JPH0579920A - Dichromic radiation temperature measuring method and dichromic radiation thermometer - Google Patents

Dichromic radiation temperature measuring method and dichromic radiation thermometer

Info

Publication number
JPH0579920A
JPH0579920A JP3087205A JP8720591A JPH0579920A JP H0579920 A JPH0579920 A JP H0579920A JP 3087205 A JP3087205 A JP 3087205A JP 8720591 A JP8720591 A JP 8720591A JP H0579920 A JPH0579920 A JP H0579920A
Authority
JP
Japan
Prior art keywords
emissivity
spectral
temperature
1max
1min
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3087205A
Other languages
Japanese (ja)
Inventor
Tomio Tanaka
富三男 田中
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3087205A priority Critical patent/JPH0579920A/en
Publication of JPH0579920A publication Critical patent/JPH0579920A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To prevent the occurrence of measurement errors by setting the fluctuation ranges of emissivities to physically and actually acceptable specific limit ranges. CONSTITUTION:A radiometer detector makes spectral diffraction with two interference filters transmitting the light in different wavelength bands, for example, and it detects two spectral radiation intensity signals with two detectors. An arithmetic processing device calculates the temperature of a measured object with these signals and various parameters inputted from an input section in advance, and it outputs the calculated result. Relations between the first and second spectral emissivities epsilon1, epsilon2 in different wavelength bands are set as shown in equations, where epsilon1min is the minimum set value of the first spectral emissivity, epsilon1max is the maximum set value, epsilonmin<=epsilon1max, and R is a constant (emissivity ratio). When the temperature of the object is measured from two corresponding spectral radiation intensity signals, no abnormal emissivity value is erroneously determined even if noise is mixed in the spectral radiation intensity signals, and the temperature can be measured with less error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄鋼業等のプロセス
で、或いは大学等における実験研究の場において物体の
温度を非接触で測定するための放射測温技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature measuring technique for measuring the temperature of an object in a non-contact manner in a process such as the steel industry or in an experimental research field in a university or the like.

【0002】[0002]

【従来の技術】放射温度計は非接触で物体の温度を測定
できるため高温物体、高速移動物体等の温度を測定する
手段として産業、学術研究の幅広い分野で利用されてい
る。しかしながら、従来から最も多用されている単色放
射温度計は放射率が変動する物体への適用においては放
射率設定値と物体の真の放射率の差による温度測定誤差
が大きくなるという問題があった。
2. Description of the Related Art Since a radiation thermometer can measure the temperature of an object in a non-contact manner, it is used in a wide range of industrial and academic research as a means for measuring the temperature of a high-temperature object, a high-speed moving object and the like. However, the most commonly used monochromatic radiation thermometer has a problem that the temperature measurement error due to the difference between the emissivity set value and the true emissivity of the object becomes large when applied to an object whose emissivity fluctuates. ..

【0003】一方、ふたつの異なる波長帯域における分
光放射率間に比例関係を仮定して物体の温度を測定しよ
うとする二色放射温度計は、単色温度計の代替手段とし
て広く用いられており、第1の分光放射率ε1 と第2の
分光放射率ε2 の間に単純な比例関係 ε2 =R・ε1 …(1) を適用して物体の温度を求めている。
On the other hand, a two-color radiation thermometer, which attempts to measure the temperature of an object by assuming a proportional relationship between spectral emissivities in two different wavelength bands, is widely used as an alternative means of a monochromatic thermometer, The temperature of the object is obtained by applying a simple proportional relationship ε 2 = R · ε 1 (1) between the first spectral emissivity ε 1 and the second spectral emissivity ε 2 .

【0004】しかしながら、この方法ではアルミニウム
など放射率の低い物体の測定時に分光放射輝度信号に雑
音が混入したりした場合や、測定温度範囲下限近くでの
測定時に信号がドリフトした場合などに実際にはありえ
ないほど低い放射率値を求めてしまい結果として異常に
大きな測温誤差を生じてしまう状況が発生することがあ
ったり、反対に異常に高い放射率値を求めた結果大きな
測温誤差を生じてしまうことがある。さらに、じっさい
の工業プロセスで遭遇する測定対象物体のように、2つ
の真の放射率が(1)式で表される関係からずれた場合
にも同様に大きな測定誤差を生じてしまうことが多々有
り、重大な問題となっている。
However, according to this method, when noise is mixed in the spectral radiance signal during measurement of an object having a low emissivity such as aluminum, or when the signal drifts during measurement near the lower limit of the measurement temperature range, this method is actually used. In some cases, an extremely low emissivity value is calculated, resulting in an abnormally large temperature measurement error.On the contrary, when an abnormally high emissivity value is calculated, a large temperature measurement error occurs. It may happen. Further, when the two true emissivities deviate from the relationship expressed by the equation (1) like the object to be measured that is encountered in the actual industrial process, a large measurement error often occurs. Yes, it is a serious problem.

【0005】これは、第1、第2の放射率に物理的ある
いは現実的に認められる制限範囲を条件としてつけてい
ないために生じる問題であって、工業プロセス等におけ
る測定上重大な問題となっている。
This is a problem that occurs because the first and second emissivities are not subject to the physically or practically permissible limiting range, and is a serious problem in measurement in industrial processes and the like. ing.

【0006】[0006]

【発明が解決しようとする課題】本発明は、放射率に物
理的あるいは現実的に認められる制限範囲を設定するこ
とによって、前述したような測定誤差を発生することの
ない二色放射測温法及び二色放射温度計を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention provides a two-color radiation temperature measuring method which does not cause the above-mentioned measurement error by setting a limit range in which the emissivity is physically or practically recognized. And a two-color radiation thermometer.

【0007】[0007]

【課題を解決するための手段】本発明は、異なる波長帯
域における二つの分光放射率に対し、第一の分光放射率
ε1 と第2の分光放射率ε2 の間の関係式を ε2 =R・ε1min 0≦ε1 <ε1min ε2 =R・ε1 ε1min≦ε1<ε1max ε2 =R・ε1max ε1max≦ε1 ≦1 ただし、ε1min:第1の分光放射率の最小設定値 ε1max:第1の分光放射率の最大設定値 R :定数(放射率比) として、対応するふたつの分光放射輝度信号から物体の
温度を測定することを特徴とする二色放射測温法であ
る。
According to the present invention, for two spectral emissivities in different wavelength bands, the relational expression between the first spectral emissivity ε 1 and the second spectral emissivity ε 2 is ε 2. = R · ε 1min 0 ≦ ε 11min ε 2 = R · ε 1 ε 1min ≦ ε 11max ε 2 = R · ε 1max ε 1max ≦ ε 1 ≦ 1 where ε 1min : the first spectrum The minimum set value of emissivity ε 1max : the maximum set value of the first spectral emissivity R: As a constant (emissivity ratio), the temperature of the object is measured from two corresponding spectral radiance signals. Color radiation thermometry.

【0008】さらに本発明は、異なるふたつのスペク
トル帯域において分光放射輝度を検出する二色型放射計
検出器と、該放射計検出器から伝送された該分光放射
輝度信号とそれらに対応する分光放射率間の関係式を ε2 =R・ε1min 0≦ε1 <ε1min ε2 =R・ε1 ε1min≦ε1<ε1max ε2 =R・ε1max ε1max≦ε1 ≦1 ただし、ε1min:第1の分光放射率の最小設定値 ε1max:第1の分光放射率の最大設定値 ε1min<ε1max として、物体の温度を計算する演算処理装置と、該放
射計検出器の黒体炉校正曲線と前期第項の関係式を表
す係数R,ε1m in,ε1maxを入力する手段と、計算に
よって得られた温度値を出力するための手段とを具備す
ることを特徴とする二色放射温度計である。
The invention further provides a dichroic radiometer detector for detecting the spectral radiance in two different spectral bands, the spectral radiance signals transmitted by the radiometer detector and their corresponding spectral radiances. The relational expression between the rates is ε 2 = R ・ ε 1min 0 ≦ ε 11min ε 2 = R ・ ε 1 ε 1min ≦ ε 11max ε 2 = R ・ ε 1max ε 1max ≦ ε 1 ≦ 1 where , Ε 1min : minimum set value of the first spectral emissivity ε 1max : maximum set value of the first spectral emissivity ε 1min1max , an arithmetic processing unit for calculating the temperature of the object, and the radiometer detector And a means for inputting the coefficients R, ε 1m in , ε 1max representing the relational expression of the first term and the means for outputting the temperature value obtained by the calculation. It is a two-color radiation thermometer.

