JPH0582721B2 - - Google Patents

Info

Publication number
JPH0582721B2
JPH0582721B2 JP60030051A JP3005185A JPH0582721B2 JP H0582721 B2 JPH0582721 B2 JP H0582721B2 JP 60030051 A JP60030051 A JP 60030051A JP 3005185 A JP3005185 A JP 3005185A JP H0582721 B2 JPH0582721 B2 JP H0582721B2
Authority
JP
Japan
Prior art keywords
weight
magnetic
magnetic recording
vapor
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60030051A
Other languages
Japanese (ja)
Other versions
JPS61189609A (en
Inventor
Susumu Shinagawa
Arimichi Abe
Yasuyuki Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Original Assignee
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd filed Critical Tohoku Steel Co Ltd
Priority to JP3005185A priority Critical patent/JPS61189609A/en
Publication of JPS61189609A publication Critical patent/JPS61189609A/en
Publication of JPH0582721B2 publication Critical patent/JPH0582721B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、強磁性金属合金を主成分とする蒸着
薄膜型磁気記録媒体用磁性材料に関し、特に、非
磁性基材表面に強磁性金属合金を蒸着して成る高
密度蒸着薄膜型磁気記録媒体に関する。 (ロ) 従来の技術 磁気記録には、金属あるいは金属の酸化物等の
強磁性粉末を有機バインダーとともに高分子フイ
ルム等の非磁性基材に塗布した塗布型磁気記録媒
体が広く使用されている。近年情報量の急速な増
大とともに高密度記録の要求が強まり、高保磁力
と高磁束密度および高角形比の特徴を有する金属
薄膜型磁気記録媒体が注目され実用化への努力が
盛んに行われている。薄膜化技術には、真空蒸
着、スパツタリング、イオンプレーテイング、湿
式メツキ等種々な方法があるが、これらの技術の
うち、真空蒸着法は製造工程も簡単であり、成膜
速度も大きく出来ることから、工業的規模による
技術として最も先行している。 真空蒸着法とは、真空雰囲気中でCo、Co−
Ni、Co−Ni−Fe等の強磁性材料を電子ビームあ
るいは抵抗発熱体等により加熱蒸発させ、その蒸
気流を高分子等の非磁性基材に入射せしめて薄膜
を形成させる方法であり、磁気記録媒体として必
要な高保磁力、高角形比を得るため、蒸着速度、
蒸気流の入射角、微量ガス導入、基板温度等の諸
条件を適当に制御する方法が種々採られている。 (ハ) 発明が解決しようとする問題点 このような蒸着法にも蒸着工程中に生ずる突沸
現象という大きな欠点があり、また製造された磁
気記録媒体も塗布型のようにバインダーによつて
外気から保護されることがないため、耐蝕性が十
分でなく、ともに実用化への大きな障害となつて
いた。突沸の防止策としては、蒸着母材の真空中
再溶解や、蒸着前工程での長時間の予備加熱によ
る脱ガス処理が知られているが完全には防止出来
ず、生産生阻害の原因となつている。 また耐蝕性についてはCr等の耐蝕性付与元素
の添加による改良が試みられているが磁気特性の
劣化により実用化されていない。 本発明は、上記の従来技術における突沸防止対
策及び耐蝕性が十分でない点に注目してその改良
を目的としてなされたものである。 (ニ) 発明の構成 本発明は、高密度磁気記録媒体用磁性材料とし
て或は蒸着テープ等の高密度磁気記録媒体として
の磁気特性を損うことなく突沸現象と耐蝕性を改
良した磁気記録媒体用磁性材料及び磁気記録媒体
を提供することを目的とする。 本発明者らは、種々調査の結果、コバルト
(Co)、ニツケル(Ni)又は鉄(Fe)金属或はこ
れらの合金を主成分とする蒸着材料中に、従来蒸
着材料中に混入を避けるべきとされていた、ケイ
素(Si)を添加することにより、また、脱酸剤と
してケイ素を添加する場合には、脱酸剤とは別に
ケイ素を添加することにより、突沸現象が防止出
来ること、およびSi添加の結果生じた抗磁力の低
下がクロム(Cr)を同時に添加することにより
回復し、さらに耐蝕性も向上することを実験的に
見い出した。 即ち、本発明は、基材上に、コバルト及びニツ
ケルを主成分とする磁性蒸着膜が形成されている
蒸着薄膜型磁気記録媒体において、基材上に形成
されている磁性蒸着薄膜は、コバルト含有率が
75.2乃至77.6重量%、ニツケル含有率18.8乃至
19.4重量%、ケイ素含有率が1乃至2重量%、及
びクロム含有率が2乃至4重量パーセントであ
り、かつコバルト及びニツケルの含有量の和が94
乃至97重量%であり、ケイ素及びクロムの含有量
の和が3乃至6重量%であることを特徴とする蒸
着薄膜型磁気記録媒体にある。 したがつて、本発明による磁気記録媒体は非磁
性基材表面に蒸着されたコバルト(Co)及びニ
ツケル(Ni)からなる合金を主成分とする磁性
薄膜中にケイ素が1乃至2重量%及びクロムが約
2乃至4重量%で同時に含有されており、ケイ素
及びクロムの含有量の和が約3乃至6重量%であ
り、その他不可避的不純物を含有することを特徴
とし、蒸着材料の融液を難突沸性とすると共に得
られる磁性層を耐蝕性に優れたものとするもので
ある。 本発明の蒸着薄膜型磁気記録媒体は、コバルト
及びニツケルからなる金属並びに合金を主成分と
し、これら主成分の含有量は、本発明の実施例に
示されるように、コバルト含有率が75.2乃至77.6
重量%、ニツケル含有率が18.8乃至19.4重量%と
され、これら主成分の含有量は、97重量%以下で
あるのが実用的である。しかし、これら主成分の
含有量は90重量%未満であると実用的でない。 本発明においてSiは突沸防止のために添加され
るものであり、その量は1乃至2重量%とされ
る。Siが1重量%より少ないと突沸抑制の効果が
なく、したがつて、1重量%以上が必要である。
しかしSiは保磁力と飽和磁束密度を低下させるだ
けでなく、多すぎると蒸着膜にマイクロクラツク
が発生し、ノイズの発生の原因となるために、2
重量%を越える量は好ましくない。 CrはSi添加による保磁力の低下を防止するた
めに添加させるものであり、その量は2乃至4重
量%が好ましい。この場合クロムは、耐蝕性をも
同時に向上させる。Siによる保磁力低下を防止す
るのに必要なCr量は、添加するSi量及び共存す
る他元素の量により異なるが、1重量%以上のSi
量に対して2重量%以上のCr量が必要である。
この場合、添加Crによる耐蝕性向上の効果はCr
量が2重量%以上で明瞭に現われて来る。Cr量
が4重量%より多いと、却つて、飽和磁束密度が
低下し、また他元素との蒸気圧の差により、組成
の変動が大となつて、磁気記録媒体としての有用
性がなくなり好ましくない。したがつて、2乃至
4重量%の範囲とされる。 SiとCrの2元素の含有量の和も飽和磁束密度
低下を避けるために約3乃至6重量%とするのが
好ましい。 以上のように、この発明に係る磁気記録媒体
は、Co及びNiの合金を主成分とし、含有量で約
1乃至2重量%の範囲内のSiと、含有量で約2乃
至4重量%の範囲内のCrを同時に含有し、Siと
Crの和が約3乃至6重量%であることを基本成
分とするが、必要に応じてこの基本成分に4重量
%以下のモリブデン(Mo)、タングステン
(W)、バナジウム(V)、ニオブ(Nb)、タンタ
ル(Ta)、銅(Cu)、ジルコニウム(Zr)、カル
シウム(Ca)、マグネシウム(Mg)、アルミニウ
ム(Al)、マンガン(Mn)およびチタン(Ti)
さらにまた必要に応じて0.1重量%以下の金
(Au)、銀(Ag)或は白金族元素やランタン
(La)、セリウム(Ce)などの稀土類元素を添加
することができる。 この発明に係る磁気記録媒体、例えば蒸着テー
プは、溶製により上記組成に調整した合金を蒸着
素材とし、例えばポリエチレンテレフタレート、
ポリカボネイト、ポリプロピレンなどの高分子フ
イルム上に10-4ないし10-6Torrの真空中で斜方
蒸着法により磁気記録層として成膜される。この
場合、高分子フイルム上に予めAl、Ti、Mo、Si
等の金属を下地処理層として蒸着したものを用い
ても良く、また磁性層の上にテープの走行性を良
くするために有機物質等により被覆してもよい。 本発明に係る磁気記録媒体において、非磁性基
材としては一般にプラスチツク材料であるが、こ
の他にも、非磁性の材料であれば使用できる。ま
た、基材の形状は平板状、薄膜状等種々の形状と
することができる。 また、本発明の磁気記録媒体は、このような組
成を有するので、磁気記録媒体として必要にして
十分な磁気特性と耐蝕性を兼ねそなえるものであ
る。 (ホ) 作用 本発明は、コバルト及びニツケルからなる合金
を主成分とする磁性材料層、特に蒸着にる磁性薄
膜層に1乃至2重量%のSiが含有されるので、蒸
着材料の融解物の蒸着時における突沸を防止する
ことができる。したがつて、蒸着時に、蒸着材料
の融解物の突沸がなくなつて、金属又は白金の蒸
着時における蒸気の発生が一様となり、るつぼ等
から蒸着材料が溢流するようなこともない。 また、本発明は、コバルト及びニツケルからな
る合金を主成分とする磁性材料層、特に蒸着によ
る磁性薄膜層に2乃至4重量%のCrを含有させ
たので、Siを含有させても保磁力の低下がなく、
また耐蝕性にすぐれたものとなる。 しかも、本発明は、コバルト及びニツケルの二
以上からなる合金を主成分とする磁性材料層、特
に磁性薄膜層中のSi及びCr含有量の和を3乃至
6重量%としたので、該磁性材料層、特に磁性薄
膜層の飽和磁束密度を著しく低下させることもな
い。 (ヘ) 実施例 高周波誘導真空溶解炉にて表−1に示す組成の
試料A〜Kを作成した。
(a) Field of Industrial Application The present invention relates to a magnetic material for vapor-deposited thin film magnetic recording media containing a ferromagnetic metal alloy as a main component, and in particular to a magnetic material for use in a vapor-deposited thin-film magnetic recording medium that has a ferromagnetic metal alloy as its main component. This invention relates to a density vapor deposited thin film magnetic recording medium. (B) Prior Art For magnetic recording, coated magnetic recording media are widely used, in which ferromagnetic powder such as metal or metal oxide is coated together with an organic binder on a non-magnetic base material such as a polymer film. In recent years, with the rapid increase in the amount of information, the demand for high-density recording has increased, and metal thin-film magnetic recording media, which have the characteristics of high coercive force, high magnetic flux density, and high squareness ratio, have attracted attention, and efforts are being made to put them into practical use. There is. There are various methods for thinning films, such as vacuum evaporation, sputtering, ion plating, and wet plating, but among these techniques, vacuum evaporation is the preferred method because it has a simpler manufacturing process and can increase the film formation speed. , is the most advanced technology on an industrial scale. Vacuum evaporation method is the process of depositing Co, Co− in a vacuum atmosphere.
