JP2007032866A - Heat storage tank - Google Patents

Heat storage tank Download PDF

Info

Publication number
JP2007032866A
JP2007032866A JP2005212828A JP2005212828A JP2007032866A JP 2007032866 A JP2007032866 A JP 2007032866A JP 2005212828 A JP2005212828 A JP 2005212828A JP 2005212828 A JP2005212828 A JP 2005212828A JP 2007032866 A JP2007032866 A JP 2007032866A
Authority
JP
Japan
Prior art keywords
heat storage
heat
tank
storage material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212828A
Other languages
Japanese (ja)
Inventor
Keiichi Miwa
敬一 三輪
Ichiro Kajigaya
一郎 梶ヶ谷
Ryuzo Hiraoka
龍三 平岡
Toshihiro Imai
敏裕 今井
Hiroshi Ando
浩史 安藤
Makoto Suganuma
誠 菅沼
Kenji Watanabe
健次 渡辺
Teru Hanabusa
輝 花房
Ryotaro Tateyama
陵太郎 舘山
Yukihiro Sugimoto
行弘 杉本
Masakatsu Sakai
政勝 酒井
Hiroyuki Uragami
弘之 浦上
Hiroshi Udagawa
博司 宇田川
Kenji Kiba
賢二 木庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Hokuriku Electric Power Co
Ishikawajima Inspection and Instrumentation Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Hokuriku Electric Power Co
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Kyushu Electric Power Co Inc, Chugoku Electric Power Co Inc, Hokuriku Electric Power Co, Ishikawajima Inspection and Instrumentation Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2005212828A priority Critical patent/JP2007032866A/en
Publication of JP2007032866A publication Critical patent/JP2007032866A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage tank improved in heat storage efficiency in the tank by quickly transmitting heat from heaters to a heat storage material to easily and quickly heat the heat storage material in the tank to an approximately uniform temperature with little temperature difference, and improved in heat output efficiency by quickly transmitting heat, stored in the heat storage material, to heat exchanger tubes to efficiently heat water and furthermore to efficiently produce steam. <P>SOLUTION: Electric heaters 14 and the heat exchanger tubes 16 are arranged in an inner tank 12 with the heat storage material 17 stored, and fins 13 are provided along the heat exchanger tubes 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は蓄熱槽に関する。   The present invention relates to a heat storage tank.

従来から、夜間の余剰電力を利用して蓄熱槽に蓄熱を行い、蓄熱した熱で水を加熱して蒸気や温水を生成させることが行なわれており、例えば、特許文献1、2に示すものがある。而して、特許文献1、2に示す蓄熱槽においては、電気ヒータ等のヒータ及び水が導入される伝熱管を配設した槽内に固体蓄熱材と液体蓄熱材とを備えた蓄熱材を収納して、電気ヒータにより蓄熱材を高温に加熱し蓄熱を行い、加熱された蓄熱材により伝熱管を流通する水を加熱して蒸気或は温水を生成させるようにしている。
特開平3−282101号公報 特開2000−97498号公報
Conventionally, heat is stored in a heat storage tank using surplus power at night, and water and water are generated by the stored heat to generate steam and hot water. For example, those shown in Patent Documents 1 and 2 There is. Thus, in the heat storage tanks shown in Patent Documents 1 and 2, a heat storage material provided with a solid heat storage material and a liquid heat storage material in a tank in which a heater such as an electric heater and a heat transfer tube into which water is introduced is disposed. The heat storage material is housed and heated to a high temperature by an electric heater to store heat, and the water flowing through the heat transfer tube is heated by the heated heat storage material to generate steam or hot water.
JP-A-3-282101 JP 2000-97498 A

しかしながら、従来の蓄熱槽においては、ヒータ近傍の蓄熱材の温度は高くなるが、ヒータから離反した位置の蓄熱材は高温に加熱できないため、蓄熱材に場所により温度差が生じて温度差の大きい温度分布が形成され、その結果、槽内を均一な温度に加熱し難くて蓄熱が不十分となり、従って、蓄熱効率が低下し、又、逆に蓄熱材に蓄熱された熱の伝熱管に対する熱伝達も迅速且つ十分に行なうことが困難で、迅速な水の加熱を行い難く、その結果、槽全体の蓄熱を有効に利用することができず、出熱効率も低いという問題がある。   However, in the conventional heat storage tank, the temperature of the heat storage material in the vicinity of the heater is high, but the heat storage material at a position away from the heater cannot be heated to a high temperature, so a temperature difference occurs in the heat storage material depending on the location, and the temperature difference is large A temperature distribution is formed, and as a result, it is difficult to heat the inside of the tank to a uniform temperature, resulting in insufficient heat storage. Therefore, heat storage efficiency is lowered, and conversely, heat stored in the heat storage material is heat to the heat transfer tube. It is difficult to transfer the water quickly and sufficiently, and it is difficult to heat the water quickly. As a result, the heat storage of the entire tank cannot be used effectively, and the heat output efficiency is low.

