JPH0579916B2 - - Google Patents
Info
- Publication number
- JPH0579916B2 JPH0579916B2 JP1103025A JP10302589A JPH0579916B2 JP H0579916 B2 JPH0579916 B2 JP H0579916B2 JP 1103025 A JP1103025 A JP 1103025A JP 10302589 A JP10302589 A JP 10302589A JP H0579916 B2 JPH0579916 B2 JP H0579916B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage material
- pipe
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005338 heat storage Methods 0.000 claims description 77
- 239000011232 storage material Substances 0.000 claims description 60
- 239000012530 fluid Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 14
- 239000006163 transport media Substances 0.000 description 14
- 239000011449 brick Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明はセラミツクやレンガ、金属などを蓄
熱体とした固体蓄熱器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a solid heat storage device using ceramic, brick, metal, or the like as a heat storage material.
従来の技術
蓄熱容量を大きくする方法として、蓄熱材の量
を多くする方法、状態変化に伴う潜熱を利用する
方法、蓄熱温度を高くする方法等が考えられる
が、家庭用などの所謂民生用熱機器の蓄熱器とし
ては、大きさや価格、安定性などの点から、温度
を高くして蓄熱を行なう固体を蓄熱材とした構造
のものが好ましいと考えられる。セラミツクやレ
ンガなどの固体を蓄熱材とした所謂固体蓄熱器で
は、蓄熱あるいは放熱のための熱輸送媒体との熱
交換を良好に行なわせるために、蓄熱材の内部に
熱輸送媒体を流すことになるが、蓄熱材が腐食す
るなど熱輸送媒体と蓄熱材とが反応してしまう場
合や熱輸送媒体がヒートパイプの作動流体であつ
て漏洩や外気の混入を避ける必要があるなどの場
合には、熱輸送媒体を流すための管路を、蓄熱材
の内部にパイプを通して形成し、その管路を蓄熱
材に対して気密および液密状態に維持する必要が
ある。Conventional technology Possible methods for increasing heat storage capacity include increasing the amount of heat storage material, using latent heat due to state changes, and increasing heat storage temperature. From the viewpoint of size, cost, stability, etc., it is considered preferable for a heat storage device for a device to have a structure in which the heat storage material is a solid material that stores heat at a high temperature. In so-called solid heat storage devices that use solid materials such as ceramics and bricks as heat storage materials, a heat transport medium is allowed to flow inside the heat storage material in order to ensure good heat exchange with the heat transport medium for heat storage or heat radiation. However, in cases where there is a reaction between the heat transport medium and the heat storage material, such as when the heat storage material corrodes, or when the heat transport medium is the working fluid of the heat pipe and it is necessary to prevent leakage or incorporation of outside air. It is necessary to form a conduit through which the heat transport medium flows through a pipe inside the heat storage material, and to maintain the conduit in an air-tight and liquid-tight state with respect to the heat storage material.