This is a method of heating and evaporating ferromagnetic materials such as Ni and Co-Ni-Fe using an electron beam or a resistance heating element, and making the vapor flow incident on a non-magnetic substrate such as a polymer to form a thin film. In order to obtain the high coercive force and high squareness ratio required for recording media, the deposition rate,
Various methods have been adopted to appropriately control conditions such as the incident angle of the vapor flow, trace gas introduction, and substrate temperature. (c) Problems to be solved by the invention This vapor deposition method also has the major drawback of the bumping phenomenon that occurs during the vapor deposition process, and the magnetic recording media produced also have a binder that prevents them from being exposed to the outside air like coating-type media. Since it is not protected, its corrosion resistance is insufficient, and both of these have been major obstacles to its practical use. Bumping can be prevented by remelting the base material in vacuum or degassing by preheating for a long period of time in the pre-deposition process, but these cannot be completely prevented and may hinder production. It's summery. In addition, attempts have been made to improve the corrosion resistance by adding corrosion-resistant elements such as Cr, but this has not been put to practical use due to deterioration of the magnetic properties. The present invention has been made with the aim of improving the above-mentioned prior art in view of the fact that the bumping prevention measures and corrosion resistance are insufficient. (d) Structure of the Invention The present invention provides a magnetic recording medium with improved bumping phenomenon and corrosion resistance without impairing the magnetic properties as a magnetic material for a high-density magnetic recording medium or as a high-density magnetic recording medium such as a vapor-deposited tape. The purpose of the present invention is to provide magnetic materials and magnetic recording media for use. As a result of various investigations, the present inventors have discovered that cobalt (Co), nickel (Ni), iron (Fe) metals, or alloys thereof should be avoided from being mixed into vapor deposition materials in conventional vapor deposition materials. It was believed that the bumping phenomenon can be prevented by adding silicon (Si), or if silicon is added as a deoxidizing agent, by adding silicon separately from the deoxidizing agent, and It has been experimentally found that the reduction in coercive force caused by the addition of Si can be recovered by adding chromium (Cr) at the same time, and that corrosion resistance can also be improved. That is, the present invention provides a vapor deposited thin film magnetic recording medium in which a magnetic vapor deposited film containing cobalt and nickel as main components is formed on a base material, in which the magnetic vapor deposited film formed on the base material contains cobalt. Rate is
75.2~77.6% by weight, nickel content 18.8~
19.4% by weight, a silicon content of 1 to 2% by weight, a chromium content of 2 to 4% by weight, and a sum of cobalt and nickel contents of 94%.
The vapor-deposited thin film magnetic recording medium is characterized in that the total content of silicon and chromium is 3 to 6% by weight. Therefore, the magnetic recording medium according to the present invention contains 1 to 2% by weight of silicon and chromium in a magnetic thin film mainly composed of an alloy of cobalt (Co) and nickel (Ni) deposited on the surface of a nonmagnetic substrate. 2 to 4% by weight, the sum of the silicon and chromium contents is about 3 to 6% by weight, and other unavoidable impurities are contained. The purpose is to make the magnetic layer resistant to bumping and to have excellent corrosion resistance. The vapor-deposited thin film magnetic recording medium of the present invention has a metal and an alloy consisting of cobalt and nickel as its main components, and the content of these main components is such that the cobalt content ranges from 75.2 to 77.6, as shown in the examples of the present invention.
The nickel content is 18.8 to 19.4% by weight, and it is practical that the content of these main components is 97% by weight or less. However, if the content of these main components is less than 90% by weight, it is not practical. In the present invention, Si is added to prevent bumping, and its amount is 1 to 2% by weight. If Si is less than 1% by weight, there will be no effect of suppressing bumping, therefore 1% by weight or more is required.
However, Si not only lowers the coercive force and saturation magnetic flux density, but also causes microcracks in the deposited film if it is present in too much amount, causing noise.
An amount exceeding % by weight is not preferred. Cr is added to prevent a decrease in coercive force due to the addition of Si, and its amount is preferably 2 to 4% by weight. In this case, chromium also improves corrosion resistance at the same time. The amount of Cr required to prevent coercive force reduction due to Si varies depending on the amount of Si added and the amount of other coexisting elements, but the amount of Si
The amount of Cr is required to be 2% by weight or more based on the amount.
In this case, the effect of improving corrosion resistance by adding Cr is
It clearly appears when the amount is 2% by weight or more. If the Cr content is more than 4% by weight, the saturation magnetic flux density will decrease, and the composition will fluctuate greatly due to the difference in vapor pressure with other elements, making it unusable as a magnetic recording medium, which is preferable. do not have. Therefore, it is in the range of 2 to 4% by weight. The sum of the contents of the two elements Si and Cr is also preferably about 3 to 6% by weight in order to avoid a decrease in saturation magnetic flux density. As described above, the magnetic recording medium according to the present invention is mainly composed of an alloy of Co and Ni, and contains Si in an amount of about 1 to 2% by weight and about 2 to 4% by weight. Contains Cr within the range, Si and
The basic component is that the sum of Cr is about 3 to 6% by weight, but if necessary, up to 4% by weight of molybdenum (Mo), tungsten (W), vanadium (V), niobium ( Nb), tantalum (Ta), copper (Cu), zirconium (Zr), calcium (Ca), magnesium (Mg), aluminum (Al), manganese (Mn) and titanium (Ti)
Furthermore, if necessary, 0.1% by weight or less of gold (Au), silver (Ag), or rare earth elements such as platinum group elements, lanthanum (La), and cerium (Ce) can be added. The magnetic recording medium according to the present invention, such as a vapor-deposited tape, uses an alloy adjusted to the above composition by melting as a vapor-deposited material, such as polyethylene terephthalate,
A magnetic recording layer is formed on a polymer film such as polycarbonate or polypropylene by oblique evaporation in a vacuum of 10 -4 to 10 -6 Torr. In this case, Al, Ti, Mo, and Si are preliminarily coated on the polymer film.
