JPH0577924B2 - - Google Patents

Info

Publication number
JPH0577924B2
JPH0577924B2 JP61253645A JP25364586A JPH0577924B2 JP H0577924 B2 JPH0577924 B2 JP H0577924B2 JP 61253645 A JP61253645 A JP 61253645A JP 25364586 A JP25364586 A JP 25364586A JP H0577924 B2 JPH0577924 B2 JP H0577924B2
Authority
JP
Japan
Prior art keywords
heat recovery
heat
heat transfer
section
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61253645A
Other languages
Japanese (ja)
Other versions
JPS63108109A (en
Inventor
Naoki Inumaru
Tsutomu Higo
Shigeru Kosugi
Takahiro Ooshita
Hajime Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP61253645A priority Critical patent/JPS63108109A/en
Publication of JPS63108109A publication Critical patent/JPS63108109A/en
Publication of JPH0577924B2 publication Critical patent/JPH0577924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、都市ごみ、産業廃棄物、石炭その他
の燃焼物を流動層により燃焼すると同時に流動層
から熱を回収するための熱回収装置に関し、特に
該熱回収装置の伝熱面に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a heat recovery device for burning municipal waste, industrial waste, coal, and other combustible materials in a fluidized bed and simultaneously recovering heat from the fluidized bed. , particularly regarding the heat transfer surface of the heat recovery device.

(従来の技術及び発明が解決しようとする問題
点) 流動層熱回収装置では、流動媒体中に流動化ガ
スを通じた部分つまり流動層内に伝熱面を設ける
ことにより、流動媒体と伝熱面の間で極めて効率
的な伝熱を得ることができる。この流動媒体を加
熱するために、流動媒体中で都市ゴミ、産業廃棄
物、石炭その他の燃焼物を燃焼する。特に都市ご
みのよういに不燃物を含んでいる燃焼物を燃焼す
る場合、流動層中に多数の伝熱管によつて伝熱面
を設けると、伝熱管と伝熱管或いは伝熱管と場合
によつては伝熱面で構成する壁面との間隙に前記
不燃物がひつかかり、流動媒体の運動を妨げて伝
熱の効率低下をもたらし、更には流動媒体の流動
を阻止する恐れがある。このため、伝熱管の配列
については、伝熱管の伝熱管及び伝熱管と壁面な
ど伝熱面周囲の間隙の幅を、装置い投入される可
能性のある燃焼物に含まれる最大の不燃物の大き
さより大きくする必要があり、また必要な伝熱面
積を確保するためには大きな熱回収部の容積を必
要としたり、或いはまた充分な伝熱面を確保する
ことができずに熱回収量が限られたりしていた。
(Prior art and problems to be solved by the invention) In a fluidized bed heat recovery device, a heat transfer surface is provided in a portion of the fluidized medium through which fluidizing gas passes, that is, in the fluidized bed. Extremely efficient heat transfer can be obtained between the two. In order to heat this fluidized medium, municipal garbage, industrial waste, coal, or other combustible materials are burned in the fluidized medium. Particularly when burning combustible materials that contain non-combustible materials such as municipal waste, providing a heat transfer surface with a large number of heat transfer tubes in a fluidized bed can cause heat transfer between heat transfer tubes or heat transfer tubes as the case may be. In the end, the non-combustible material gets stuck in the gap between the heat transfer surface and the wall surface, impeding the movement of the fluid medium, resulting in a decrease in heat transfer efficiency, and furthermore, there is a possibility that the flow of the fluid medium may be blocked. For this reason, regarding the arrangement of heat transfer tubes, the width of the gap around the heat transfer surface such as the heat transfer tube and the heat transfer tube and the wall surface should be determined so that the width of the gap around the heat transfer surface such as the heat transfer tube and the heat transfer tube and the wall surface should be set to In addition, in order to secure the necessary heat transfer area, a large volume of heat recovery section is required, or the amount of heat recovery is insufficient due to the inability to secure a sufficient heat transfer surface. It was limited.