発明が解決しようとする課題
固体の蓄熱材の内部にパイプを挿通する場合、
両者の間の熱伝達を可及的に良好ならしめるため
に、蓄熱材とパイプとを密着状態とすることが望
まれるが、現実には両者の間にわずかな空間が生
じて熱伝達が阻害される場合が多い。すなわち熱
媒体を流すパイプとしては入手が容易であるこ
と、円周方向での熱的な特性および強度が均一で
あることなどの要請で円形断面の一般的なパイプ
を使用し、また伝熱面積を広くするために複数本
のパイプを蓄熱材の内部に挿通することになるた
め、蓄熱材に対するパイプの固定手段として熱膨
張および収縮を利用したシマリ嵌めの手段を採用
することが困難であり、そのため蓄熱材に形成し
た円形凹部とパイプとのそれぞれの曲率のわずか
な相違により両者の間に空間が生じてしまい、ま
た固体蓄熱材として粒状のものを使用すれば、必
然的にパイプと蓄熱材との間に空間が生じる。ま
た蓄熱材とパイプとの間にある程度の密着状態を
確保できたとしても、一般には蓄熱材とパイプと
のそれぞれの熱膨張率は異なつているから、蓄熱
や放熱に伴う温度変化によつて両者の間に微小に
空間が生じ、これが熱伝達を阻害することにな
る。Problem to be solved by the invention When inserting a pipe inside a solid heat storage material,
In order to make the heat transfer between the two as good as possible, it is desirable to have the heat storage material and the pipe in close contact, but in reality, a small space is created between the two, which impedes heat transfer. It is often done. In other words, we used a general pipe with a circular cross section because it was easy to obtain, had uniform thermal properties and strength in the circumferential direction, and the heat transfer area was small. In order to widen the area, multiple pipes must be inserted into the heat storage material, so it is difficult to use a tight fitting method that utilizes thermal expansion and contraction to secure the pipes to the heat storage material. Therefore, due to the slight difference in the curvature of the circular recess formed in the heat storage material and the pipe, a space is created between the two, and if a granular material is used as the solid heat storage material, the pipe and the heat storage material will inevitably A space is created between them. Furthermore, even if a certain degree of adhesion can be secured between the heat storage material and the pipe, the heat storage material and the pipe generally have different coefficients of thermal expansion, so temperature changes due to heat storage and heat dissipation may cause both to occur. A small space is created between the two, which impedes heat transfer.
このような不都合を解消するために、パイプの
外周面と蓄熱材との間にペースト状のサーマルジ
ヨイントを充填することが考えられるが、サーマ
ルジヨイント自体も熱収縮するために、パイプと
蓄熱材との間に空間が生じ、この部分で熱伝達が
阻害される問題がある。 In order to eliminate this inconvenience, it is possible to fill a paste-like thermal joint between the outer peripheral surface of the pipe and the heat storage material, but since the thermal joint itself also shrinks due to heat, the pipe and the heat storage material There is a problem that a space is created between the material and the heat transfer is inhibited in this area.
この発明は上記の事情を背景としてなされたも
ので、蓄熱もしくは放熱にあたつての伝熱抵抗が
少なく、したがつて熱応答性に優れた固体蓄熱器
を提供することを目的とするものである。 This invention was made against the background of the above-mentioned circumstances, and aims to provide a solid heat storage device that has low heat transfer resistance during heat storage or heat radiation, and therefore has excellent thermal responsiveness. be.
課題を解決するための手段
この発明は、上記の目的を達成するために、顕
熱として熱を蓄える固体の蓄熱材の内部に、熱輸
送用流体を流す管路を設けるとともに、その管路
と前記蓄熱材との間に高熱伝導率気体を加圧して
封入したことを特徴とするものである。Means for Solving the Problems In order to achieve the above object, the present invention provides a pipe line through which a heat transport fluid flows inside a solid heat storage material that stores heat as sensible heat, and also provides a pipe line for flowing a heat transport fluid. It is characterized in that a high thermal conductivity gas is pressurized and sealed between the heat storage material and the heat storage material.
作 用
蓄熱材を加熱することによりその顕熱として熱
が蓄えられる。これは例えば管路の内部に温度の
高い熱輸送媒体を流し、もしくは適宜の加熱手段
を用いて行なわれる。また管路の内部に蓄熱材よ
り低温の熱輸送媒体を流すことにより、その熱輸
送媒体が蓄熱材により加熱され、蓄熱材の有する
熱を取り出すことができる。これら蓄熱および放
熱のいずれの場合でも熱輸送媒体と蓄熱材との管
路を介した熱伝達が生じるが、管路の外面と蓄熱
材との間には高熱伝導率の気体が加圧して封入さ
れているために、ここでの熱伝達率が高い値に維
持され、したがつて蓄熱材と熱輸送媒体との間の
熱伝達が良好に生じる。また蓄熱材と管路との熱
膨張量もしくは収縮量が相違して両者の間の空間
容積に変動が生じても、その空間部は高熱伝導率
気体で満された状態に維持されるから、蓄熱材と
熱輸送媒体との間の熱伝導が阻害されることがな
い。Effect By heating the heat storage material, heat is stored as sensible heat. This can be done, for example, by flowing a hot heat transport medium inside the pipe or by using suitable heating means. Furthermore, by flowing a heat transport medium having a lower temperature than the heat storage material inside the pipe, the heat transport medium is heated by the heat storage material, and the heat possessed by the heat storage material can be taken out. In both cases of heat storage and heat dissipation, heat transfer occurs through the conduit between the heat transport medium and the heat storage material, but a gas with high thermal conductivity is pressurized and sealed between the outer surface of the conduit and the heat storage material. Because of this, the heat transfer coefficient here is maintained at a high value, so that good heat transfer between the heat storage material and the heat transport medium occurs. Furthermore, even if the amount of thermal expansion or contraction between the heat storage material and the conduit is different and the space volume between the two changes, the space remains filled with high thermal conductivity gas. Heat conduction between the heat storage material and the heat transport medium is not inhibited.
実施例
つぎにこの発明の実施例を図面を参照して説明
する。Embodiments Next, embodiments of the present invention will be described with reference to the drawings.
第1図および第2図はこの発明の一実施例を模
式的に示す断面図であり、ここに示す固体蓄熱器
は、ループ型ヒートパイプの蒸発器1を熱輸送媒
体流路とし、その外側に蓄熱材2を設けて構成し
たものである。すなわち蒸発器1は、互いにほぼ
水平方向に沿いかつ互いに平行な上部ヘツダ管3
と下部ヘツダ管4との間に両者を連通させる複数
本の蒸発管5を設けて全体として格子状に構成さ
れており、その上部ヘツダ管3には、蒸気管6が
接続され、また下部ヘツダ管4には液戻り管7が
接続されている。そしてこの蒸発器1の内部に
は、通常のヒートパイプと同様に、蒸発潜熱とし
て熱を輸送する水やフロンなどの作動流体が封入
されている。 FIG. 1 and FIG. 2 are cross-sectional views schematically showing an embodiment of the present invention. The heat storage material 2 is provided in the structure. In other words, the evaporator 1 includes upper header pipes 3 that are substantially horizontal and parallel to each other.
A plurality of evaporation pipes 5 are provided between the upper header pipe 3 and the lower header pipe 4 to communicate with each other, and the entire structure is arranged in a lattice shape.A steam pipe 6 is connected to the upper header pipe 3, and the lower header pipe A liquid return pipe 7 is connected to the pipe 4. Inside the evaporator 1, a working fluid such as water or fluorocarbon that transports heat as latent heat of vaporization is sealed, similar to a normal heat pipe.
上記の蒸発器1は、ブロツク状の蓄熱材2の内
部に埋め込んだ状態に配置されている。すなわち
この蓄熱材2は、セラミツクや金属あるいは蓄熱
レンガなどの体積比熱の大きい材料からなるもの
であつて、分割片の対向面に前記蒸発器1を収容
する凹部を形成した二分割構造であり、各分割片
を対向させて接合することにより、蒸発器1を収
容し、かつその状態で蒸発器1の周囲に不可避的
もしくは積極的にわずかな空間部8が形成されて
いる。そしてその空間部8には熱伝導率の高い気
体、例えばヘリウムガス、二酸化炭素ガス、窒素
ガス、水素ガスが加圧状態(例えば0.1Kg/cm2〜
5.0Kg/cm2程度)で封入されている。さらに蓄熱
材2のうち蒸発器1より下側の部分には加熱源と
して電気ヒータ9が挿入配置されている。 The evaporator 1 described above is embedded inside a block-shaped heat storage material 2. That is, the heat storage material 2 is made of a material with a large volumetric specific heat such as ceramic, metal, or heat storage brick, and has a two-part structure in which a recess for accommodating the evaporator 1 is formed on the opposing surfaces of the divided pieces. By joining the divided pieces facing each other, the evaporator 1 is accommodated, and in this state, a small space 8 is inevitably or actively formed around the evaporator 1. In the space 8, a gas with high thermal conductivity, such as helium gas, carbon dioxide gas, nitrogen gas, or hydrogen gas, is kept under pressure (for example, 0.1 Kg/cm 2 ~
5.0Kg/ cm2 ). Further, an electric heater 9 is inserted as a heat source in a portion of the heat storage material 2 below the evaporator 1.
以上のように構成した蓄熱材2の外周には断熱
材10が密着して配置され、またその外周には、
全体を気密状態に覆うケース11が設けられてい
る。なお、前記蒸気管6および液戻り管7は蓄熱
材2、断熱材10およびケース11を貫通して外
部に引き出されており、また電気ヒータ9のリー
ド線も同様に外部に引き出されている。 A heat insulating material 10 is disposed in close contact with the outer periphery of the heat storage material 2 configured as described above, and on the outer periphery,
A case 11 is provided that covers the entire device in an airtight manner. The steam pipe 6 and the liquid return pipe 7 pass through the heat storage material 2, the heat insulating material 10, and the case 11 and are drawn out to the outside, and the lead wire of the electric heater 9 is also drawn out.
上記の蓄熱器に対する蓄熱は、前記電気ヒータ
9は通電発熱させて蓄熱材2を加熱昇温すること
により行ない、その場合、蓄熱材2は固体であつ
て状態の変化を伴わず、顕熱として熱を蓄える。
このようにして蓄えた熱を取り出す場合には、前
記蒸発器1に液戻り管7から液相の作動流体を供
給して行なう。すなわち蒸発器1の内部に作動液
が供給されると、その作動液は蓄熱材2の有する
熱によつて加熱されるために蒸発し、その蒸気は
上部ヘツダ管3を介して蒸気管6から送り出され
る。その場合の蓄熱材2から作動液に対する熱伝
達は、蒸発器1を構成するパイプおよび前記空間
部8を介して行なわれるが、その空間部8にはヘ
リウムガスなどの高熱伝導率気体が加圧した状態
で封入されているから、蓄熱材2から蒸発器1に
対する熱伝達が良好に行なわれ、また蒸発器1と
その内部の作動流体とは直接接触しているから両
者の間の熱伝達も良好に行なわれ、したがつて前
述した蓄熱器では、蓄熱材2から作動流体に対す
る伝熱抵抗が少なく、作動流体を効率よく加熱昇
温し、熱応答性の良好なものとすることができ
る。また蓄熱材2と蒸発器1との素材が異なるこ
とにより、温度変化に伴つて両者の間の空間容積
が変動するが、その空間部8に封入されているの
は高熱伝導率気体であるから、蓄熱材2と蒸発器
1との間の熱伝達率が低下することはない。 Heat storage in the above-mentioned heat storage device is carried out by energizing the electric heater 9 to generate heat and heating the heat storage material 2 to raise the temperature. Store heat.
When the heat stored in this manner is to be taken out, a liquid-phase working fluid is supplied to the evaporator 1 from the liquid return pipe 7. That is, when the working fluid is supplied inside the evaporator 1, the working fluid is heated by the heat of the heat storage material 2 and evaporates, and the steam is sent from the steam pipe 6 via the upper header pipe 3. Sent out. In that case, heat transfer from the heat storage material 2 to the working fluid is carried out via the pipes that constitute the evaporator 1 and the space 8, and a high thermal conductivity gas such as helium gas is pressurized in the space 8. Since the heat storage material 2 is sealed in a state of Therefore, in the above-mentioned heat storage device, the heat transfer resistance from the heat storage material 2 to the working fluid is small, and the working fluid can be efficiently heated to a high temperature and has good thermal response. Furthermore, because the heat storage material 2 and the evaporator 1 are made of different materials, the space volume between them changes as the temperature changes, but the space 8 is filled with a high thermal conductivity gas. , the heat transfer coefficient between the heat storage material 2 and the evaporator 1 does not decrease.