A metal such as the like may be used as a base treatment layer by vapor deposition, or the magnetic layer may be coated with an organic substance or the like in order to improve the running properties of the tape. In the magnetic recording medium according to the present invention, the nonmagnetic base material is generally a plastic material, but any other nonmagnetic material can be used. Further, the shape of the base material can be various shapes such as a flat plate shape and a thin film shape. Furthermore, since the magnetic recording medium of the present invention has such a composition, it has both sufficient magnetic properties and corrosion resistance necessary for a magnetic recording medium. (e) Effects In the present invention, since the magnetic material layer mainly composed of an alloy consisting of cobalt and nickel, especially the magnetic thin film layer deposited by vapor deposition, contains 1 to 2% by weight of Si, the melt of the vapor deposited material Bumping during vapor deposition can be prevented. Therefore, during vapor deposition, there is no bumping of the melt of the vapor deposition material, and the generation of steam during vapor deposition of metal or platinum is uniform, and the vapor deposition material does not overflow from the crucible or the like. In addition, in the present invention, since the magnetic material layer containing an alloy consisting of cobalt and nickel as a main component, especially the magnetic thin film layer formed by vapor deposition, contains 2 to 4% by weight of Cr, the coercive force remains low even when Si is included. No decline,
It also has excellent corrosion resistance. Moreover, in the present invention, since the sum of the Si and Cr contents in the magnetic material layer, especially in the magnetic thin film layer, which is mainly composed of an alloy consisting of two or more of cobalt and nickel, is 3 to 6% by weight, the magnetic material It does not significantly reduce the saturation magnetic flux density of the layer, especially the magnetic thin film layer. (F) Example Samples A to K having the compositions shown in Table 1 were prepared in a high frequency induction vacuum melting furnace.

【表】 これらの試料を蒸発源として、電子ビーム真空
蒸着装置を用いて蒸着入射角30°から80°まで変化
させ、25μ厚のポリエチレンテレフタレートフイ
ルム上に夫々蒸着し、厚さ0.1μmの蒸着磁性膜を
得た。圧力を6×10-5Torrとして、加熱速度は
積極的に速め、赤熱後蒸着開始まで5分間の昇温
とし、常時目視により蒸発源の状態を観察した。
この条件にて突沸現象を生じ、成膜が困難な試料
は適宜予熱を行い成膜を終了させた。得られた磁
性薄膜の耐蝕性はガラス板に貼り着けた後、温度
80℃、相対湿度95%の恒温恒湿雰囲気で168時間
放置試験を行い、目視により錆による変色を比較
し、判定した。磁気特性は振動試料型自記磁束計
を用い保磁力Hc及び残留磁気Brを求めた。 突沸現象発生の有無、耐蝕性及び入射角70°に
おける磁気特性の結果を表−2にまとめて示す。
[Table] Using these samples as evaporation sources, the incident angle of evaporation was varied from 30° to 80° using an electron beam vacuum evaporator, and each sample was evaporated onto a 25 μm thick polyethylene terephthalate film. A membrane was obtained. The pressure was set to 6 x 10 -5 Torr, the heating rate was actively increased, and the temperature was raised for 5 minutes until the start of evaporation after it became red hot, and the state of the evaporation source was visually observed at all times.
For samples where a bumping phenomenon occurred under these conditions and film formation was difficult, the film formation was completed by preheating as appropriate. The corrosion resistance of the obtained magnetic thin film is determined by applying it to a glass plate and then changing the temperature.
A 168-hour storage test was conducted in a constant temperature and humidity atmosphere of 80°C and 95% relative humidity, and the discoloration due to rust was visually compared and judged. For magnetic properties, coercive force Hc and residual magnetism Br were determined using a vibrating sample self-recording magnetometer. Table 2 summarizes the results of the occurrence of bumping phenomenon, corrosion resistance, and magnetic properties at an incident angle of 70°.

【表】 表−2によるとSiを脱酸剤として0.03重量%だ
け添加した比較例(試料A,C,I)は急速加熱
条件での蒸着ではいずれも突沸現象が発生してい
る。これに対してSiを1重量%以上の添加した例
では突沸現象が皆無であり、突沸防止対策として
Si添加は有効である。 しかし、Siだけ増量添加したもの(試料B)は
Hc、Brとも低下し、磁気記録媒体としての有用
性が無い。 実施例において、Cr2重量%以上の添加では耐
蝕性の向上が認められた。 第1図は、本実施例におけるクロム含有率
(Cr重量%)と保磁力(Hc)の関係を示すもので
あり、縦軸に保磁力Hcがエルステツド(Oe)で
示されており、横軸にクロム含有率X(重量%)
が示されている。また、第2図は本実施例におけ
る保磁力Hc(エルステツド(Oe))と入射角θ
(度)との関係を示すものであり、縦軸に保磁力
Hcをとり、横軸に入射角θ(度)をとる。 第1図に示す通り、適量のCr添加はHcの向上
に効果があり、この実施例ではCrが2乃至3重
量%のもの(試料E,F)で最大のHcを示した。
種々調査の結果Crの適量は他の成分特にSi量に
よつて変動することが確かめられているが、いず
れの組成においても、飽和磁束密度を低下させる
ため4重量%以下に制限する必要がある。第2図
にHcの入射角依存性を示したが、本発明の実施
例(試料F)は、高密度記録媒体として現在有望
視され実用化が検討されている80Co−20Ni(試料
A)と比較して何ら遜色のない特性を示してい
る。以上の実施例にて、明らかなようにCo及び
Niの合金を主成分とし、さらにSiが1乃至2重
量%及びCrの含有量を夫々2乃至4重量%とし、
且つSi及びCrの含有量の和が3乃至6重量%と
した本発明の磁性膜は、突沸現象の解決により、
製造性に優れ、さらに必要にして十分な耐蝕性と
磁性を合わせ持つすぐれた高密度磁気記録媒体で
あることが確認できた。 (ト) 発明の効果 本発明は、コバルト及びニツケルからなる合金
を主成分とする磁性層が1乃至2重量%のSiを含
有するので、蒸着時における蒸着材料融解物の突
沸を防止でき、したがつて、発生蒸気が常に一定
となり、一様な安定したコバルト及びニツケルか
らなる合金を主成分とする蒸着薄膜型磁気記録媒
体用磁性材料層が得られる。また、るつぼ内の蒸
着材料融解物は突沸が防止されるので、常に安定
した状態におかれることになり、溢流等により、
るつぼ周囲が溶損されたり、蒸着材料を無駄にす
ることもない。 しかも、本発明は、コバルト及びニツケルから
なる合金を主成分とする磁性材料層に2乃至4重
量%のCrを含有させると共に前記Si及びCrの含
有量の和を3乃至6重量%と制限したので、Siを
含有させたにもかかわらず、蒸着薄膜型磁気記録
媒体として使用する上で磁気特性を損うこともな
い。 したがつて、本発明は、るつぼ周辺の器材の溶
損が防止でき、その上、材料の無駄がなく、蒸着
のむらが解消されて、歩溜りが向上するので高密
度蒸着薄膜型磁気記録媒体が比較的廉価に得られ
ることとなる。 また、本発明は、蒸着工程において、突沸現象
が起らないので事前の徐熱及び予熱工程が省略で
き、生産性向上に寄与する。 このように本発明は、例えば、蒸着薄膜型磁気
テープ等の高密度蒸着薄膜型磁気記録媒体の実用
化に大きく貢献するものである。
[Table] According to Table 2, in the comparative examples (samples A, C, and I) in which 0.03% by weight of Si was added as a deoxidizing agent, bumping phenomenon occurred during vapor deposition under rapid heating conditions. On the other hand, in cases where Si was added in an amount of 1% by weight or more, there was no bumping phenomenon, and as a measure to prevent bumping,
Adding Si is effective. However, the sample with increased amount of Si added (sample B)
Both Hc and Br decrease, making it useless as a magnetic recording medium. In the examples, an improvement in corrosion resistance was observed when Cr was added in an amount of 2% by weight or more. Figure 1 shows the relationship between chromium content (Cr weight %) and coercive force (Hc) in this example, with the vertical axis showing the coercive force Hc in Oersteds (Oe), and the horizontal axis Chromium content X (weight%)
It is shown. Figure 2 also shows the coercive force Hc (Oersted (Oe)) and the incident angle θ in this example.
(degrees), and the vertical axis shows the coercive force.
Take Hc and take the incident angle θ (degrees) on the horizontal axis. As shown in FIG. 1, adding an appropriate amount of Cr is effective in improving Hc, and in this example, samples containing 2 to 3% by weight of Cr (Samples E and F) showed the maximum Hc.
As a result of various studies, it has been confirmed that the appropriate amount of Cr varies depending on other components, especially the amount of Si, but in any composition, it is necessary to limit it to 4% by weight or less in order to reduce the saturation magnetic flux density. . Figure 2 shows the incident angle dependence of Hc, and the example of the present invention (sample F) is different from 80Co-20Ni (sample A), which is currently considered promising as a high-density recording medium and whose practical application is being considered. It shows comparable characteristics in comparison. In the above examples, it is clear that Co and
The main component is an alloy of Ni, and the content of Si is 1 to 2% by weight and the content of Cr is 2 to 4% by weight, respectively.
In addition, the magnetic film of the present invention in which the sum of Si and Cr contents is 3 to 6% by weight solves the bumping phenomenon.
It was confirmed that this is an excellent high-density magnetic recording medium that has excellent manufacturability and also has the necessary and sufficient corrosion resistance and magnetism. (G) Effects of the Invention In the present invention, since the magnetic layer mainly composed of an alloy of cobalt and nickel contains 1 to 2% by weight of Si, it is possible to prevent bumping of the melted material to be deposited during vapor deposition. As a result, the generated vapor becomes always constant, and a uniform and stable magnetic material layer for a vapor-deposited thin film type magnetic recording medium whose main component is an alloy consisting of cobalt and nickel can be obtained. In addition, since bumping of the evaporation material melt in the crucible is prevented, it is always kept in a stable state, which prevents overflow, etc.
There is no melting damage to the area around the crucible, and there is no wastage of vapor deposition material. Moreover, the present invention allows the magnetic material layer mainly composed of an alloy consisting of cobalt and nickel to contain 2 to 4% by weight of Cr, and limits the sum of the Si and Cr contents to 3 to 6% by weight. Therefore, even though Si is contained, the magnetic properties are not impaired when used as a vapor-deposited thin film magnetic recording medium. Therefore, the present invention can prevent melting and damage of equipment around the crucible, and furthermore, there is no wastage of materials, unevenness in deposition is eliminated, and yield is improved, so that high-density deposition thin film magnetic recording media can be produced. It can be obtained relatively inexpensively. Further, in the present invention, since no bumping phenomenon occurs in the vapor deposition process, preliminary slow heating and preheating steps can be omitted, contributing to improved productivity. As described above, the present invention greatly contributes to the practical application of high-density vapor-deposited thin-film magnetic recording media such as vapor-deposited thin-film magnetic tapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本実施例におけるクロム含有量
(Cr)と保磁力(Hc)の関係を示すものであり、
縦軸に保磁力(Hc)がエルステツド(Oe)で示
されており、横軸にクロム含有率X(重量%)が
示されている式中、元素記号以外の係数は重量比
を示す。また、第2図は本実施例における保磁力
Hc(エルステツド)と入射角θ(度)との関係を
示すものであり、縦軸は保磁力Hcがエルステツ
ド(Oe)で示されており、横軸は入射角θ(度)
が示されている。
Figure 1 shows the relationship between chromium content (Cr) and coercive force (Hc) in this example.
In the equation where the vertical axis shows coercive force (Hc) in Oersteds (Oe) and the horizontal axis shows chromium content X (wt%), coefficients other than element symbols indicate weight ratios. In addition, Figure 2 shows the coercive force in this example.
It shows the relationship between Hc (Oersted) and the incident angle θ (degrees). The vertical axis shows the coercive force Hc in Oersteds (Oe), and the horizontal axis shows the incident angle θ (degrees).
It is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 基材上に、コバルト及びニツケルを主成分と
する磁性蒸着膜が形成されている蒸着薄膜型磁気
記録媒体において、基材上に形成されている磁性
蒸着薄膜は、コバルト含有率が75.2乃至77.6重量
%、ニツケル含有率が18.8乃至19.4重量%、ケイ
素含有率が1乃至2重量%、及びクロム含有率が
2乃至4重量パーセントであり、かつコバルト及
びニツケルの含有量の和が94乃至97重量%であ
り、ケイ素及びクロムの含有量の和が3乃至6重
量%であることを特徴とする蒸着薄膜型磁気記録
媒体。
1. In a vapor deposited thin film magnetic recording medium in which a magnetic vapor deposited film containing cobalt and nickel as main components is formed on a base material, the magnetic vapor deposited thin film formed on the base material has a cobalt content of 75.2 to 77.6. % by weight, the nickel content is 18.8 to 19.4% by weight, the silicon content is 1 to 2% by weight, the chromium content is 2 to 4% by weight, and the sum of the cobalt and nickel contents is 94 to 97% by weight. %, and the sum of the contents of silicon and chromium is 3 to 6% by weight.
JP3005185A 1985-02-18 1985-02-18 Magnetic material for magnetic recording medium Granted JPS61189609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005185A JPS61189609A (en) 1985-02-18 1985-02-18 Magnetic material for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005185A JPS61189609A (en) 1985-02-18 1985-02-18 Magnetic material for magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5914485A Division JPS61189610A (en) 1985-03-23 1985-03-23 Magnetic material for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61189609A JPS61189609A (en) 1986-08-23
JPH0582721B2 true JPH0582721B2 (en) 1993-11-22

Family

ID=12293022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005185A Granted JPS61189609A (en) 1985-02-18 1985-02-18 Magnetic material for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61189609A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715406A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Thin-metalic-film type magnetic recording medium and manufacture thereof
JPS57192009A (en) * 1981-05-21 1982-11-26 Nippon Gakki Seizo Kk Tape for magnetic recording

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715406A (en) * 1980-07-02 1982-01-26 Matsushita Electric Ind Co Ltd Thin-metalic-film type magnetic recording medium and manufacture thereof
JPS57192009A (en) * 1981-05-21 1982-11-26 Nippon Gakki Seizo Kk Tape for magnetic recording

Also Published As

Publication number Publication date
JPS61189609A (en) 1986-08-23

Similar Documents

Publication Publication Date Title
JPS60220914A (en) Magnetic thin film
US5154983A (en) Magnetic alloy
JPH0582721B2 (en)
KR940007048B1 (en) Soft-magnetic materials
JPS61189610A (en) Magnetic material for magnetic recording medium
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPS6313256B2 (en)
JPS6047894B2 (en) CO-based alloy for magnetic recording media
JP2668590B2 (en) Magnetic alloy for magnetic head
JPS6289312A (en) Magnetically soft thin film
JP3087265B2 (en) Magnetic alloy
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH07116564B2 (en) Magnetic alloy
JPH0322647B2 (en)
JP2771664B2 (en) Soft magnetic alloy film
JPS61234510A (en) Soft magnetic thin film
JPS6278804A (en) Soft magnetic thin film
JPS62104107A (en) Soft magnetic thin film
JPH04187745A (en) Magnetic alloy
JPH02227815A (en) Magnetic recording medium and production thereof
JPH02298238A (en) Magnetic alloy
JPS59113162A (en) Magnetic alloy
JPH06240417A (en) Magnetic alloy
JPH01146312A (en) Soft magnetic thin film
JPS5975428A (en) Vertically magnetized magnetic recording medium