodes of all the cells composing the DRAM can be uniformly maintained at a predetermined value without causing sagging deformation such that the fins in the upper layer contact the fins in the lower layer. Therefore, the present invention is a DRAM
It is extremely effective in improving the yield and reliability of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明用模式断面図FIG. 1 is a schematic sectional view for explaining the principle of the present invention.

【図2】 本発明に係る第1の構造の一実施例に係る工
程断面図(その1)
FIG. 2 is a process sectional view (1) of an embodiment of the first structure according to the present invention.

【図3】 本発明に係る第1の構造の一実施例に係る工
程断面図(その2)
FIG. 3 is a process sectional view according to an embodiment of the first structure according to the present invention (No. 2)

【図4】 本発明に係る第2の構造の一実施例の工程断
面図
FIG. 4 is a process sectional view of an example of a second structure according to the present invention.

【図5】 DRAMセルの模式断面図FIG. 5 is a schematic sectional view of a DRAM cell.

【図6】 従来の多層フィン構造蓄積電極の模式断面図FIG. 6 is a schematic cross-sectional view of a conventional multi-layer fin structure storage electrode.

【図7】 従来の多層フィン構造蓄積電極の形成工程断
面図
FIG. 7 is a sectional view of a conventional multi-layer fin structure storage electrode forming process.

【図8】 従来構造の問題点を示す模式断面図FIG. 8 is a schematic cross-sectional view showing the problems of the conventional structure.

【符号の説明】 1 半導体基板 2 蓄積ノード拡散層 3 絶縁膜 4 エッチングストッパ膜 5 コンタクト窓 6 多層フィン構造蓄積電極 6A 第1層フィン 6B 第2層フィン 6C 第3層フィン 6S 支軸部 h6 蓄積電極の高さ T A 、T B 、T C フィンの厚さ[Explanation of reference symbols] 1 semiconductor substrate 2 storage node diffusion layer 3 insulating film 4 etching stopper film 5 contact window 6 multilayer fin structure storage electrode 6A first layer fin 6B second layer fin 6C third layer fin 6S spindle h 6 Storage electrode height T A , T B , T C Fin thickness

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 階層状に形成された複数層のフィンを有
する多層フィン構造の蓄積電極を備えたダイナミック型
メモリセルを有し、 該複数層のフィンの一部の層若しくは総ての層の厚さが
異なっていることを特徴とする半導体記憶装置。
1. A dynamic memory cell comprising a storage electrode having a multi-layer fin structure having fins of a plurality of layers formed in a hierarchical structure, wherein a part or all layers of the fins of the plurality of layers are provided. A semiconductor memory device having different thicknesses.
【請求項2】 階層状に形成された複数層のフィンを有
する多層フィン構造の蓄積電極を備えたダイナミック型
メモリセルを有し、 該複数層のフィンの中の少なくとも最上層のフィンが、
他の層のフィンよりも厚く形成されていることを特徴と
する半導体記憶装置。
2. A dynamic memory cell having a storage electrode having a multi-layer fin structure having a plurality of fins formed in a layered structure, wherein at least the uppermost fin of the plurality of fins is a fin.
A semiconductor memory device characterized in that it is formed thicker than the fins of other layers.
【請求項3】 階層状に形成された複数層のフィンを有
する多層フィン構造の蓄積電極を備えたダイナミック型
メモリセルを有し、 該複数層のフィンの厚さが、上層のフィンほど厚く形成
されていることを特徴とする半導体記憶装置。
3. A dynamic memory cell comprising a storage electrode having a multi-layer fin structure having a plurality of fins formed in a hierarchical structure, wherein the fins of the plurality of layers are thicker as the fins of the upper layer are formed. A semiconductor memory device characterized by being provided.
JP3239045A 1991-02-19 1991-09-19 Semiconductor storage device Expired - Fee Related JP3044861B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3239045A JP3044861B2 (en) 1991-09-19 1991-09-19 Semiconductor storage device
DE69230156T DE69230156T2 (en) 1991-07-25 1992-07-17 Manufacturing process for capacitor with stacked fin structure and with reduced fin thickness
EP92112279A EP0528183B1 (en) 1991-07-25 1992-07-17 Method for fabricating a dynamic random access memory having a stacked fin capacitor with reduced fin thickness
EP97103295A EP0782195B1 (en) 1991-07-25 1992-07-17 Method for dynamic random access memory having a stacked fin capacitor with reduced fin thickness
KR1019920013316A KR960005243B1 (en) 1991-02-19 1992-07-24 Dynamic random access memory having a stacked fin capacitor with reduced fin thickness
US08/141,691 US5661340A (en) 1991-07-25 1993-10-26 Dynamic random access memory having a stacked fin capacitor with reduced fin thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239045A JP3044861B2 (en) 1991-09-19 1991-09-19 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPH0582750A true JPH0582750A (en) 1993-04-02
JP3044861B2 JP3044861B2 (en) 2000-05-22

