JPH0581670B2 - - Google Patents

Info

Publication number
JPH0581670B2
JPH0581670B2 JP27018186A JP27018186A JPH0581670B2 JP H0581670 B2 JPH0581670 B2 JP H0581670B2 JP 27018186 A JP27018186 A JP 27018186A JP 27018186 A JP27018186 A JP 27018186A JP H0581670 B2 JPH0581670 B2 JP H0581670B2
Authority
JP
Japan
Prior art keywords
thin film
amorphous
alloy
target
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27018186A
Other languages
Japanese (ja)
Other versions
JPS63125665A (en
Inventor
Tsutomu Yoshitake
Yoshimi Kubo
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP27018186A priority Critical patent/JPS63125665A/en
Publication of JPS63125665A publication Critical patent/JPS63125665A/en
Publication of JPH0581670B2 publication Critical patent/JPH0581670B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高い結晶化温度を有するTa−W系非
晶質合金の製造方法に関するものである。 (従来の技術) 近年、各種の非晶質材料が開発され、金属材料
の分野において、多くの注目を集めている。これ
らの合金は、従来の結晶合金とは異なり、結晶構
造を持たない合金であり、その性質も従来の金属
材料にはみられないものが多く、機械的性質、耐
摩耗性、耐食性、軟磁性、電気的性質などに優れ
ているため、結晶質金属に代わりうる材料とし
て、各種の用途開発が行われ、さらに、その用途
に適した材料開発も行われている。これらの合金
は、従来、一般に、単ロール法等の液体急冷法に
よつて作製されている。 (発明が解決しようとする問題点) 非晶質合金の最大の問題点は、熱的に不安定な
点にある。これは非晶質状態が熱力学的に非平衝
な準安定状態であるということに由来するもの
で、非晶質合金の宿命ともいえることである。即
ち、非晶質合金は、一般に、それぞれ特有の結晶
化温度を有し、その温度を越えるとより熱的に安
定な結晶合金に変化してしまい、非晶質状態のと
きにみられた優れた諸特性が全て失われてしまう
のである。この結晶化温度は、材料によつて異な
るが、一般に、絶対温度で測定した融点の0.4〜
0.6倍程度の値をとることが知られている。従つ
て、結晶化温度の高い合金を得るためには、融点
の高い合金を非晶質化しなければならない。 Ta−Si−B合金は、融点が約2300℃以上とき
わめて高い。このため液体急冷法によつて作製さ
れたTa−Si−B系非晶質合金は、その結晶化温
度が800℃〜1000℃と非常に高く、非晶質合金の
問題点を大幅に改善することが可能となつた(特
願昭61−012385号)。さらに、このTa−Si−B系
非晶質合金は、一般の非晶質合金に特有の高強
度、高硬度などの優れた機械的性質を有している
ために、例えば、耐摩耗性材料、および、温度上
昇を伴う電極用材料などへの応用が考えられる。 しかしながら、実際に前記Ta−Si−B系非晶
質合金を高温環境下で使用する場合には、経時変
化が問題となつてくるために、使用温度範囲は最
高600℃程度に限定されてしまう。 さらに、液体急冷法によつて作製されるTa−
Si−B系非晶質合金は、その形状が幅数mm〜数cm
のリボン状であるために、広い面積を有する非晶
質合金を得ることができないという問題点があつ
た。さらに、ある物質の上に、前記非晶質合金を
薄膜状で形成することも、従来の液体急冷法では
できなかつた。 本発明は、このような従来技術の問題点を解決
して、結晶化温度が高く、前記Ta系非晶質合金
よりもさらに高温環境に耐えることができ、か
つ、機械的特性、耐食性等にすぐれたTa−W系
非晶質合金薄膜の製造方法を提供することを目的
とする。 (問題点を解決するための手段) 本発明は、(Tal−xWx)1−yByなる式で表
され、x=0.01〜1、y=0.1〜0.4である合金を、
ターゲツト物質にイオンを衝突させ、前記ターゲ
ツト物質をガス状態で飛び出させることにより、
基板上に薄膜を形成することによつて、非晶質化
しることを特徴とするTa−W系非晶質合金薄膜
の製造方法である。 (作用) Ta−W−B系合金薄膜では、後に実施例で示
すように、TaとW、またはWが60at%〜90at%
の組成範囲で、非晶質合金ができることを本発明
者は初めて見いだした。この組成範囲をはずれる
と非晶質構造がほとんどみられなくなり、非晶質
合金に特徴的な優れた特性がすべて消失してしま
う。また、xの範囲を0.01以上と限定したのは、
この範囲において、Taのみの場合、およびWを
微量添加した場合よりも結晶化温度が高くなるか
らである。 これらの非晶質合金の結晶化温度は、その融点
の高さに対応して、いずれも1000℃以上という高
い値である。また、これらの非晶質合金の機械的
特性は、非晶質合金に一般にみられるように、高
硬度である。また、耐食性においても、Taおよ
びWのすぐれた耐食性に匹敵するほどの耐食性を
有している。 本発明による製造方法は、アルゴンガス等の気
体原子または分子を高電界または高周波電界中で
イオン化し、さらに電界によつて加速することに
より、ターゲツト表面に衝突させて、ターゲツト
物質をターゲツト表面からたたき出して、基板上
に薄膜を形成するため、大面積で、かつ、均質な
合金薄膜を形成することが出来る。 また、ターゲツト物質としては、目的組成の
Ta−W−B三元系合金、あるいは、Ta,Wおよ
びBを適当な面積比で組み合わせた複合物質を利
用する。このため、得られる合金薄膜の組成は、
ターゲツト合金の組成を変化させることにより、
また、複合物質の面積比を適当に変化させること
により、容易に変化させることが出来るため、目
的とする組成の非晶質合金薄膜を容易に得ること
ができる。 (実施例) 以下、本発明の一実施例を図により詳細に説明
する。第1図に、本発明のTa−W系非晶質合金
薄膜を作製する装置の一例を示す。第1図に示す
装置は高周波二極マグネトロンスパツタ装置であ
り、図において、1はターゲツト、2は基板であ
る。ターゲツト1は本実施例において、複合ター
ゲツトを用いた。即ち、直径100mm、厚さ5mmの
Taターゲツトのうえに、一辺10mmの正方形で厚
さ1mmのWおよびBの板を適当な枚数だけおい
た。この際、Taターゲツトの上に、WおよびB
の板が、なるべく均一に分布するように設定し
た。WおよびBの枚数を変化させることにより、
得られる合金薄膜の組成を変化させた。基板2に
は、長さ50mm、幅25mmで厚さ0.2mmのガラスを用
いた。 薄膜作製に際しては、最初にバルブ5を開い
て、真空チヤンバー3を真空ポンプ4によつて、
10-7Torr台の真空まで排気する。この後、バリ
アブルリークバルブ6を開いて、アルゴンガス導
入管7よりアルゴンガスを10-3Torr台になるま
で導入する。この状態で高周波電源8の電源を入
れることにより、スパツタを開始させる。投入電