従来タイプの蓄熱槽において、電気ヒータ2により蓄熱材5を加熱して蓄熱した場合の槽内における温度分布状態のシミュレーションの結果について説明すると、図9はシミュレーションに使用した蓄熱装置の概要を示す平面図、図10はシミュレーションにより得られた蓄熱材の部分的な温度分布線図である。図9中、1は槽、2はヒータ容器3内に収納されて槽1内に配置された電気ヒータ、4は一方の端部から水が供給されると共に加熱されて生成された蒸気が他端部から送出されるようにした伝熱管、5は粒状の酸化マグネシウム等である固体蓄熱材と、硝酸ナトリウム等の溶融塩である液体蓄熱材が混合された蓄熱材である。蓄熱材5は槽1の全体に収納されている。   In the conventional heat storage tank, the result of the simulation of the temperature distribution state in the tank when the heat storage material 5 is heated and stored by the electric heater 2 will be described. FIG. 9 is a plan view showing the outline of the heat storage device used for the simulation. FIG. 10 and FIG. 10 are partial temperature distribution diagrams of the heat storage material obtained by simulation. In FIG. 9, 1 is a tank, 2 is an electric heater housed in the heater container 3 and disposed in the tank 1, and 4 is supplied with water from one end and heated to generate steam. A heat transfer tube 5 sent from the end is a heat storage material in which a solid heat storage material such as granular magnesium oxide and a liquid heat storage material such as a molten salt such as sodium nitrate are mixed. The heat storage material 5 is stored in the entire tank 1.

而して、電気ヒータに電力を供給して10時間加熱した場合に得られた槽1内の蓄熱による温度分布状態は図10に示すようになる。図10においてHはヒータ設置部、線図は同一温度を表す線図、数値は蓄熱材温度(℃)である。   Thus, the temperature distribution state due to heat storage in the tank 1 obtained when electric power is supplied to the electric heater and heated for 10 hours is as shown in FIG. In FIG. 10, H is a heater installation part, a diagram is a diagram showing the same temperature, and a numerical value is a heat storage material temperature (° C).

この図10から明らかなように、ヒータ設置部Hの温度及びその周囲近傍の槽1内の温度は高いが、ヒータ設置部Hから離反するに従い、槽1内の温度は急激に低下する。このことから、槽1内においてはヒータ近傍とヒータから離反した位置では温度差が大きくて蓄熱が不十分であり蓄熱効率が低いことが明らかである。   As is clear from FIG. 10, the temperature of the heater installation portion H and the temperature in the tank 1 in the vicinity thereof are high, but as the distance from the heater installation portion H increases, the temperature in the tank 1 rapidly decreases. From this, in the tank 1, it is clear that the temperature difference is large at the position near the heater and away from the heater, the heat storage is insufficient, and the heat storage efficiency is low.

又、図9に示す従来タイプの蓄熱槽により水を加熱して蒸気を生成させた場合における槽1内の温度分布状態のシミュレーションの結果について説明すると、蓄熱して図10に示すような温度分布が得られた場合に、伝熱管4に水を流して加熱を開始し、蒸気を生成させた場合における2時間経過後の槽1内の温度分布状態は図11に示されている。図11において、Hはヒータ設置部、Pは伝熱管設置部、線図は同一温度を表す線図、数値は蓄熱材温度(℃)である。   Further, a simulation result of the temperature distribution state in the tank 1 in the case where steam is generated by heating water in the conventional type heat storage tank shown in FIG. 9 will be described. Is obtained, the temperature distribution state in the tank 1 after 2 hours in the case where heating is started by flowing water through the heat transfer tube 4 and steam is generated is shown in FIG. In FIG. 11, H is a heater installation part, P is a heat transfer tube installation part, a diagram is a diagram showing the same temperature, and a numerical value is a heat storage material temperature (° C.).