【0009】[0009]

【作用】物体からの熱放射のうち異なる波長帯域(中心
波長λ1 ,λ2 )における分光放射輝度(L1 ,L2
を検出したとする。分光黒体放射輝度をウィーンの式 Lb (λ、T)=K・exp(−C2 /λ・T)…(2) ただし、 K :定数 C2 :放射の第2定数(=14,388(μm・K)) λ :検出波長(μm) T :温度(K) で表すと(L1 ,L2 )はそれぞれ L1 =ε10・K1 ・exp(−C2 /λ1 ・T0 )…(3) L2 =ε20・K2 ・exp(−C2 /λ2 ・T0 )…(4) と表せる。
[Function] Spectral radiance (L 1 , L 2 ) in different wavelength bands (center wavelengths λ 1 , λ 2 ) of thermal radiation from an object
Is detected. The spectral blackbody radiance is represented by the Wien equation L b (λ, T) = K · exp (−C 2 / λ · T) (2) where K is a constant C 2 : a second constant of radiation (= 14, 388 (μm · K)) λ: Detection wavelength (μm) T: When expressed in temperature (K), (L 1 , L 2 ) is L 1 = ε 10 · K 1 · exp (-C 2 / λ 1 · T 0 ) ... (3) L 2 = ε 20 · K 2 · exp (-C 2 / λ 2 · T 0 ) ... (4)

【0010】ただし、ε10,ε20:真の分光放射率 T0 :真の温度 真の温度も放射率も不明な状態で、物体の仮定温度をT
とすると(3),(4)式と同様に L1 =ε1 ・K1 ・exp(−C2 /λ1 ・T)…(5) L2 =ε2 ・K2 ・exp(−C2 /λ2 ・T)…(6) が成立する。
However, ε 10 and ε 20 : true spectral emissivity T 0 : true temperature The assumed temperature of the object is T when the true temperature and the emissivity are unknown.
Then, similarly to the equations (3) and (4), L 1 = ε 1 · K 1 · exp (-C 2 / λ 1 · T) ... (5) L 2 = ε 2 · K 2 · exp (-C 2 / λ 2 · T) (6) holds.

【0011】 ただし、ε1 ,ε2 :見かけの分光放射率 T0 :仮定の温度 (3)〜(6)式を整理すると仮定の温度Tを変化させ
たときの見かけの放射率と真の放射率の関係が次式のよ
うに求まる。
However, ε 1 , ε 2 : apparent spectral emissivity T 0 : assumed temperature When the equations (3) to (6) are rearranged, the apparent emissivity and the true emissivity when the assumed temperature T is changed. The relationship of emissivity is calculated as the following equation.

【0012】ε2 =ε20・(ε1 /ε10)…(7) 図1は真の放射率(ε10,ε20)が変化したとき、
(7)式で表される見かけの放射率(ε1 ,ε2 )間の
関係を示した曲線群である。
Ε 2 = ε 20 · (ε 1 / ε 10 ) ... (7) FIG. 1 shows that when the true emissivity (ε 10 , ε 20 ) changes,
It is a group of curves showing the relationship between the apparent emissivities (ε 1 , ε 2 ) expressed by the equation (7).

【0013】ある測定値(L1 ,L2 )が得られ、その
ときの真の放射率が図1中○印であったとする。このと
き仮定温度Tが真温度T。に等しければ(5),(6)
式で求められる見かけの放射率は真の放射率に等しく、
仮定温度が真の温度より低ければ見かけの放射率は曲線
に沿って右上方向に移動し、また仮定温度が真の温度よ
り高ければ見かけの放射率は曲線に沿って左下方向に移
動しついには原点(0,0)に達する(T=∞)。
It is assumed that certain measured values (L 1 , L 2 ) are obtained, and the true emissivity at that time is marked with a circle in FIG. At this time, the assumed temperature T is the true temperature T. If they are equal to (5), (6)
The apparent emissivity calculated by the formula is equal to the true emissivity,
If the assumed temperature is lower than the true temperature, the apparent emissivity moves to the upper right along the curve, and if the assumed temperature is higher than the true temperature, the apparent emissivity moves to the lower left toward the curve. Reach the origin (0,0) (T = ∞).

【0014】さて、従来の二色放射測温法で用いられて
いる(1)式の関係式を、図1に示した見かけの放射率
間の関係を示す曲線群とあわせて示したのが図2であ
る。前述したのと同様にある測定値(L1 ,L2 )が得
られ、そのときの真の放射率が図2中●印で表され
(1)式で表される二色放射測温法の仮定を満足してい
るとする。このとき仮定温度Tが真温度T。に等しいと
きに(5),(6)式で求められる見かけの放射率は真
の放射率に等しくかつ(1)式を満足するために解とし
て求めることができる。これが、従来の二色放射測温法
の原理である。
Now, the relational expression of the equation (1) used in the conventional two-color radiation thermometry is shown together with the curve group showing the relation between the apparent emissivities shown in FIG. It is FIG. Similar to the above, certain measured values (L 1 , L 2 ) are obtained, and the true emissivity at that time is represented by the ● mark in FIG. 2 and is the two-color radiation thermometry method represented by the formula (1). Suppose that the assumption of is satisfied. At this time, the assumed temperature T is the true temperature T. The apparent emissivity obtained by the equations (5) and (6) is equal to the true emissivity and can be obtained as a solution to satisfy the equation (1). This is the principle of conventional two-color radiation thermometry.

【0015】●印で表される真の放射率をもつ物体から
の信号を測定中に、電気的、光学的等なんらかの雑音が
混入したためにL1 が32%低めに測定されたとする
と、そのときの見かけの放射率は▲印で表される点に移
動する。したがって、従来の二色法で得られる解は、▲
印を通る(7)式に対応する曲線と、原理式(1)の表
す直線との交点として■印の点となる。図中■印の点の
放射率は真の放射率の点●よりもかなり小さく実際には
ありえない程小さな値を与えるため、得られる温度値は
真の温度よりも極めて高い値にならざるをえない。
If, while measuring the signal from the object having the true emissivity represented by the mark ●, L 1 is measured 32% lower due to the inclusion of some noise such as electrical and optical, then Apparent emissivity of moves to the point indicated by ▲. Therefore, the solution obtained by the conventional two-color method is ▲
The point marked with ■ is the intersection of the curve corresponding to the formula (7) passing through the mark and the straight line represented by the principle formula (1). The emissivity at the points marked with ■ in the figure is much smaller than the true emissivity point ● and gives a value that is so small that it cannot actually occur, so the obtained temperature value must be extremely higher than the true temperature. Absent.

【0016】また、逆に真の放射率が高いときに分光放
射輝度信号に雑音が混入したような場合にも、実際には
ありえないほど高い放射率値と、真の温度よりもかなり
低めの温度値が得られる場合がある。
On the contrary, even when noise is mixed in the spectral radiance signal when the true emissivity is high, an emissivity value that is unrealistically high and a temperature considerably lower than the true temperature are obtained. The value may be obtained.

【0017】このように、実際にはありえないような放
射率値(例えば0.003とか、0.999といった異
常に低すぎたり高すぎたりする値)と、したがって大き
な誤差を含む温度測定値が得られるのは、従来の二色測
温法が単純に数学的な原理式(1)を用いているために
生じるからであり、現実の物体において認められる放射
率の変動範囲を考慮していないことに起因する。
As described above, the emissivity value which cannot be actually obtained (for example, 0.003 or 0.999, which is abnormally too low or too high), and thus a temperature measurement value including a large error is obtained. The reason is that the conventional two-color temperature measuring method occurs simply because the mathematical principle formula (1) is used, and it does not consider the fluctuation range of the emissivity observed in the actual object. caused by.

【0018】本発明の方法では、放射率の変動範囲に現
実の物体において認められる限界値を設定することによ
り、そのような測定誤差をなくすことができる。すなわ
ち、例えば鉄鋼プロセスの一つである連続焼鈍炉内にお
ける冷延鋼板を測定することを考える。鋼板は炉内にお
いて酸化されるため放射率は、0.2程度から0.85
程度まで変化するので ε2 =R・0.20 0≦ε1 <0.20 ε2 =R・ε1 0.20≦ε1 <0.85 ε2 =R・0.85 0.85≦ε1 ≦1 として、測定を行えば従来法の欠点を除去することがで
きる。もちろん放射率比Rは測定対象にあわせて適宜最
適な値に調整すればよいことは従来法と同じである。
In the method of the present invention, such a measurement error can be eliminated by setting the limit value recognized in the actual object in the variation range of the emissivity. That is, for example, it is considered to measure a cold rolled steel sheet in a continuous annealing furnace which is one of steel processes. Since the steel sheet is oxidized in the furnace, the emissivity is about 0.2 to 0.85.
Ε 2 = R · 0.20 0 ≦ ε 1 <0.20 ε 2 = R · ε 1 0.20 ≦ ε 1 <0.85 ε 2 = R · 0.85 0.85 ≦ If ε 1 ≦ 1 is measured, the drawbacks of the conventional method can be eliminated. Of course, the emissivity ratio R may be adjusted to an optimum value according to the measurement target, as in the conventional method.

【0019】このようにすると、前述したように分光放
射輝度信号に雑音が混入したときでも異常に低すぎたり
高すぎたりする放射率値を誤ってもとめることがなく、
測温誤差のより小さい計測が可能となる。図2で示した
ものと同様な条件のもとでの例を図3を使って示す。
In this way, even if noise is mixed in the spectral radiance signal, as described above, the emissivity value that is abnormally too low or too high will not be erroneously stopped.
It is possible to measure with less temperature measurement error. An example under the same conditions as those shown in FIG. 2 will be shown using FIG.

【0020】●印で表される真の放射率をもつ物体から
の信号を測定中に、電気的、光学的等なんらかの雑音が
混入したためにL1 が32%低めに測定されたとする
と、そのときの見かけの放射率は▲印で表される点に移
動する。いま、第一の放射率の設定値ε1min、ε1max
それぞれ0.35,0.8であったりすると、本発明の
方法では放射率の下限値が設定されているため、放射率
の解は○印で示された点として得られ、したがって従来
法に比べて格段に誤差の小さな測定が可能になる。
When measuring a signal from an object having a true emissivity represented by a mark ●, L 1 is measured 32% lower because noise such as electric or optical is mixed therein. Apparent emissivity of moves to the point indicated by ▲. Now, if the first set values ε 1min and ε 1max of the emissivity are 0.35 and 0.8, respectively, since the lower limit value of the emissivity is set in the method of the present invention, the solution of the emissivity is determined. Is obtained as a point indicated by a circle, and therefore, it is possible to measure with a remarkably small error as compared with the conventional method.

【0021】[0021]

【実施例】図4に本発明の方法による測温装置の構成例
を示す。放射計検出器1は異なる波長における2つの分
光放射輝度信号を検出し、それらは、演算処理装置2に
伝送される。演算処理装置は2つの分光放射輝度信号
と、あらかじめキーボード等の入力部3よりインプット
された諸パラメタを用いて演算を行い物体の温度を計算
し、出力部4より計算結果を出力する。放射計検出器1
は、例えば異なる波長帯域の光を透過させる干渉フィル
ターを2枚用いて分光し、透過してきた光を検出するた
めの検出器を2個用いれば容易に構成できる。
EXAMPLE FIG. 4 shows a structural example of a temperature measuring device according to the method of the present invention. The radiometer detector 1 detects two spectral radiance signals at different wavelengths, which are transmitted to the processor 2. The arithmetic processing unit calculates the temperature of the object by using two spectral radiance signals and various parameters input from the input unit 3 such as a keyboard in advance, and outputs the calculation result from the output unit 4. Radiometer detector 1
Can be easily configured by using, for example, two interference filters that transmit light of different wavelength bands to perform spectral analysis and use two detectors for detecting the transmitted light.

【0022】図5は、表面処理鋼板の温度測定に応用し
たときの2つの放射率間の関係を示した図である。波長
2.2μm、及び1.6μmにおける分光放射率間の関
係は、波長2.2μmの放射率が0.13から0.7ま
での範囲ではほぼ比が1.0の比例関係とみなすことが
でき、したがって波長2.2μm、及び1.6μmにお
ける分光放射率をそれぞれε1 ,ε2 とすれば ε2 =0.35 0≦ε1 <0.35 ε2 =ε1 0.35≦ε1 <0.80 ε2 =0.80 0.80≦ε1 ≦1 と表すことにより雑音信号等による測定誤差の小さな温
度測定を行うことができた。
FIG. 5 is a diagram showing the relationship between two emissivities when applied to the temperature measurement of a surface-treated steel sheet. The relationship between the spectral emissivities at the wavelengths of 2.2 μm and 1.6 μm can be regarded as a proportional relationship of approximately 1.0 in the range of the emissivity at the wavelength of 2.2 μm from 0.13 to 0.7. Therefore, assuming that the spectral emissivities at the wavelengths of 2.2 μm and 1.6 μm are ε 1 and ε 2 , respectively, ε 2 = 0.35 0 ≦ ε 1 <0.35 ε 2 = ε 1 0.35 ≦ ε By expressing 1 <0.80 ε 2 = 0.80 0.80 ≤ ε 1 ≤ 1, it was possible to perform temperature measurement with a small measurement error due to a noise signal or the like.

【0023】[0023]

【発明の効果】本発明によれば、被測定物体の放射率変
動範囲を現実的なものに限定して演算し、誤差の小さな
温度測定が可能となる。電気的、光学的検出信号に雑音
信号が混入する危険性の大きい工業プロセス等における
放射温度測定にあたっては、本発明による方法および装
置を使用することによって、非現実的に低すぎたり、あ
るいは高すぎる放射率値を求める誤りを防ぐことができ
経済的な効果は大なるものがある。
According to the present invention, the emissivity variation range of the object to be measured is limited to a realistic range for calculation, and temperature measurement with a small error becomes possible. When measuring the radiation temperature in an industrial process or the like in which a noise signal is mixed with an electrical or optical detection signal, by using the method and apparatus according to the present invention, it is unrealistically too low or too high. It is possible to prevent an error in obtaining the emissivity value and the economic effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】見かけの放射率間の関係を示した図である。FIG. 1 is a diagram showing a relationship between apparent emissivities.

【図2】従来の二色放射測温法の解の求めかたを示した
図である。
FIG. 2 is a diagram showing a method of obtaining a solution of a conventional two-color radiation thermometry.

【図3】本発明の方法による解の求めかたを示した図で
ある。
FIG. 3 is a diagram showing how to obtain a solution by the method of the present invention.

【図4】本発明による測温装置構成例を示した図であ
る。
FIG. 4 is a diagram showing a configuration example of a temperature measuring device according to the present invention.

【図5】本発明による分光放射率間の関係例を示した図
である。
FIG. 5 is a diagram showing an example of a relationship between spectral emissivities according to the present invention.

【符号の説明】[Explanation of symbols]