なお、以上述べた実施例では、蓄熱材2を二分
割構造のブロツク状のものとしたが、この発明は
上記の実施例に限定されるものではないのであつ
て、必要に応じて適宜の形状の固体蓄熱材を使用
することができる。その例を示せば以下の通りで
あり、第3図に示す例は、蓄熱材2を粒状とし、
これを熱輸送媒体流路としてのフイン12の付い
たパイプ13の外周に充填し、かつその粒状蓄熱
材2の間に高熱伝導率気体を加圧封入したもので
ある。また第4図に示す例は、蓄熱材2を平板状
に形成し、これをフイン12の間に挿入するとと
もに、パイプ13およびフイン12と平板状蓄熱
材2との間の空間部8に高熱伝導率気体を加圧封
入したものである。さらに第5図に示す例は、蓄
熱材2を円弧状断面に形成し、これをパイプ14
の外面に軸線方向に沿つて設けたフイン15の間
に配置し、そのパイプ14およびフイン15と蓄
熱材2との間の空間部8に高熱伝導率気体を加圧
封入したものである。 In the embodiments described above, the heat storage material 2 has a block shape with a two-part structure, but the present invention is not limited to the above embodiments, and can be modified into an appropriate shape as necessary. solid heat storage materials can be used. Examples are as follows. In the example shown in FIG. 3, the heat storage material 2 is granular,
This is filled around the outer periphery of a pipe 13 with fins 12 as a heat transport medium flow path, and a high thermal conductivity gas is sealed between the granular heat storage materials 2 under pressure. In addition, in the example shown in FIG. 4, the heat storage material 2 is formed into a flat plate shape, which is inserted between the fins 12, and the space 8 between the pipe 13 and the fins 12 and the flat heat storage material 2 is heated to a high temperature. A conductive gas is sealed under pressure. Furthermore, in the example shown in FIG.
The space 8 between the pipe 14 and fins 15 and the heat storage material 2 is filled with a high thermal conductivity gas under pressure.
なお、この発明における熱輸送媒体は上述した
ヒートパイプの作動流体に限定されず、またその
熱輸送媒体を流す管路も上述した構成の蒸発器に
限定されず、必要に応じて適宜のものを使用する
ことができる。 Note that the heat transport medium in this invention is not limited to the working fluid of the heat pipe described above, and the conduit through which the heat transport medium flows is not limited to the evaporator configured as described above, but may be an appropriate one as necessary. can be used.
発明の効果
以上の説明から明らかなようにこの発明の蓄熱
器によれば、蓄熱材と管路との間の空間部が高熱
伝導率気体によつて充満されているから、不可避
的に空間部が生じるとしても蓄熱材と管路との間
の熱伝達が良好に行なわれ、また蓄熱材と管路と
の熱膨張量もしくは収縮量が相違していて空間部
の容積に変動が生じても、その内部に充填してあ
る物質は加圧した気体であるから、蓄熱材と管路
との間の熱伝達率に大きな変動はなく、この点で
も蓄熱材と管路との間の熱伝達が良好な状態に維
持され、したがつて総じてこの発明によれば、内
部での伝熱抵抗が少なく熱応答性の良好な蓄熱器
を得ることができる。Effects of the Invention As is clear from the above explanation, according to the heat storage device of the present invention, since the space between the heat storage material and the pipe line is filled with high thermal conductivity gas, the space inevitably becomes Even if there is a difference in the amount of thermal expansion or contraction between the heat storage material and the conduit, the heat transfer between the heat storage material and the conduit is good, and even if the volume of the space changes Since the substance filled inside is a pressurized gas, there is no major change in the heat transfer coefficient between the heat storage material and the pipes, and in this respect, the heat transfer between the heat storage material and the pipes is is maintained in a good condition, and therefore, overall, according to the present invention, a heat storage device with low internal heat transfer resistance and good thermal responsiveness can be obtained.