この図11からも明らかなように、ヒータ設置部Hの蓄熱材の温度は高いが、伝熱管設置部Pの蓄熱材の温度は低い。従って、従来タイプの蓄熱槽では、伝熱管近傍の熱が蒸気の生成に利用されるが、槽全体の熱が利用されず、従って、所定の温度の蒸気や温水を得るために時間を要することになり、出熱効率が悪い。   As apparent from FIG. 11, the temperature of the heat storage material in the heater installation portion H is high, but the temperature of the heat storage material in the heat transfer tube installation portion P is low. Therefore, in the conventional type heat storage tank, the heat in the vicinity of the heat transfer tube is used for generating steam, but the heat of the entire tank is not used, and therefore it takes time to obtain steam and hot water at a predetermined temperature. The heat output efficiency is poor.

本発明は、上述の実情に鑑み、ヒータからの熱を蓄熱材に対し迅速に伝達し得るようにして、槽内の蓄熱材を容易且つ温度差の少ない略均一な温度に加熱し得るようにすることにより、槽内の蓄熱効率の向上を図り、又、蓄熱材に蓄熱された熱の伝熱管に対する熱伝達をも迅速に行い得るようにして、水の加熱延いては蒸気の生成を効率良く行い得るようにすることにより出熱効率を向上させるようにした蓄熱槽を提供することを目的としてなしたものである。   In view of the above circumstances, the present invention is capable of quickly transferring heat from the heater to the heat storage material so that the heat storage material in the tank can be easily heated to a substantially uniform temperature with little temperature difference. In this way, heat storage efficiency in the tank is improved, heat transfer from the heat stored in the heat storage material to the heat transfer pipe can be performed quickly, and heat generation and steam generation are efficient. The object of the present invention is to provide a heat storage tank that improves heat output efficiency by making it possible to perform well.

本発明の請求項1の蓄熱槽は、蓄熱材が収納された槽内に、ヒータ及び内部を流体が流通する伝熱管を配置すると共に、伝熱管に沿ってフィンを設けたものである。   The heat storage tank according to claim 1 of the present invention has a heater and a heat transfer tube through which a fluid flows in a tank in which a heat storage material is housed, and fins are provided along the heat transfer tube.

本発明の請求項2の蓄熱槽においては、フィンは上下へ延在する管材に前後、左右へ延在する板体を固設して形成されると共に、前記管材にヒータを収納したものであり、請求項3の蓄熱槽においては、ヒータは電気ヒータであり、請求項4の蓄熱槽においては、蓄熱材は固体蓄熱材及び液体蓄熱材とにより構成されている。   In the heat storage tank according to claim 2 of the present invention, the fin is formed by fixing a plate extending in the front-rear and left-right directions to a pipe extending vertically, and a heater is accommodated in the pipe. In the heat storage tank of claim 3, the heater is an electric heater, and in the heat storage tank of claim 4, the heat storage material is constituted by a solid heat storage material and a liquid heat storage material.

本発明の蓄熱槽によれば、槽内にフィンを設けているため、ヒータからの熱を蓄熱材に対し迅速に伝達させて槽内の蓄熱材を容易且つ温度差の少ない略均一な温度に加熱することができ、その結果、槽全体に熱が伝わりヒータ近傍だけではなくヒータから離反した位置の蓄熱材も温度が高くなることにより、槽全体に十分に蓄熱が行なわれて蓄熱効率が向上し、又、蓄熱材に蓄熱された熱の伝熱管に対する熱伝達をも迅速に行うことができて、流体の加熱や蒸気の生成を効率良く行なうことができ、出熱効率が向上する、等種々の優れた効果を奏し得る。   According to the heat storage tank of the present invention, since the fins are provided in the tank, the heat from the heater is quickly transmitted to the heat storage material, so that the heat storage material in the tank is easily and substantially uniform with little temperature difference. As a result, heat is transferred to the entire tank and the temperature of the heat storage material not only in the vicinity of the heater but also away from the heater is increased, so that the entire tank is sufficiently stored and heat storage efficiency is improved. In addition, heat transfer of heat stored in the heat storage material to the heat transfer tube can be performed quickly, fluid can be heated and steam can be generated efficiently, and heat output efficiency can be improved. The excellent effect of can be produced.

以下、本発明の実施の形態を添付図面を参照して説明する。
図1及び図2は本発明を実施する形態の一例である。而して、蓄熱槽11を形成する内槽12内には、前後左右に延在する板体を組付けることにより平面視で三分割された格子状に形成されしかも内槽12内を上方から下方まで延在するフィン13が、収納されている。内槽12はステンレス製で、フィン13は軟鋼等の熱伝達性の良好な金属により形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2 are examples of embodiments for carrying out the present invention. Thus, the inner tank 12 forming the heat storage tank 11 is formed in a lattice shape divided into three in plan view by assembling plates extending in the front, rear, left and right directions, and the inner tank 12 is viewed from above. A fin 13 extending downward is housed. The inner tank 12 is made of stainless steel, and the fins 13 are made of a metal having good heat transfer properties such as mild steel.

又、フィン13の十文字状に交叉する部分の所定位置には、フィン13を前後左右において接続するよう上下に延在すると共に、内部に電気ヒータ14を格納し得るようにした管材15が設けられている。管材15は例えば軟鋼等の熱伝達性の良好な金属により形成されている。   Further, at a predetermined position of the crossed portion of the fin 13, there is provided a pipe member 15 that extends vertically so as to connect the fin 13 in the front, rear, left, and right and that can store the electric heater 14 therein. ing. The tube material 15 is made of a metal having a good heat transfer property such as mild steel.

内槽12内には、一端上部から水Wを供給すると共に、加熱されて生成された蒸気Vを他端上端から取出させるようにした伝熱管16が収納されている。伝熱管16はインコネル(登録商標)等の耐熱性及び繰返し応力特性の良好な金属製であり、正面視で上下方向へ延在するようジグザグ状に形成されてフィン13の面に対し僅かな隙間を置くよう、近接配置されており、水Wの入口部と蒸気Vの出口部とは前後方向において離反した位置となるように配置されている。   In the inner tank 12, a heat transfer tube 16 is provided which supplies water W from the upper end of one end and takes out the steam V generated by heating from the upper end of the other end. The heat transfer tube 16 is made of a metal such as Inconel (registered trademark) that has good heat resistance and cyclic stress characteristics, and is formed in a zigzag shape so as to extend in the vertical direction when viewed from the front. The water W inlet portion and the steam V outlet portion are arranged so as to be separated from each other in the front-rear direction.

内槽12内には、蓄熱材17が収納されている。而して、内槽12内に蓄熱材17を充填することにより、フィン13及び電気ヒータ14が収納された管材15並びに伝熱管16は、上部側の一部を除いて蓄熱材17に埋設されるようになっている。蓄熱材17は固体蓄熱材と液体蓄熱材とが混合することにより形成されており、固体蓄熱材としては酸化マグネシウム、マグネタイト、シリカ又は/及びアルミナが用いられ、例えば、粒径は約10mm程度のものと更に小粒径の約2mm程度のものが混合使用される。又、液体蓄熱材は、硝酸ナトリウム、亜硝酸ナトリウム、硝酸カリウム等が用いられ、加熱することにより溶融塩となるものである。   A heat storage material 17 is accommodated in the inner tank 12. Thus, by filling the inner tank 12 with the heat storage material 17, the tube material 15 in which the fins 13 and the electric heater 14 are accommodated and the heat transfer tube 16 are embedded in the heat storage material 17 except for a part on the upper side. It has become so. The heat storage material 17 is formed by mixing a solid heat storage material and a liquid heat storage material, and magnesium oxide, magnetite, silica, and / or alumina is used as the solid heat storage material. For example, the particle size is about 10 mm. Those having a small particle size of about 2 mm are mixed and used. Moreover, sodium nitrate, sodium nitrite, potassium nitrate, etc. are used for a liquid heat storage material, and it becomes a molten salt by heating.

なお、図中、18は内槽12を覆う外槽であり、内槽12と外槽18との間には、公知の断熱材が充填されている。   In the figure, reference numeral 18 denotes an outer tank covering the inner tank 12, and a known heat insulating material is filled between the inner tank 12 and the outer tank 18.

次に、上記した実施の形態の作動を説明する。
本図示例の蓄熱槽11により蒸気を生成させる際には、夜間等に予め余剰の電力を用いて内槽12内に充填された蓄熱材17に蓄熱を行なうが、この場合には、伝熱管16内を水Wが流れないよう、伝熱管16の上流側に設けた図示してない制御弁を閉止しておき、電気ヒータ14に通電する。
Next, the operation of the above-described embodiment will be described.
When steam is generated by the heat storage tank 11 of the illustrated example, heat is stored in the heat storage material 17 filled in the inner tank 12 in advance by using surplus power at night or the like. In this case, the heat transfer tube A control valve (not shown) provided on the upstream side of the heat transfer tube 16 is closed so that the water W does not flow in the interior of the heat transfer pipe 16, and the electric heater 14 is energized.

このため、電気ヒータ14で生じたジュール熱は、管材15から蓄熱材17に伝達されると共に、管材15及びフィン13から蓄熱材17に伝達され、蓄熱材17が加熱される。その結果、液体蓄熱材は溶融塩となって固体蓄熱材の隙間を埋めると共に、固体蓄熱材及び溶融した液体蓄熱材はフィン13及び伝熱管16に接触する。   For this reason, Joule heat generated in the electric heater 14 is transmitted from the tube material 15 to the heat storage material 17, and is also transmitted from the tube material 15 and the fins 13 to the heat storage material 17 to heat the heat storage material 17. As a result, the liquid heat storage material becomes a molten salt to fill a gap between the solid heat storage materials, and the solid heat storage material and the molten liquid heat storage material come into contact with the fins 13 and the heat transfer tubes 16.

従って、本図示例の蓄熱槽11においては、蓄熱の際に電気ヒータ14から離反した位置にある蓄熱材17は、直接蓄熱材17を伝達された熱により加熱されるだけではなく、フィン13からの熱によっても加熱されるため、熱は迅速且つ確実に電気ヒータ14から離反した箇所へ伝達される。その結果、内槽12内の蓄熱材17は、容易且つ迅速にしかも温度差の少ない略均一な温度に加熱されて十分な蓄熱が行なわれ、蓄熱効率が良好となる。   Accordingly, in the heat storage tank 11 of the illustrated example, the heat storage material 17 located at a position away from the electric heater 14 during heat storage is not only heated by the heat directly transmitted through the heat storage material 17 but also from the fins 13. Therefore, the heat is quickly and reliably transmitted to a place away from the electric heater 14. As a result, the heat storage material 17 in the inner tub 12 is easily and quickly heated to a substantially uniform temperature with little temperature difference, and sufficient heat storage is performed, so that the heat storage efficiency is improved.

蒸気を生成させる際には、前記制御弁を開いて水Wを伝熱管16へ供給する。このため、水Wは伝熱管16内を流通しつつ、蓄熱材17から直接伝達される熱及びフィン13から蓄熱材17を介して伝達される熱により加熱され、昇温して蒸気Vが生成され、蒸気Vは伝熱管16から送出されて下流側へ送給される。   When generating steam, the control valve is opened to supply water W to the heat transfer tube 16. Therefore, the water W is heated by the heat directly transmitted from the heat storage material 17 and the heat transmitted from the fins 13 through the heat storage material 17 while flowing through the heat transfer tube 16, and the steam V is generated by raising the temperature. Then, the steam V is sent out from the heat transfer pipe 16 and fed downstream.

従って、本図示例の蓄熱槽11においては、蒸気生成の際に蓄熱材17に蓄熱された熱は、フィン13からも伝熱管16に伝達されるため、熱は迅速且つ確実に伝熱管16を介して水Wに伝達され、水Wの加熱延いては蒸気Vの生成を効率良く行うことができ、従って出熱効率が良好となる。   Therefore, in the heat storage tank 11 of the illustrated example, the heat stored in the heat storage material 17 at the time of steam generation is also transmitted from the fins 13 to the heat transfer tube 16, so that the heat passes through the heat transfer tube 16 quickly and reliably. Thus, the water W can be heated and the steam V can be efficiently generated, and the heat output efficiency is improved.

本図示例の蓄熱槽11において、電気ヒータ14により蓄熱材17を加熱して蓄熱した場合の槽内における温度分布状態のシミュレーションの結果について説明すると、図6はシミュレーションに使用した蓄熱装置の概要を示す平面図、図7はシミュレーションにより得られた蓄熱材の部分的な温度分布線図である。図6中、図1に示すものと同一のものは同一のものを示す。   In the heat storage tank 11 of the illustrated example, the result of the simulation of the temperature distribution state in the tank when the heat storage material 17 is heated and stored by the electric heater 14 will be described. FIG. 6 shows the outline of the heat storage device used for the simulation. FIG. 7 is a partial temperature distribution diagram of the heat storage material obtained by simulation. In FIG. 6, the same components as those shown in FIG. 1 indicate the same components.

而して、図7は電気ヒータ14に電力を供給して10時間加熱した場合に得られた槽1内の蓄熱による部分的な温度分布状態を示し、図7において、Hはヒータ設置部、線図は同一温度を表す線図、数値は温度(℃)である。   Thus, FIG. 7 shows a partial temperature distribution state due to heat storage in the tank 1 obtained when electric power is supplied to the electric heater 14 and heated for 10 hours. In FIG. A diagram is a diagram showing the same temperature, and a numerical value is temperature (° C.).