1 放射計検出器 2 演算処理装置 3 演算用パラメタ入力部 4 演算結果等の出力部 1 Radiometer detector 2 Arithmetic processing unit 3 Parameter input section for arithmetic 4 Output section of arithmetic result etc.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月12日[Submission date] September 12, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】 ただし、ε ,ε :見かけの分光放射率 :仮定の温度 (3)〜(6)式を整理すると仮定の温度Tを変化させ
たときの見かけの放射率と真の放射率の関係が次式のよ
うに求まる。
However, ε 1 , ε 2 : apparent spectral emissivity T : assumed temperature When the formulas (3) to (6) are rearranged, the apparent emissivity and the true radiation when the assumed temperature T is changed. The relationship between the rates is calculated as the following equation.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 ε2 =ε20(ε1 /ε10 λ1/λ2 …(7) 図1は真の放射率(ε10,ε20)が変化したとき、
(7)式で表される見かけの放射率(ε1 ,ε2 )間の
関係を示した曲線群である。
Ε2 = Ε201 / ΕTen) λ1/ Λ2 (7) Figure 1 shows the true emissivity (εTen, Ε20) Changes,
Apparent emissivity (ε1 , Ε2 )Among
It is a group of curves showing the relationship.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】●印で表される真の放射率をもつ物体から
の信号を測定中に、電気的、光学的等なんらかの雑音が
混入したためにL が32%低めに測定されたとする
と、そのときの見かけの放射率は▲印で表される点に移
動する。いま、第一の放射率の設定値ε1min、ε
1maxがそれぞれ0.35,0.8であったとする
、本発明の方法では放射率の下限値が設定されている
ため、放射率の解は○印で示された点として得られ、し
たがって従来法に比べて格段に誤差の小さな測定が可能
になる。
If L 1 is measured 32% lower due to the inclusion of some noise such as electrical or optical during measurement of a signal from an object having a true emissivity represented by a ● mark, then Apparent emissivity of moves to the point indicated by ▲. Now, the first set values of emissivity ε 1min , ε
1max is assumed to be a 0.35,0.8 each
Since the lower limit value of the emissivity is set in the method of the present invention, the solution of the emissivity is obtained as a point indicated by a circle, and therefore, the measurement with a remarkably small error is possible as compared with the conventional method. Become.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なる波長帯域における二つの分光放射
率に対し、第一の分光放射率ε1 と第2の分光放射率ε
2 の間の関係式を ε2 =R・ε1min 0≦ε1 <ε1min ε2 =R・ε1 ε1min≦ε1<ε1max ε2 =R・ε1max ε1max≦ε1 ≦1 ただし、ε1min:第1の分光放射率の最小設定値 ε1max:第1の分光放射率の最大設定値 R :定数(放射率比) として、対応する二つの分光放射輝度信号から物体の温
度を測定することを特徴とする二色放射測温法。
1. A first spectral emissivity ε 1 and a second spectral emissivity ε for two spectral emissivities in different wavelength bands.
The relational expression between 2 is ε 2 = R · ε 1min 0 ≦ ε 11min ε 2 = R · ε 1 ε 1min ≦ ε 11max ε 2 = R · ε 1max ε 1max ≦ ε 1 ≦ 1 Where ε 1min is the minimum set value of the first spectral emissivity, ε 1max is the maximum set value of the first spectral emissivity, R is a constant (emissivity ratio), and the temperature of the object is calculated from the corresponding two spectral radiance signals. A two-color radiation thermometer characterized by measuring.
【請求項2】 異なる二つのスペクトル帯域において分
光放射輝度を検出する二色型放射計検出器と、 該放射計検出器から伝送された該分光放射輝度信号とそ
れらに対応する分光放射率間の関係式を ε2 =R・ε1min 0≦ε1 <ε1min ε2 =R・ε1 ε1min≦ε1<ε1max ε2 =R・ε1max ε1max≦ε1 ≦1 ただし、ε1min:第1の分光放射率の最小設定値 ε1max:第1の分光放射率の最大設定値 ε1min<ε1max として、物体の温度を計算する演算処理装置と、 該放射計検出器の黒体炉校正曲線と前期第項の関係式
を表す係数R,ε1min,ε1maxを入力する手段と、 計算によって得られた温度値を出力するための手段とを
具備することを特徴とする二色放射温度計。
2. A dichroic radiometer detector for detecting spectral radiance in two different spectral bands, and between the spectral radiance signals transmitted from the radiometer detector and their corresponding spectral emissivity. The relational expression is ε 2 = R ・ ε 1min 0 ≦ ε 11min ε 2 = R ・ ε 1 ε 1min ≦ ε 11max ε 2 = R ・ ε 1max ε 1max ≦ ε 1 ≦ 1 where ε 1min : Minimum setting value of the first spectral emissivity ε 1max : Maximum setting value of the first spectral emissivity ε 1min1max , an arithmetic processing unit for calculating the temperature of the object, and a black body of the radiometer detector A two-color system comprising means for inputting a furnace calibration curve and coefficients R, ε 1min , ε 1max representing the relational expression of the first term, and means for outputting a temperature value obtained by calculation. Radiation thermometer.
JP3087205A 1991-03-28 1991-03-28 Dichromic radiation temperature measuring method and dichromic radiation thermometer Withdrawn JPH0579920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087205A JPH0579920A (en) 1991-03-28 1991-03-28 Dichromic radiation temperature measuring method and dichromic radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087205A JPH0579920A (en) 1991-03-28 1991-03-28 Dichromic radiation temperature measuring method and dichromic radiation thermometer

Publications (1)

Publication Number Publication Date
JPH0579920A true JPH0579920A (en) 1993-03-30

Family

ID=13908464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087205A Withdrawn JPH0579920A (en) 1991-03-28 1991-03-28 Dichromic radiation temperature measuring method and dichromic radiation thermometer

Country Status (1)

Country Link
JP (1) JPH0579920A (en)

Similar Documents

Publication Publication Date Title
US4881823A (en) Radiation thermometry
Araújo Multi-spectral pyrometry—a review
Coates Multi-wavelength pyrometry
JPS59206726A (en) Duplex type sensor radiation pyrometer
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
JPH0579920A (en) Dichromic radiation temperature measuring method and dichromic radiation thermometer
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
GB2160971A (en) Temperature monitoring
JPH0510822A (en) Radiation temperature measuring instrument
KR0133637B1 (en) Calibration method for light measuring device and radiation
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPS6041293B2 (en) radiation thermometer
JPH04276527A (en) Thermometer in furnace
JPH02138836A (en) Radiation temperature measuring apparatus
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPS6235232A (en) Thermometer and method of measuring temperature
JP2007107939A (en) Method and device of measuring temperature of steel plate
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
JPH04361125A (en) Measuring apparatus of radiation temperature based on two spectral radiation detection signals
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
JPH03287024A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
JPH0462013B2 (en)
Glassman New Optical Pyrometer for Measuring the Temperature of Aluminum Alloys

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514