Family

ID=17039058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239045A Expired - Fee Related JP3044861B2 (en) 1991-02-19 1991-09-19 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JP3044861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684315A (en) * 1993-12-28 1997-11-04 Hitachi, Ltd. Semiconductor memory device including memory cells each having an information storage capacitor component formed over control electrode of cell selecting transistor
US5835337A (en) * 1995-09-29 1998-11-10 Nec Corporation Stacked capacitor having a corrugated electrode
US6054360A (en) * 1996-06-04 2000-04-25 Nec Corporation Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
US6064085A (en) * 1998-06-03 2000-05-16 Texas Instruments-Acer Incorporated DRAM cell with a multiple fin-shaped structure capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684315A (en) * 1993-12-28 1997-11-04 Hitachi, Ltd. Semiconductor memory device including memory cells each having an information storage capacitor component formed over control electrode of cell selecting transistor
US5835337A (en) * 1995-09-29 1998-11-10 Nec Corporation Stacked capacitor having a corrugated electrode
US6022772A (en) * 1995-09-29 2000-02-08 Nec Corporation Stacked capacitor having a corrugated electrode
US6054360A (en) * 1996-06-04 2000-04-25 Nec Corporation Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
US6064085A (en) * 1998-06-03 2000-05-16 Texas Instruments-Acer Incorporated DRAM cell with a multiple fin-shaped structure capacitor

Also Published As

Publication number Publication date
JP3044861B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JP2501501B2 (en) Method for manufacturing semiconductor memory-memory of device-capacitor used in cell and structure thereof
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0738068A (en) Semiconductor device and its manufacture
JPH1074905A (en) Manufacturing method of semiconductor device
US5471418A (en) Semiconductor memory with stacked-capacitor cells
JPH0821695B2 (en) Highly integrated semiconductor memory device and manufacturing method thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JPH1140765A (en) Semiconductor storage device and its manufacture
US5742472A (en) Stacked capacitors for integrated circuit devices and related methods
JP4353332B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH11345944A (en) Dram cell capacitor and manufacture thereof
US6040596A (en) Dynamic random access memory devices having improved peripheral circuit resistors therein
JPS6074470A (en) Semiconductor device
JP3044861B2 (en) Semiconductor storage device
JPH02219264A (en) Dram cell and its manufacture
US5484744A (en) Method for fabricating a stacked capacitor for dynamic random access memory cell
JPH02260454A (en) Manufacture of memory device
US11538900B1 (en) Semiconductor device and method of fabricating the same
JPH07263649A (en) Semiconductor memory and its manufacture
TWI841904B (en) Semiconductor device and method of fabricating the same
JP3048417B2 (en) Method for manufacturing semiconductor device
US20220068937A1 (en) Method for manufacturing memory and same
JPH11261023A (en) Semiconductor device and its manufacture
JPH0637256A (en) Manufacture of semiconductor device
KR0165307B1 (en) Semiconductor memory device having resistanee device & its fabrication method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees