JP2001116475A - Heating radiator and method for manufacturing it - Google Patents

Heating radiator and method for manufacturing it

Info

Publication number
JP2001116475A
JP2001116475A JP32863199A JP32863199A JP2001116475A JP 2001116475 A JP2001116475 A JP 2001116475A JP 32863199 A JP32863199 A JP 32863199A JP 32863199 A JP32863199 A JP 32863199A JP 2001116475 A JP2001116475 A JP 2001116475A
Authority
JP
Japan
Prior art keywords
tube
radiator
resin
pipe
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32863199A
Other languages
Japanese (ja)
Other versions
JP2001116475A5 (en
Inventor
Reiji Teraoka
玲二 寺岡
Kuniomi Kuroda
邦臣 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLAR GIKEN KK
Original Assignee
SOLAR GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLAR GIKEN KK filed Critical SOLAR GIKEN KK
Priority to JP32863199A priority Critical patent/JP2001116475A/en
Publication of JP2001116475A publication Critical patent/JP2001116475A/en
Publication of JP2001116475A5 publication Critical patent/JP2001116475A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating radiator which can change its peripheral facilities, such as the boiler, pipeline, etc., to simple ones, is not corroded, can be handled and designed easily by constituting the radiator of resin tubes instead of the metallic tubes constituting the conventional radiator and a method by which the radiator can be manufactured inexpensively. SOLUTION: A heating radiator is provided with small-diameter tubes 1 and 2 which are closely arranged in parallel with each other with convective spaces in between in one direction, supporting members 3 and 4 which maintain the spaces, etc. The group of tubes 1 and 2 form passages for hot water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は温水を使用する暖房用
放熱器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator for heating using hot water.

【0002】[0002]

【従来の技術】従来、暖房用放熱器には銅管や鉄が用い
られている。銅管を使用したものは図6にその側面模型
図を示す。13は銅管であり、それにアルミフィン14
を密に取り付けたものである。鉄製のものは図7(A)
にその断面を、(B)に側面模型図を示す。この場合管
ではなくプレス成形で熱媒の通路16を造り、鉄製の粗
いフィン15を付けたものである。あるいはフィン15
のない平板のものもあるが、当然このタイプは放熱量を
ある程度犠牲にしている。
2. Description of the Related Art Conventionally, copper tubes and iron have been used for radiators for heating. FIG. 6 is a side view showing a model using a copper tube. Reference numeral 13 denotes a copper tube and aluminum fins 14
Are attached closely. Fig. 7 (A) for iron
2 shows a cross-sectional view, and FIG. In this case, a passage 16 for the heat medium is formed by press molding instead of a tube, and coarse fins 15 made of iron are attached. Or fin 15
Although there is a flat plate without this, of course, this type sacrifices the heat radiation to some extent.

【0003】また図8のように単に管17あるいは管状
のものを並べた型式もある。18はヘッダーである。い
ずれも金属製であり重いだけでなく、取り付け工事は専
門業者に頼らなければならない。また現実に市場で流通
しているものは鉄製が多く、腐食の懸念が常につきまと
う。鉄製であるため温水中の酸素によって腐食が生じる
ので、酸素が混入しない対策が要求される。そのため配
管には、金属管を使用し、酸素を透過する樹脂管は原則
使用禁止である。
As shown in FIG. 8, there is a type in which a tube 17 or a tube is simply arranged. 18 is a header. All of them are made of metal and heavy, and the installation work must be done by a specialist. In addition, most of the products actually distributed in the market are made of iron, and there is always concern about corrosion. Since it is made of iron, it is corroded by oxygen in warm water. For this reason, metal pipes are used for piping, and the use of resin pipes that transmit oxygen is prohibited in principle.

【0004】やむを得ず樹脂管を使用する場合は多層に
して酸素を不透過にした高価なものが使用される。さら
に温水ボイラーについても酸素の混入を防ぐために管理
の面倒な密閉式が要求される。密閉式であるため圧力容
器となり、膨張タンクが必要となる。鉄製の放熱器に簡
便な解放式ボイラーを使用すると放熱器の寿命を著しく
縮めることになる。
[0004] When a resin tube is unavoidably used, a multi-layered, expensive oxygen impervious material is used. In addition, a hot water boiler is required to have a hermetically sealed type in order to prevent mixing of oxygen. Since it is a closed type, it becomes a pressure vessel and requires an expansion tank. The use of a simple open boiler with an iron radiator will significantly reduce the life of the radiator.

【0005】[0005]

【発明が解決しようとする課題】本発明は腐食せず、軽
くて取付けが簡単であり、さらに放熱特性の良好な暖房
用放熱器を安価に提供するものである。それによって解
放式のボイラーが使用可能になり、酸素の問題から解放
され、通常の樹脂管が使用できる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heating radiator which does not corrode, is light and easy to install, and has good heat radiation characteristics at a low cost. This allows the open boiler to be used, freed from oxygen problems, and normal resin tubing can be used.

【0006】[0006]

【問題を解決する手段】以上の課題を解決するために、
本発明では放熱器そのものを樹脂管で構成する。樹脂管
の熱伝導率を金属製と比べると非常に小さい。たとえば
熱伝導率を樹脂管と比較すると銅は2193倍、鉄は2
78倍である。この故に樹脂管での放熱器などとうてい
考えの及ばないことであった。しかし空気に対する熱伝
導は空気境膜係数によって、材質の差は消えてしまう。
たとえば管が空気中に熱伝導で放熱する熱量Qは次式で
表される。
[Means to solve the problem] To solve the above problems,
In the present invention, the radiator itself is formed of a resin tube. The thermal conductivity of the resin tube is very small compared to that of metal. For example, when comparing the thermal conductivity with resin pipe, copper is 2193 times and iron is 2
It is 78 times. For this reason, it was impossible to think of a radiator using a resin tube. However, the difference in the material of the heat conduction to the air disappears due to the air film coefficient.
For example, the amount of heat Q that the tube radiates into the air by heat conduction is represented by the following equation.

【0007】Q=kπΔt(Δt:熱媒と室内の温度
差) ここでkは次式による。 1/k=(1/h)+{(1/2λ)Ln d
/d}+(1/h) ここでhは管内側つまり水の熱伝達率で3500前後
である。、dは管の内径、hは管外側つまり空気の
熱伝達率(空気境膜係数)で10前後である。dは管
の外径、λは管材質による熱伝導率である。これにより
銅管と樹脂管の場合のk値を比較してみる。たとえば1
0A(内径 10mm、外径 13mm)について計算
すると銅管でk=0.129であり、樹脂管の場合は
0.115となる。材質だけの熱伝導率の比較では銅は
樹脂管の2193倍であるが、空気中に伝熱する場合は
わずか1.12倍にしかならない。
Q = kπΔt (Δt: temperature difference between heating medium and room) Here, k is given by the following equation. 1 / k = (1 / h 1 d 1 ) + {(1 / 2λ) Lnd 2
/ D 1 } + (1 / h 2 d 2 ) where h 1 is about 3500 in the heat transfer coefficient inside the pipe, that is, water. , D 1 is the inside diameter of the tube, h 2 is 10 back and forth in the heat transfer coefficient of the abluminal clogging air (air boundary film coefficient). d 2 is the outer diameter of the tube, lambda is the thermal conductivity due to the tube material. Thus, the k value of the copper pipe and the resin pipe will be compared. For example, 1
Calculating for 0 A (inner diameter 10 mm, outer diameter 13 mm), k = 0.129 for a copper tube and 0.115 for a resin tube. In comparison of the thermal conductivity of only the material, copper is 2193 times that of the resin tube, but when heat is transferred to the air, it is only 1.12 times.

【0008】このk値より計算すると樹脂管の対流によ
る放熱量Qは1m当たり、21.5W/hとなる。さら
に輻射伝熱もあり、これが1m当たり約 11W/hと
なり合計で32.5W/hとなる。樹脂管1m当たりの
放熱量が決まるので必要な放熱量の設定は樹脂管の長さ
を決めるだけでよい。ただし管相互間には対流のための
空間が必要であり、また多重にした場合は当然陰になる
部分の輻射はそれだけ減少する。このことは金属管の場
合も同じであり、放熱フィンを沢山取り付けても対流が
可能な間隔が必要であり、また放熱フィン14の場合は
輻射熱は期待できない。
When calculated from this k value, the amount of heat radiation Q due to convection of the resin pipe is 21.5 W / h per meter. There is also radiant heat transfer, which is about 11 W / h per meter, for a total of 32.5 W / h. Since the heat radiation amount per 1 m of the resin pipe is determined, the setting of the necessary heat radiation amount only needs to determine the length of the resin pipe. However, a space for convection is required between the pipes, and when the pipes are multiplexed, the radiation in the shaded area is reduced accordingly. This is the same in the case of a metal tube. Even if a large number of radiating fins are attached, a space that allows convection is required, and in the case of the radiating fin 14, radiant heat cannot be expected.

【0009】放熱フィンの間隔を狭くする場合は強制対
流用ファンが必要になる。樹脂管は熱伝導率が小さいか
ら金属管のように放熱板を付けても殆ど効果がない。つ
まり室内暖房用としては樹脂管に何か固体を接触させて
熱を取り出そうとすることは無駄である。そのような固
体を接触させる例としては床暖房やロードヒーティング
があり、この場合は放熱量が少なく温度も5〜30℃程
度である。樹脂管の配列のピッチも粗く、これらの用途
に対してはこれで十分である。
When the distance between the radiation fins is reduced, a forced convection fan is required. Since the resin tube has a low thermal conductivity, even if a heat radiating plate is attached like a metal tube, there is almost no effect. In other words, for indoor heating, it is useless to try to take out heat by bringing some solids into contact with the resin pipe. Examples of such solid contact include floor heating and road heating. In this case, the amount of heat radiation is small and the temperature is about 5 to 30 ° C. The pitch of the resin tube arrangement is also coarse, which is sufficient for these applications.

【0010】しかし室内の空気を暖めるにはもっと密度
の高い放熱量が必要となる。そのために樹脂管は独立さ
せてそれを空気と直接接触させるのが最も効果的であ
る。しかし1本では当然放熱量が不足するので、管の本
数を多くする。実際の配管構成の例は図1(A)、
(B)、(C)に示すように、できるだけ多くの本数を
間隔を保ちながら密集させる。例えば図1(A)の場合
は図2(A)のような穴あき板3に樹脂管1を挿入する
ことで実現できる。図2(B)はその構成の一部斜視図
である。この場合間隔及び並べ方は任意に選定できる。
また図1(C)は数本の直管を融着したものの集合体で
り、これも空間を保つ一つの方法である。
[0010] However, in order to warm the indoor air, a higher density heat radiation is required. Therefore, it is most effective to make the resin tube independent and bring it into direct contact with air. However, since the heat radiation amount is insufficient with one tube, the number of tubes is increased. An example of the actual piping configuration is shown in FIG.
As shown in (B) and (C), as many pieces as possible are densely packed while maintaining the intervals. For example, the case of FIG. 1A can be realized by inserting the resin tube 1 into a perforated plate 3 as shown in FIG. FIG. 2B is a partial perspective view of the configuration. In this case, the interval and the arrangement can be arbitrarily selected.
FIG. 1 (C) shows an aggregate of several straight pipes fused together, which is another method for keeping a space.

【0011】このように対流が生じやすい状態で管を密
集させる構造にすれば金属管でも同様な放熱量が得られ
る。管の接合も図9における19のようなUベンドを蝋
付けという方法で行えば不可能ではない。しかし小口径
金属管は前述のようにフィン14を取り付けた方がはる
かに効率が良く、経済的であるから、わざわざ面倒な構
造にする必要はない。また図8のような構造の場合は管
径を大きくしてフィンは付けない。樹脂管を密集させる
構造にした場合に最も問題とされるのは、管端の接合法
である。
With such a structure in which the tubes are densely packed in a state in which convection is likely to occur, a similar amount of heat can be obtained from a metal tube. The joining of the tubes is not impossible if the U-bend as shown in FIG. 9 is brazed. However, the small-diameter metal tube is much more efficient and economical if the fins 14 are attached as described above, so that it is not necessary to have a troublesome structure. In the case of the structure shown in FIG. 8, the diameter of the tube is increased and no fin is provided. The most problematic in the case where the resin pipes are densely arranged is the joining method of the pipe ends.

【0012】最も常識的な方法は図9のような管と同樹
脂製のUベンド19を熱融着する方法である。いわゆる
ヒートフュージョン法であるが、図1のように管が密集
している場合は極めて難しく、特に図1(C)の場合は
従来のどの方式による接続法でも不可能である。仮に可
能だとしてもこの場合は図5の(A)のように必然的に
1通路を形成する事になり、曲がりが多く温水の圧力損
失が非常に大きくなる。したがってこのような密集した
管の接合は本発明者が出願番号平11−199384で
出願を終えている管端処理法による方法で行う。
The most common method is to heat seal a tube as shown in FIG. 9 and a U-bend 19 made of the same resin. Although it is a so-called heat fusion method, it is extremely difficult when the pipes are dense as shown in FIG. 1, and especially in the case of FIG. 1C, it is impossible to use any conventional connection method. Even if it is possible, in this case, one passage is inevitably formed as shown in FIG. 5A, and there are many bends and the pressure loss of the hot water becomes very large. The joining of such dense tubes is therefore effected by the method according to the tube end treatment which has been filed by the inventor of the present invention as application number 11-199384.

【0013】図4(A)はその斜視図であり、(B)は
その断面模型図である。樹脂板5が管1の集合体の先端
に融着されており、その開口端6を2個またはそれ以上
を包含させてソケット7を熱融着することで、この管群
に複数の温水通路8,9を形成する事ができる。この管
端処理法によれば図5(B)のように全管群を同一方向
に流すヘッダー方式も可能であるが、管の本数が多い本
発明の場合は流速の早い管と遅い管の偏流が生じる。し
たがって、図5(C)のように複数通路8,9を設ける
事で、圧力損失を減少させ、さらに偏流を防ぐことがで
きる。複数通路はソケットの形状を変えることで必要に
応じ、何本でも設定可能である。
FIG. 4A is a perspective view thereof, and FIG. 4B is a sectional model view thereof. A resin plate 5 is fused to the tip of the aggregate of the tubes 1, and two or more open ends 6 of the tube 1 are welded and the socket 7 is thermally fused to form a plurality of hot water passages in this group of tubes. 8, 9 can be formed. According to this pipe end processing method, it is also possible to use a header method in which all the pipe groups flow in the same direction as shown in FIG. 5B. However, in the case of the present invention having a large number of pipes, a pipe having a fast flow rate and a pipe having a slow flow rate are used. Drift occurs. Therefore, by providing the plurality of passages 8 and 9 as shown in FIG. 5C, the pressure loss can be reduced and the drift can be further prevented. Any number of passages can be set as needed by changing the shape of the socket.

【0014】以上は樹脂管が直管の場合においての密集
方法であるが、樹脂管を図2(C)の断面図にみるよう
に支持棒4に樹脂管2を交互にくぐらせ管を波状にして
密集させることもできる。図2(D)はその構成の一部
斜視図である。さらに波状に成形固定された樹脂管2を
その凸部を相互に熱融着すると図3(A)のように樹脂
管のみで網状にすることもできる。またこの波状成形管
を90°回転させて融着すると断面が図3(B)に示す
ような樹脂管のみの構造体も可能である。
The above method is a dense method in the case where the resin pipes are straight pipes. The resin pipes are alternately passed through the support rods 4 as shown in the sectional view of FIG. It can also be crowded. FIG. 2D is a partial perspective view of the configuration. Further, when the resin tube 2 molded and fixed in a wavy shape is thermally fused with its convex portion, the resin tube 2 can be formed into a net shape only with the resin tube as shown in FIG. When this corrugated tube is rotated by 90 ° and fused, a structure having only a resin tube having a cross section as shown in FIG. 3B is also possible.

【0015】樹脂管の曲げやすさをフルに利用した方法
であり、この方法でも所定の空間が維持されており、放
熱特性を阻害することはない。つまり本発明は、熱可塑
性樹脂からなる小口径管(1、2)が平行方向に並び対
流が可能な空間をもって密集しており、かつその空間を
保つ支持手段(3、4)等を有し、その管群が温水通路
を形成している暖房用放熱器である。ここでいう小口径
管とは樹脂管をコイル状に巻いて供給できる管径をいう
ものである。
This is a method that makes full use of the flexibility of the resin tube. Even in this method, a predetermined space is maintained and the heat radiation characteristics are not hindered. In other words, the present invention has support means (3, 4) in which small-diameter pipes (1, 2) made of a thermoplastic resin are arranged in a parallel direction and are densely packed with a space capable of convection, and the space is maintained. Is a heating radiator whose tube group forms a hot water passage. The small-diameter pipe here means a pipe diameter that can be supplied by winding a resin pipe in a coil shape.

【0016】管が空気中に置かれた場合は管の径が大き
いとそれだけ放熱量も大きい。図8は金属管の放熱器の
例であるが、樹脂管でも同じ構成にすることは容易であ
る。しかし管の径が大きいと管自身の保有水量も多くな
り、軽いという利点が帳消しになる。これを防ぐために
図5(D)のように管10の内径より細い外径の樹脂管
11の両端をメクラに封じて中空の管を作りそれを管1
0に挿入する。管10にできる隙間12が温水通路とな
る。これによって太い管でも保有水量の少ない放熱器が
可能となる。管が太く一本毎に独立しているこの例では
従来の接合法で十分である。
When the tube is placed in the air, the larger the diameter of the tube, the greater the amount of heat radiation. FIG. 8 is an example of a metal tube radiator, but the same configuration can be easily applied to a resin tube. However, if the diameter of the pipe is large, the amount of water held by the pipe itself increases, and the advantage of lightness is canceled. In order to prevent this, as shown in FIG. 5 (D), both ends of a resin tube 11 having an outer diameter smaller than the inner diameter of the tube 10 are sealed in a hollow to form a hollow tube and the tube 1 is formed.
Insert at 0. The gap 12 formed in the pipe 10 becomes a hot water passage. This allows a radiator with a small amount of water to be retained even with a thick tube. In this example, where the tubes are thick and independent from one another, conventional joining methods are sufficient.

【0017】[0017]

【作用】これまで考えられることのなかった樹脂管によ
る放熱器である。樹脂管であるため製作が容易であり、
管1m当たりの放熱量が推定できるので必要な熱量の放
熱器を労せず設計できる。極めて軽量であり、サイズの
バリエーションに対しても安価に対応することができ
る。
[Function] This is a radiator using a resin tube, which has never been considered before. It is easy to manufacture because it is a resin tube,
Since the amount of heat radiation per meter of pipe can be estimated, a radiator of a necessary amount of heat can be designed without any effort. It is extremely lightweight and can cope with variations in size at low cost.

【0018】[0018]

【実施例1】呼び径10A(内径10mm、外径13m
m)のポリブテン管を長さ1200mmに切断し図2
(A)のような支持板を木材で作り、管相互の間隔を7
mmにして16本×2列にして挿入する。支持板の間隔
は200mmとし周囲も木材フレームとし、管端は4本
を1通路とするヘッダーに加工した。全体のサイズは3
60mm×1300mm×40mmとなった。このとき
の放熱量は温度差Δt=60℃で921W/hであっ
た。
Embodiment 1 Nominal diameter 10 A (inner diameter 10 mm, outer diameter 13 m
m) is cut into a 1200 mm long
The support plate as shown in (A) is made of wood and the distance between the pipes is 7
mm and 16 rows x 2 rows. The spacing between the support plates was 200 mm, the periphery was also made of a wood frame, and the pipe ends were processed into a header having four passages. Overall size is 3
It was 60 mm x 1300 mm x 40 mm. The amount of heat radiation at this time was 921 W / h at the temperature difference Δt = 60 ° C.

【0019】[0019]

【実施例2】図2(D)のように間隔200mmに固定
した木材の支持棒(長さ320mm)7本に10Aのポ
リブテン管(長さ1300mm)24本を交互に通し網
状の形に仕上げた。管端を2本が1通路となるヘッダー
に加工した。フレームを含めた全体のサイズは350m
m×1300mm×350mmとなり、このときの放熱
量は温度差60℃で780W/hであった。
EXAMPLE 2 As shown in FIG. 2D, 24 10A polybutene tubes (1300 mm length) are alternately passed through seven wood support rods (length 320 mm) fixed at an interval of 200 mm and finished in a net shape. Was. The pipe end was processed into a header in which two pipes formed one passage. The total size including the frame is 350m
m × 1300 mm × 350 mm, and the heat radiation amount at this time was 780 W / h at a temperature difference of 60 ° C.

【0020】[0020]

【実施例3】材質がポリプロピレンランダムコポリマー
(PPR)による長さ1.6mの20A(外径27m
m、内径22mm)に同質の長さ1.5mの13A(外
径17mm、内径13mm)の両端を封じたものを挿入
した。これをピッチ45mmにして9本をヘッダー方式
で連結した。保有水量は管の挿入前の計算値は5.5k
gであったが、挿入後は2.4kgとなった。
Example 3 20A of 1.6 m length (outer diameter 27 m) made of polypropylene random copolymer (PPR)
m, 22 mm in inner diameter) was inserted into a 13 A (outer diameter: 17 mm, inner diameter: 13 mm) having the same length and a length of 1.5 m and sealed at both ends. Nine pieces were connected by a header method at a pitch of 45 mm. The amount of water retained is 5.5k before the pipe is inserted.
g, but weighed 2.4 kg after insertion.

【0021】[0021]

【発明の効果】樹脂管であることで放熱器に対する概念
が大きく変わる。つまり腐食に対する懸念が全くなくな
るからである。圧力容器となる密閉式ボイラーは不要と
なり、解放式の取り扱い容易なボイラーで良いことにな
る。樹脂管の耐久性も問題はなく、むしろボイラーより
長寿命となる。取り付けも専門業者でなくて、販売業者
が設置できる手軽さとなり、さらに安価にできるので総
体的な効果は絶大である。
The concept of the radiator is greatly changed by using the resin tube. That is, there is no concern about corrosion. A closed boiler serving as a pressure vessel is not required, and an open boiler that is easy to handle is sufficient. There is no problem with the durability of the resin pipe, but it has a longer life than the boiler. The installation is not a specialty, but it is easy for the dealer to install, and the cost can be further reduced, so the overall effect is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】樹脂管の配列方法の例FIG. 1 shows an example of a method for arranging resin tubes.

【図2】本発明の実施例を示す斜視図FIG. 2 is a perspective view showing an embodiment of the present invention.

【図3】実施例を示す説明図FIG. 3 is an explanatory view showing an embodiment.

【図4】管接合法による説明用の断面模型図FIG. 4 is a cross-sectional model diagram for explanation by a pipe joining method.

【図5】流体通路の説明図FIG. 5 is an explanatory view of a fluid passage.

【図6】従来例の側面模型図FIG. 6 is a side view of a conventional example.

【図7】従来例の断面及び側面模型図FIG. 7 is a cross-sectional and side view model of a conventional example.

【図8】従来例の側面図FIG. 8 is a side view of a conventional example.

【図9】接合法の説明図FIG. 9 is an explanatory view of a joining method.

【符号の説明】[Explanation of symbols]

1 管 2 波型状管 3.支持板 4 支持棒 5 融着板 6 開口端 7 ソケット 8、9 流体通路 10 管 11 封入管 12 隙間 1 pipe 2 corrugated pipe 3 Support plate 4 Support rod 5 Fusing plate 6 Open end 7 Socket 8, 9 Fluid passage 10 Tube 11 Enclosure tube 12 Gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂からなる小口径管(1、2)
が平行方向に並び対流が可能な空間をもって密集してお
り、かつその空間を保つ支持手段(3、4)等を有し、
その管群が温水通路を形成している暖房用放熱器。
1. A small-diameter pipe (1, 2) made of a thermoplastic resin.
Are arranged closely in a parallel direction and have a space capable of convection, and have support means (3, 4) for maintaining the space.
A radiator for heating whose tube group forms a hot water passage.
【請求項2】熱可塑性樹脂からなる小口径管(2)を波
状に成形し、それを相互に熱融着することにより管自体
で網状の構造体を構成している請求項1記載の暖房用放
熱器
2. A heating apparatus according to claim 1, wherein the small-diameter pipe (2) made of a thermoplastic resin is formed into a wavy shape, and these are heat-sealed to each other to form a net-like structure by the pipe itself. Radiator
【請求項3】両端を封じた樹脂管を内蔵させて2重の樹
脂管を構成し、その複数本を間隔をおいて並列させ温水
通路を形成してなる暖房用放熱器。
3. A heating radiator in which a double resin tube is formed by incorporating a resin tube whose both ends are sealed, and a plurality of the resin tubes are arranged in parallel at intervals to form a hot water passage.
【請求項4】熱可塑性樹脂よりなる小口径管(1、2)
を対流可能な空間を保つ支持手段(3,4)等を介して
平行方向に密集させ、その管群を接合し複数通路(8,
9)を多重に折り返して温水通路を形成する暖房用放熱
器の製造法
4. A small-diameter pipe made of a thermoplastic resin.
Are densely arranged in a parallel direction via support means (3, 4) for maintaining a space capable of convection, and the tube groups are joined to form a plurality of passages (8,
Method for manufacturing a radiator for heating in which 9) is folded back to form a hot water passage
JP32863199A 1999-10-13 1999-10-13 Heating radiator and method for manufacturing it Pending JP2001116475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32863199A JP2001116475A (en) 1999-10-13 1999-10-13 Heating radiator and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32863199A JP2001116475A (en) 1999-10-13 1999-10-13 Heating radiator and method for manufacturing it

Publications (2)

Publication Number Publication Date
JP2001116475A true JP2001116475A (en) 2001-04-27
JP2001116475A5 JP2001116475A5 (en) 2005-03-10

Family

ID=18212433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32863199A Pending JP2001116475A (en) 1999-10-13 1999-10-13 Heating radiator and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2001116475A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192144A (en) * 2008-02-14 2009-08-27 Tesuku:Kk Moisture releasing electrical hot water circulation heating system
WO2009116387A1 (en) * 2008-03-17 2009-09-24 株式会社 テスク Hot-water-circulating radiator for indoor heating
WO2011039858A1 (en) * 2009-09-30 2011-04-07 株式会社 テスク Hot-water circulation heating/cooling radiator for room heating/cooling
CN104641180A (en) * 2012-07-11 2015-05-20 韩伊金属株式会社 Radiator having pipe connector welded thereto and method for manufacturing said radiator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192144A (en) * 2008-02-14 2009-08-27 Tesuku:Kk Moisture releasing electrical hot water circulation heating system
JP4587490B2 (en) * 2008-02-14 2010-11-24 株式会社テスク Moisturizing type electric hot water circulation heating system
WO2009116387A1 (en) * 2008-03-17 2009-09-24 株式会社 テスク Hot-water-circulating radiator for indoor heating
JP2009222297A (en) * 2008-03-17 2009-10-01 Tesuku:Kk Hot water circulation radiator for indoor heating
JP4514806B2 (en) * 2008-03-17 2010-07-28 株式会社テスク Hot water circulation radiator for room heating
DE112009000628T5 (en) 2008-03-17 2011-02-03 Kabushiki Kaisha Tesuku, Sapporo Hot water circulation radiator for a building heating
KR101233496B1 (en) 2008-03-17 2013-02-14 가부시키가이샤 데스쿠 Hot-water-circulating radiator for indoor heating
WO2011039858A1 (en) * 2009-09-30 2011-04-07 株式会社 テスク Hot-water circulation heating/cooling radiator for room heating/cooling
CN104641180A (en) * 2012-07-11 2015-05-20 韩伊金属株式会社 Radiator having pipe connector welded thereto and method for manufacturing said radiator

Similar Documents

Publication Publication Date Title
JP5296990B2 (en) Brazed plate fin heat exchanger
JP2010261658A5 (en)
CA1235114A (en) Heat exchanger duct with heat exchange wiring
US20160245594A1 (en) Heat exchanger with louvered fins
JP2001116475A (en) Heating radiator and method for manufacturing it
JP2003240457A (en) Heat exchanger for hot-water supply
EP0859097A1 (en) Ceiling element
JPS5952195A (en) Heat exchanger
JP2857896B2 (en) Heat exchanger manufacturing method
JP2005233597A (en) Heat storage heat exchanger
US20060237180A1 (en) Air heat exchanger
JPH04356689A (en) Heat radiation pipe for natural convection type heat exchanger and fabrication thereof
CN215489964U (en) Floor heating heat dissipation device and floor heating system
RU65188U1 (en) HEAT EXCHANGER OF FLOOR HEATING CONVECTOR (OPTIONS)
JPS60232496A (en) Heat exchanger
RU2328661C1 (en) Heat-exchanger of floor heating convector (options)
KR200274841Y1 (en) Apparatus for transferring heat for hot-water heating pipes
JPH10132478A (en) Heat pipe type radiator
JP2003294380A (en) Heat exchanger
JPH0547955Y2 (en)
JPS62212055A (en) Manufacture of heat exchanger
JP6386807B2 (en) Thermal storage unit and air conditioning system
RU2153636C1 (en) Heating appliance
JPS5810884Y2 (en) floor heating panel
JPS5916702Y2 (en) Waste heat recovery equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031120

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070403

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108