力は500Wとした。このとき、ターゲツト1は、
冷却水導入管10によつて水冷されている。ま
た、基板2は、液体窒素導入管11によつて導入
された液体窒素12によつて、室温以下に冷却さ
れている。これは、Ta−W系合金薄膜を非晶質
化するためには、水、液体窒素等の冷媒で基板を
冷却する必要があるためである。基板温度を熱電
対14を通して、温度計15によつて測定する
と、−180℃まで冷却されていることがわかつた。
スパツタの最初の1時間は、シヤツター9を閉じ
て、プレスパツタを行つた。本スパツタ装置は、
ターゲツトの裏側に、永久磁石13が取り付けら
れており、これがターゲツト表面に作る磁場によ
つて、高速スパツタが行えるようになつている。
プレスパツタ終了後、シヤツター9を開いて、基
板上に薄膜を作製した。薄膜作製は、1時間行つ
た。得られた薄膜の厚さは、5μm程度であつた。 得られたTa−W−B合金薄膜の構造をX線回
析法によつて評価した。その結果、薄膜の組成で
TaとW、およびWが60at%〜90at%の組成範囲
では、いずれの薄膜も結晶による鋭い回析ピーク
はみられず、ブロードなハローパターンが得られ
たことから、非晶質合金薄膜が得られたことが確
認された。第1表に、示差熱分析で測定したこれ
らの試料の結晶化温度を示す。いずれの試料も
1000℃以上の高い結晶化温度を示しており、Ta
−Si−B系非晶質合金の場合よりもさらに100℃
〜200℃高い結晶化温度を有していることがわか
る。また、これらの試料は、800℃で1000時間焼
鈍した後も非晶質構造を維持しており、非常に耐
熱性の高い非晶質合金であることが判明した。さ
らに、これらの試料の機械的特性は、ビツカース
硬度が900〜1600の範囲であるという優れた性質
を示した。さらに、これらの試料は濃塩酸、濃硝
酸、濃硫酸、濃王水の中に一日放置しても何ら腐
食された様子は見られず、重量変化も認められな
かつた。
(Industrial Application Field) The present invention relates to a method for producing a Ta--W based amorphous alloy having a high crystallization temperature. (Prior Art) In recent years, various amorphous materials have been developed and are attracting a lot of attention in the field of metal materials. Unlike conventional crystalline alloys, these alloys do not have a crystalline structure, and many of their properties are not found in conventional metal materials, such as mechanical properties, wear resistance, corrosion resistance, and soft magnetism. Due to its excellent electrical properties, various uses are being developed as a material that can replace crystalline metals, and materials suitable for these uses are also being developed. These alloys have conventionally been generally produced by a liquid quenching method such as a single roll method. (Problems to be Solved by the Invention) The biggest problem with amorphous alloys is that they are thermally unstable. This is due to the fact that the amorphous state is a thermodynamically non-equilibrium metastable state, and can be said to be the fate of amorphous alloys. In other words, each amorphous alloy generally has its own specific crystallization temperature, and when that temperature is exceeded, it changes to a more thermally stable crystalline alloy, and the superiority seen in the amorphous state is lost. All the characteristics that were previously acquired are lost. This crystallization temperature varies depending on the material, but is generally 0.4 to 0.4 of the melting point measured in absolute temperature.
It is known that the value is about 0.6 times. Therefore, in order to obtain an alloy with a high crystallization temperature, an alloy with a high melting point must be made amorphous. The Ta-Si-B alloy has an extremely high melting point of approximately 2300°C or higher. For this reason, the Ta-Si-B amorphous alloy produced by the liquid quenching method has a very high crystallization temperature of 800℃ to 1000℃, which greatly improves the problems of amorphous alloys. It became possible to do so (Special Application No. 61-012385). Furthermore, this Ta-Si-B-based amorphous alloy has excellent mechanical properties such as high strength and high hardness characteristic of general amorphous alloys, so it can be used as a wear-resistant material, for example. It can also be applied to materials for electrodes that are subject to temperature increases. However, when the Ta-Si-B amorphous alloy is actually used in a high-temperature environment, aging becomes a problem, so the operating temperature range is limited to a maximum of about 600°C. . Furthermore, Ta-