第1図はこの発明の一実施例を模式的に示す縦
断面図、第2図は同じく横断面図、第3図ないし
第5図のそれぞれはこの発明の他の実施例におけ
る蓄熱材および管路の形状を示す部分図である。
1…蒸発器、2…蓄熱材、8…空間部。
FIG. 1 is a vertical cross-sectional view schematically showing one embodiment of the present invention, FIG. It is a partial view showing the shape of a road. 1... Evaporator, 2... Heat storage material, 8... Space part.
Claims (1)
に、熱輸送用流体を流す管路が設けられるととも
に、その管路と前記蓄熱材との間に高熱伝導率気
体を加圧して封入してなることを特徴とする固体
蓄熱器。1 A conduit through which a heat transport fluid flows is provided inside a solid heat storage material that stores heat as sensible heat, and a high thermal conductivity gas is pressurized and sealed between the conduit and the heat storage material. A solid heat storage device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103025A JPH02282697A (en) | 1989-04-21 | 1989-04-21 | Solid thermal accumulator device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103025A JPH02282697A (en) | 1989-04-21 | 1989-04-21 | Solid thermal accumulator device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02282697A JPH02282697A (en) | 1990-11-20 |
JPH0579916B2 true JPH0579916B2 (en) | 1993-11-05 |
Family
ID=14343106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1103025A Granted JPH02282697A (en) | 1989-04-21 | 1989-04-21 | Solid thermal accumulator device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02282697A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007032866A (en) * | 2005-07-22 | 2007-02-08 | Ishikawajima Inspection & Instrumentation Co | Heat storage tank |
WO2024204235A1 (en) * | 2023-03-31 | 2024-10-03 | 愛知製鋼株式会社 | Chemical heat storage device |
-
1989
- 1989-04-21 JP JP1103025A patent/JPH02282697A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02282697A (en) | 1990-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1120029A (en) | Heat pipe bag system | |
US4546798A (en) | Vacuum insulated fluid transport pipes and method of construction | |
EP0216237A3 (en) | Intermittently operating sorption accumulator with a solid-containing absorber | |
EP3367037A1 (en) | Heat exchanger, heat exchange method using heat exchanger, heat transport system using heat exchanger, and heat transport method using heat transport system | |
JPS63294328A (en) | Heat energy transmitter and seal jaw for packaging machine with said device | |
CN109099740B (en) | Truss type vapor-liquid phase change heat transfer device and assembly welding method thereof | |
JPH0579916B2 (en) | ||
JPS62284193A (en) | Heat transfer pipe | |
JP2789363B2 (en) | Heat storage device | |
JPS58164993A (en) | Accumulation type heat exchanger | |
JPS60161702A (en) | Cooling trap for vacuum | |
JPH0674688A (en) | Heat exchanger particularly for corrosive fluid | |
JPH02282696A (en) | Solid thermal accumulator using heat pipe function | |
JPH0525254U (en) | Regenerator for hot water | |
JPS6030680Y2 (en) | underground heat exchanger | |
JPS6349157B2 (en) | ||
JPS6298151A (en) | Heat storage apparatus | |
JP2001116475A (en) | Heating radiator and method for manufacturing it | |
KR200218283Y1 (en) | Loop type heating coil of heat pipe for hypocaust | |
JPH01203893A (en) | Heat transfer device of loop pipe type | |
JPH11281271A (en) | Heat pipe and manufacture thereof | |
JPS6130085Y2 (en) | ||
KR920005609Y1 (en) | Heater pipe assembly | |
Babus' Haq et al. | Recommended location of a hot horizontal pipe in a relatively cool rectangular trench filled with thermally-insulating spheres | |
JPH0229438Y2 (en) |