この図7からも明らかなように、電気ヒータ14の近傍だけではなく、電気ヒータ14から離反した位置にも、フィン13を介して熱は容易且つ迅速に伝わり、蓄熱材17を内槽12全体において温度差の少ない略均一な温度に加熱することができて、十分に蓄熱でき、従って蓄熱効率が良好となることが分かる。   As apparent from FIG. 7, heat is easily and quickly transmitted through the fins 13 not only in the vicinity of the electric heater 14 but also in a position away from the electric heater 14, and the heat storage material 17 is transferred to the entire inner tank 12. It can be seen that the temperature can be heated to a substantially uniform temperature with a small temperature difference, and sufficient heat can be stored, thus improving the heat storage efficiency.

又、本図示例の蓄熱槽11により水Wを加熱して蒸気Vを生成させた場合における本図示例の蓄熱槽11内の温度分布状態のシミュレーションの結果について説明すると、蓄熱して図7に示すような温度分布が得られた場合に、図6の伝熱管16に水Wを流して加熱し、蒸気Vを生成させた場合における2時間経過後の内槽12内の温度分布状態は図8に示されている。図8において、Hはヒータ設置部、Pは伝熱管設置部、線図は同一温度を表す線図、数値は温度(℃)である。   Also, the simulation result of the temperature distribution state in the heat storage tank 11 of the illustrated example when the water W is heated by the heat storage tank 11 of the illustrated example to generate the steam V will be described. When the temperature distribution as shown is obtained, the temperature distribution state in the inner tub 12 after two hours when the water W is flowed through the heat transfer tube 16 of FIG. 8. In FIG. 8, H is a heater installation part, P is a heat transfer tube installation part, a diagram is a diagram showing the same temperature, and a numerical value is temperature (° C.).

この図8からも明らかなように、伝熱管設置部Pの温度及びその周囲近傍の内槽12内の温度は図11に示す従来装置の場合よりも、温度が低く、且つ伝熱管設置部Pから離反しても温度変化は緩やかである。このことから、槽1内において蓄熱材17に蓄熱された熱の伝熱管16に対する熱伝達が迅速に行なわれ、従って、所定の温度の蒸気や温水を容易且つ迅速に得ることができ、蓄熱の有効利用を図ることができて出熱効率が良好であることが分かる。又、蒸気生成を開始してから22時間経過後のシミュレーションの結果によれば、特に図示してはいないが内槽12内全体の温度が低い状態となる。   As is clear from FIG. 8, the temperature of the heat transfer tube installation part P and the temperature in the inner tank 12 in the vicinity thereof are lower than those in the conventional apparatus shown in FIG. Even if it is separated from the temperature, the temperature change is gentle. Therefore, heat transfer from the heat stored in the heat storage material 17 to the heat transfer tube 16 is quickly performed in the tank 1, and therefore steam and hot water at a predetermined temperature can be obtained easily and quickly, It can be seen that effective use can be achieved and heat output efficiency is good. Moreover, according to the result of the simulation after the elapse of 22 hours from the start of steam generation, the temperature of the entire inner tank 12 is low although not particularly illustrated.

本図示例によれば、フィン13を設けることにより、電気ヒータ14からの熱を蓄熱材17に対し迅速に伝達させて内槽12内の蓄熱材17を容易且つ迅速に加熱することができる。このため、電気ヒータ14近傍だけではなく、内槽12全体において温度差の少ない略均一な温度分布で十分に蓄熱することができて蓄熱効率が向上し、又、蓄熱材17に蓄熱された熱の伝熱管16に対する熱伝達をも迅速に行うことができて、水Wの加熱延いては蒸気Vの生成を効率良く行なうことができ、出熱効率が向上する。   According to the illustrated example, by providing the fin 13, the heat from the electric heater 14 can be quickly transmitted to the heat storage material 17, and the heat storage material 17 in the inner tub 12 can be easily and quickly heated. For this reason, not only in the vicinity of the electric heater 14 but also in the entire inner tub 12, heat can be sufficiently stored with a substantially uniform temperature distribution with a small temperature difference, improving heat storage efficiency, and heat stored in the heat storage material 17. The heat transfer to the heat transfer tube 16 can also be performed quickly, the water W can be heated and the steam V can be generated efficiently, and the heat output efficiency is improved.

図3〜図5はフィン13の配置状態を示す他の例で、図3はフィン13を平面視で十が二つ並んで接続された形状に形成した例、図4は、フィン13を平面視で十が二つ並んで分割された形状に形成すると共に、一方のフィン13を他方のフィン13に対し平面視で斜めとなるよう配置した例、図5はフィン13を平面視で十が二つ並んで分割された形状に形成すると共に、両方のフィン13を何れも平面視で斜めとなるよう配置した例である。フィン13はこのように種々の構造とすることができ、どのような構造としても図1に示すものの場合と同様の作用効果を奏することができる。   3 to 5 are other examples showing the arrangement state of the fins 13, FIG. 3 is an example in which the fins 13 are formed in a shape in which two fins 13 are connected in a plan view, and FIG. FIG. 5 shows an example in which one fin 13 is arranged so as to be oblique with respect to the other fin 13 in a plan view. In this example, two fins 13 are formed so as to be inclined in a plan view while being formed in a shape divided into two. The fin 13 can have various structures as described above, and any structure can achieve the same effects as those shown in FIG.

なお、本発明の蓄熱槽においては、槽内の温度分布をシミュレーションしているが、シミュレーションの結果は実測した結果とも良く合致している。又、本発明の蓄熱槽においては、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In the heat storage tank of the present invention, the temperature distribution in the tank is simulated, but the simulation result is in good agreement with the actually measured result. In addition, the heat storage tank of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

本発明の蓄熱槽の平面図である。It is a top view of the heat storage tank of the present invention. 図1の正面図である。It is a front view of FIG. 本発明の蓄熱槽に適用するフィンの他の例の平面図である。It is a top view of the other example of the fin applied to the heat storage tank of this invention. 本発明の蓄熱槽に適用するフィンの又他の例の平面図である。It is a top view of the other example of the fin applied to the heat storage tank of this invention. 本発明の蓄熱槽に適用するフィンの更に他の例の平面図である。It is a top view of the further another example of the fin applied to the heat storage tank of the present invention. 本発明においてシミュレーションを行なう際に用いた蓄熱槽の平面概要図である。It is a plane schematic diagram of the thermal storage tank used when performing simulation in the present invention. 本発明の蓄熱槽によるシミュレーション時に蓄熱材を10時間加熱した後の内槽内の温度分布線図である。It is a temperature distribution diagram in an inner tank after heating a thermal storage material for 10 hours at the time of the simulation by the thermal storage tank of this invention. 本発明の蓄熱槽によるシミュレーション時に蓄熱材を10時間加熱した後、2時間に亘り蒸気を生成させた際の槽内の温度分布線図である。It is a temperature distribution diagram in the tank at the time of producing | generating a steam over 2 hours, after heating a thermal storage material for 10 hours at the time of the simulation by the thermal storage tank of this invention. 従来構造の蓄熱槽によりシミュレーションを行なう際に用いた蓄熱槽の平面概要図である。It is a plane schematic diagram of the heat storage tank used when simulating with the heat storage tank of the conventional structure. 従来構造の蓄熱槽によるシミュレーション時に蓄熱材を10時間加熱した後の槽内の温度分布線図である。It is the temperature distribution diagram in the tank after heating the thermal storage material for 10 hours at the time of the simulation by the thermal storage tank of a conventional structure. 従来構造の蓄熱槽によるシミュレーション時に蓄熱材を10時間加熱した後、2時間に亘り蒸気を生成させた際の槽内の温度分布線図である。It is the temperature distribution diagram in the tank at the time of producing | generating a steam over 2 hours, after heating a thermal storage material for 10 hours at the time of the simulation by the heat storage tank of a conventional structure.

符号の説明Explanation of symbols

11 蓄熱槽
12 内槽(槽)
13 フィン
14 電気ヒータ(ヒータ)
15 管材
16 伝熱管
17 蓄熱材
V 蒸気(流体)
W 水(流体)
11 Heat storage tank 12 Inner tank (tank)
13 Fin 14 Electric heater (heater)
15 Tube material 16 Heat transfer tube 17 Heat storage material V Steam (fluid)
W Water (fluid)

Claims (4)

蓄熱材が収納された槽内に、ヒータ及び内部を流体が流通する伝熱管を配置すると共に、伝熱管に沿ってフィンを設けたことを特徴とする蓄熱槽。   A heat storage tank in which a heater and a heat transfer tube through which fluid flows are arranged in a tank in which a heat storage material is stored, and fins are provided along the heat transfer tube. フィンは上下へ延在する管材に前後、左右へ延在する板体を固設して形成されると共に、前記管材にヒータを収納した請求項1に記載の蓄熱槽。   The heat storage tank according to claim 1, wherein the fin is formed by fixing a plate body extending in the front-rear and left-right directions to a pipe member extending vertically, and a heater is housed in the pipe member. ヒータは電気ヒータである請求項1又は2に記載の蓄熱槽。   The heat storage tank according to claim 1 or 2, wherein the heater is an electric heater. 蓄熱材は固体蓄熱材及び液体蓄熱材とにより構成されている請求項1乃至3の何れかに記載の蓄熱槽。   The heat storage tank according to any one of claims 1 to 3, wherein the heat storage material includes a solid heat storage material and a liquid heat storage material.
JP2005212828A 2005-07-22 2005-07-22 Heat storage tank Pending JP2007032866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212828A JP2007032866A (en) 2005-07-22 2005-07-22 Heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212828A JP2007032866A (en) 2005-07-22 2005-07-22 Heat storage tank

Publications (1)

Publication Number Publication Date
JP2007032866A true JP2007032866A (en) 2007-02-08

Family

ID=37792345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212828A Pending JP2007032866A (en) 2005-07-22 2005-07-22 Heat storage tank

Country Status (1)

Country Link
JP (1) JP2007032866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175196A1 (en) * 2014-07-31 2017-06-07 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Device for storing energy using a phase-change material and associated storage method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649087A (en) * 1979-09-25 1981-05-02 Toray Industries Novel raised sheet and method
JPS63143493A (en) * 1986-12-08 1988-06-15 Toshiba Corp Heat exchanger for chemical heat accumulator
JPH02282697A (en) * 1989-04-21 1990-11-20 Fujikura Ltd Solid thermal accumulator device
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JP2000097498A (en) * 1998-09-25 2000-04-04 Hokuriku Electric Power Co Inc:The High temperature heat storage tank
JP2003083616A (en) * 2001-09-07 2003-03-19 Energy Support Corp Heat storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649087A (en) * 1979-09-25 1981-05-02 Toray Industries Novel raised sheet and method
JPS63143493A (en) * 1986-12-08 1988-06-15 Toshiba Corp Heat exchanger for chemical heat accumulator
JPH02282697A (en) * 1989-04-21 1990-11-20 Fujikura Ltd Solid thermal accumulator device
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JP2000097498A (en) * 1998-09-25 2000-04-04 Hokuriku Electric Power Co Inc:The High temperature heat storage tank
JP2003083616A (en) * 2001-09-07 2003-03-19 Energy Support Corp Heat storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175196A1 (en) * 2014-07-31 2017-06-07 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Device for storing energy using a phase-change material and associated storage method
EP3175196B1 (en) * 2014-07-31 2024-02-21 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Energy storage device with phase change material and method for storage

Similar Documents

Publication Publication Date Title
KR101761291B1 (en) Combined hot water heating systems using thermal oil as heat accumulation substance
CN103968533A (en) Boilers
KR200473452Y1 (en) Electric boiler using heat medium oil
JP2007032866A (en) Heat storage tank
AU2015381215B2 (en) Capillary proximity heater with high energy saving equipped upstream of a microfiltration apparatus for the elimination of calcareuos particles present in fluids and downstream of a nozzle or closed circuit
CN207564969U (en) A kind of FDM3D printer nozzle mechanism
KR101083633B1 (en) Temp-emplifier using mixture of temp-treated water
CN107062588A (en) A kind of commercial electromagnet boiler
CN207350784U (en) A kind of electric heater with water treatment structure
TWI504370B (en) Sanitary cleaning device
CN206890808U (en) A kind of commercial electromagnet boiler
JP6193033B2 (en) Method for manufacturing fluid heating device
JP6019699B2 (en) Combustion efficiency improvement device
JPS5840A (en) Heat exchanger
JP2018204230A (en) Heating and heat insulating device of asphalt pavement solution hardening accelerator
CN110411209A (en) A kind of fused salt heating device
JP6152659B2 (en) Water heater
JP2014173822A (en) Electric water heater
US20210172650A1 (en) Capillary Proximity Heater
CN206018979U (en) A kind of die heater heater
CN206890835U (en) A kind of New-type boiler
CN207570138U (en) A kind of electric heater
CN106152515A (en) A kind of carbon dioxide heater
CN106196574A (en) Hot water apparatus and there is the water heater of this hot water apparatus
TWM285679U (en) Improved structure of electric heating pipe for electric water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913