Si-B amorphous alloys have shapes ranging from several mm to several cm in width.
Because of the ribbon shape, there was a problem in that it was not possible to obtain an amorphous alloy with a wide area. Furthermore, it has not been possible to form the amorphous alloy in the form of a thin film on a certain substance using the conventional liquid quenching method. The present invention solves the problems of the prior art, has a high crystallization temperature, can withstand higher temperature environments than the Ta-based amorphous alloy, and has improved mechanical properties, corrosion resistance, etc. The object of the present invention is to provide a method for producing an excellent Ta-W amorphous alloy thin film. (Means for solving the problem) The present invention provides an alloy represented by the formula (Tal-xWx)1-yBy, where x=0.01 to 1 and y=0.1 to 0.4,
By bombarding the target substance with ions and ejecting the target substance in a gaseous state,
This is a method for producing a Ta--W based amorphous alloy thin film, which is characterized by forming a thin film on a substrate to make it amorphous. (Function) In the Ta-W-B alloy thin film, Ta and W or W are 60 at% to 90 at%, as shown in Examples later.
The present inventors have discovered for the first time that an amorphous alloy can be formed within the composition range. When the composition is outside this range, almost no amorphous structure is observed, and all the excellent properties characteristic of amorphous alloys are lost. In addition, the range of x was limited to 0.01 or more because
This is because in this range, the crystallization temperature becomes higher than when only Ta is added or when a small amount of W is added. The crystallization temperatures of these amorphous alloys are all as high as 1000°C or higher, corresponding to their high melting points. Additionally, the mechanical properties of these amorphous alloys are high hardness, as is generally seen in amorphous alloys. Also, in terms of corrosion resistance, it has corrosion resistance comparable to that of Ta and W. The manufacturing method according to the present invention involves ionizing gas atoms or molecules such as argon gas in a high electric field or high frequency electric field, and then accelerating them by the electric field to cause them to collide with the target surface and knock out the target substance from the target surface. Since the thin film is formed on the substrate, it is possible to form a homogeneous alloy thin film over a large area. In addition, as a target substance,
A Ta-W-B ternary alloy or a composite material in which Ta, W and B are combined in an appropriate area ratio is used. Therefore, the composition of the obtained alloy thin film is
By changing the composition of the target alloy,
Further, since the area ratio of the composite material can be easily changed by appropriately changing the area ratio, an amorphous alloy thin film having a desired composition can be easily obtained. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of an apparatus for producing the Ta-W based amorphous alloy thin film of the present invention. The apparatus shown in FIG. 1 is a high frequency two-pole magnetron sputtering apparatus, and in the figure, 1 is a target and 2 is a substrate. As target 1, a composite target was used in this example. That is, the diameter is 100mm and the thickness is 5mm.
On top of the Ta target, an appropriate number of W and B plates with a square size of 10 mm on a side and a thickness of 1 mm were placed. At this time, W and B are placed on top of the Ta target.
The plates were set so that they were distributed as evenly as possible. By changing the number of W and B,
The composition of the resulting alloy thin film was varied. For the substrate 2, glass was used with a length of 50 mm, a width of 25 mm, and a thickness of 0.2 mm. When producing a thin film, first open the valve 5 and move the vacuum chamber 3 with the vacuum pump 4.
Evacuate to a vacuum level of 10 -7 Torr. Thereafter, the variable leak valve 6 is opened and argon gas is introduced from the argon gas introduction pipe 7 until the pressure reaches the 10 -3 Torr level. In this state, the high frequency power source 8 is turned on to start sputtering. The input power was 500W. At this time, target 1 is
It is water-cooled by a cooling water introduction pipe 10. Further, the substrate 2 is cooled to below room temperature by liquid nitrogen 12 introduced through a liquid nitrogen introduction pipe 11. This is because in order to make the Ta--W alloy thin film amorphous, it is necessary to cool the substrate with a coolant such as water or liquid nitrogen. When the substrate temperature was measured with a thermometer 15 through a thermocouple 14, it was found that the substrate was cooled down to -180°C.
For the first hour of sputtering, the shutter 9 was closed and press sputtering was performed. This sputtering device is
A permanent magnet 13 is attached to the back side of the target, and the magnetic field created by this on the target surface enables high-speed sputtering.
After the press sputtering was completed, the shutter 9 was opened to form a thin film on the substrate. Thin film preparation was carried out for 1 hour. The thickness of the obtained thin film was about 5 μm. The structure of the obtained Ta-W-B alloy thin film was evaluated by X-ray diffraction. As a result, the composition of the thin film
In the composition range of Ta and W, and W in the range of 60 at% to 90 at%, no sharp diffraction peaks due to crystals were observed in any of the thin films, and a broad halo pattern was obtained, indicating that amorphous alloy thin films were obtained. It was confirmed that Table 1 shows the crystallization temperatures of these samples determined by differential thermal analysis. Both samples
It shows a high crystallization temperature of over 1000℃, and Ta
-100℃ more than the case of Si-B amorphous alloy
It can be seen that the crystallization temperature is ~200°C higher. Furthermore, these samples maintained their amorphous structure even after being annealed at 800°C for 1000 hours, proving that they are highly heat-resistant amorphous alloys. Furthermore, the mechanical properties of these samples showed excellent properties with a Vickers hardness ranging from 900 to 1600. Furthermore, even when these samples were left in concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid, and concentrated aqua regia for one day, no signs of corrosion were observed, and no change in weight was observed.

【表】【table】

【表】 なお、本実施例では、高周波二極マグネトロン
スパツタ装置によるTa−W系非晶質合金薄膜の
製造方法を紹介したが、非晶質薄膜を作製する際
に、他のスパツタ方法、即ち、通常の直流二極ス
パツタ法、高周波二極スパツタ法、三極あるいは
四極スパツタ法、バイアススパツタ法、イオンビ
ームスパツタ法、反応性スパツタ法等を利用して
もさしつかえない。 (発明の効果) 以上詳細に説明したように、本発明によるTa
−W系非晶質合金薄膜の製造方法は高い結晶化温
度を有し、かつ、機械的特性、耐食性等にすぐれ
た非晶質合金薄膜が容易にえられ、その効果は大
きい。
[Table] In this example, a method for producing a Ta-W amorphous alloy thin film using a high-frequency two-pole magnetron sputtering device was introduced. However, when producing an amorphous thin film, other sputtering methods, That is, the usual DC two-pole sputtering method, high-frequency two-pole sputtering method, triode or quadrupole sputtering method, bias sputtering method, ion beam sputtering method, reactive sputtering method, etc. may be used. (Effects of the Invention) As explained in detail above, Ta according to the present invention
The method for producing a -W-based amorphous alloy thin film has a high crystallization temperature and can easily produce an amorphous alloy thin film with excellent mechanical properties, corrosion resistance, etc., and is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のTa−W系非晶質合金薄膜
を作製する装置の一例を示す図である。 図において、1はターゲツト、2は基板、3は
チヤンバー、4は真空ポンプ、5は真空バルブ、
6はバリアブルリークバルブ、7はアルゴンガス
導入管、8は高周波電源、9はシヤツター、10
はターゲツト用冷却水導入管、11は基板冷却用
液体窒素導入管、12は液体窒素、13は永久磁
石、14は熱電対、15は温度計である。
FIG. 1 is a diagram showing an example of an apparatus for producing a Ta-W based amorphous alloy thin film of the present invention. In the figure, 1 is the target, 2 is the substrate, 3 is the chamber, 4 is the vacuum pump, 5 is the vacuum valve,
6 is a variable leak valve, 7 is an argon gas introduction pipe, 8 is a high frequency power supply, 9 is a shutter, 10
11 is a liquid nitrogen introduction pipe for cooling the substrate, 12 is liquid nitrogen, 13 is a permanent magnet, 14 is a thermocouple, and 15 is a thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1 (Tal−xWx)1−yByなる式で表され、x
=0.01〜1、y=0.1〜0.4である組成の合金を、
ターゲツト物質にイオンを衝突させ、前記ターゲ
ツト物質をガス状態で飛び出させることにより、
基板上に薄膜を形成するスパツタ装置を用いて、
非晶質化させることを特徴とするTa−W系非晶
質合金薄膜の製造方法。
1 (Tal−xWx)1−yBy, x
An alloy with a composition of = 0.01 ~ 1, y = 0.1 ~ 0.4,
By bombarding the target substance with ions and ejecting the target substance in a gaseous state,
Using a sputtering device to form a thin film on a substrate,
A method for producing a Ta-W based amorphous alloy thin film, which is characterized by making it amorphous.
JP27018186A 1986-11-12 1986-11-12 Production of thin amorphous ta-w alloy film Granted JPS63125665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27018186A JPS63125665A (en) 1986-11-12 1986-11-12 Production of thin amorphous ta-w alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27018186A JPS63125665A (en) 1986-11-12 1986-11-12 Production of thin amorphous ta-w alloy film

Publications (2)

Publication Number Publication Date
JPS63125665A JPS63125665A (en) 1988-05-28
JPH0581670B2 true JPH0581670B2 (en) 1993-11-15

Family

ID=17482653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27018186A Granted JPS63125665A (en) 1986-11-12 1986-11-12 Production of thin amorphous ta-w alloy film

Country Status (1)

Country Link
JP (1) JPS63125665A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165761A (en) * 1987-12-22 1989-06-29 Mitsui Eng & Shipbuild Co Ltd Member ensuring slight friction, seizing resistance and slight wear in atmosphere
JP4725770B2 (en) * 2004-11-25 2011-07-13 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
CN105324512A (en) * 2013-07-12 2016-02-10 惠普发展公司,有限责任合伙企业 Amorphous thin metal film

Also Published As

Publication number Publication date
JPS63125665A (en) 1988-05-28

Similar Documents

Publication Publication Date Title
KR100499173B1 (en) Method of making low magnetic permeability cobalt sputter targets
KR100552500B1 (en) High purity cobalt sputter target and process of manufacturing the same
JP4296256B2 (en) Manufacturing method of superconducting material
JPH0569892B2 (en)
Radić et al. Preparation and structure of Cu W thin films
JP2001523767A (en) Method for manufacturing Ni-Si magnetron sputtering target and target manufactured by the method
JPH0581670B2 (en)
JPH0581668B2 (en)
JPH0794709B2 (en) Target for magnetron cathode sputtering device
Qing-Ming et al. Amorphization of binary alloys by magnetron cosputtering
JPH0581669B2 (en)
JPS63125670A (en) Production of thin amorphous ta-w alloy film
JPS63130767A (en) Production of thin ta amorphous alloy film
JPH0581667B2 (en)
Noh et al. The composition and structure of TiNi thin film formed by electron beam evaporation
US3475309A (en) Method of making paramagnetic nickel ferrite thin films
Zhang et al. Nonequilibrium crystalline and amorphous Ti–Pd alloys produced by vapor quenching
JPH0582466B2 (en)
KR102430700B1 (en) Preparation method of ferromagnetic film and apparatus for ferromagnetic film
JPH0583630B2 (en)
JPH0582465B2 (en)
JPS63130766A (en) Production of thin ta amorphous alloy film
JPS63125666A (en) Production of thin amorphous ta alloy film
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
JPS6253585B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term