近年では、都市ごみを破砕せずに燃焼物として
使用する流動層焼却炉も開発実用化されつつある
が、このようなものからも流動層過熱防止を熱回
収によつて行なおうとして伝熱面を設置する場
合、熱回収部の容積は極めて大きくなる。また、
燃焼やハンドリングに必要な以上に動力や破砕歯
等の摩耗を覚悟で細破砕して燃焼物を前記伝熱管
間隙の幅よりも小さくしたり、或いは逆に破砕を
行なえない場合には、大きい廃棄物で燃焼物とし
て利用できるものでも、焼却不可能として別途処
分したりしていた。
In recent years, fluidized bed incinerators that use municipal waste as a combustible material without crushing it have been developed and put into practical use. When a surface is installed, the volume of the heat recovery section becomes extremely large. Also,
If the combustion material is shredded into pieces smaller than the width of the gap between the heat transfer tubes by using more power than necessary for combustion and handling, and at the risk of abrasion of the crushing teeth, or conversely, if shredding cannot be carried out, large amounts of waste may be produced. Even materials that could be used as combustible materials were treated as non-combustible and disposed of separately.

更に、伝熱管の配列についても、不燃物のひつ
かかりを防止するには垂直方向に対し碁盤の目状
配列つまり直交配列とすることが効果があるが、
反面ガス上昇は垂直方向に流れ易いために、管と
管で垂直方向に挟まれた部分の流動媒体が固定層
化して、流動ないし移動する流動媒体と伝熱管と
の接触面が僅かな管量側の垂直部分に限られて伝
熱量が小さなものとなつてしまう欠点があつた。
また、熱回収の効率を高めるために伝熱管を千鳥
配列とする場合には、ひつかかり対策のため敢え
て伝熱管ピツチを大きくとらなければならないと
いうことも、熱回収部が大きい容積となつてしま
う一因であつた。
Furthermore, regarding the arrangement of heat transfer tubes, it is effective to arrange them in a checkerboard pattern or perpendicular arrangement in the vertical direction in order to prevent non-combustible materials from getting caught.
On the other hand, since the gas tends to rise vertically, the fluidized medium in the area vertically sandwiched between the tubes becomes a fixed layer, and the contact surface between the flowing or moving fluidized medium and the heat transfer tube is small. The drawback was that the amount of heat transfer was limited to the vertical portions of the sides.
Furthermore, when heat exchanger tubes are arranged in a staggered manner to increase heat recovery efficiency, the heat exchanger tube pitch must be intentionally increased to prevent congestion, which also means that the heat recovery section becomes large in volume. It was a contributing factor.

従つて、通常、流動層から熱回収を行なう場合
には、燃焼物を伝熱面周囲の幅と同等以下に細か
いものとするのが普通であり、粗破砕や無破砕で
粗大燃焼物を燃焼して流動層より熱回収を行なう
ことは余り試みられていないのが実情であつた。
Therefore, when heat is recovered from a fluidized bed, it is common to reduce the size of the combustible material to a size equal to or smaller than the width around the heat transfer surface. In reality, there have been few attempts to recover heat from a fluidized bed.

(問題点を解決するための手段) 本発明は、上記した従来技術の問題点を解決す
るために、底部から上方に向けて吹き込む流動化
ガスにより流動媒体を流動化させる流動層内で被
燃焼物を投入して燃焼する燃焼部に隣接させて、
底部から上方に向けて吹き込むガスにより流動媒
体を固定層から弱い流動層の状態にさせる移動層
内で流動媒体より熱を回収する熱回収部を設置
し、これらの熱回収部と燃焼部とを上下部を連通
させた状態で仕切壁によつて区分し、該燃焼部の
少なくとも前記仕切壁近傍における単位面積当り
の流動化ガス吹込風量を前記熱回収部の単位面積
当りのガス吹込風量よりも大きくとることによ
り、該燃焼部の流動媒体を前記仕切壁を越えて前
記熱回収部に流入させ、該熱回収部内を流動媒体
が沈降して前記仕切壁下部から燃焼部に還流させ
るようにし、前記熱回収部の移動層中に、内部に
受熱流体が導かれる熱回収用伝熱面を設け、前記
燃焼部へ被燃焼物を供給する供給装置を設けてい
る流動層を用いた流動層熱回収装置において前記
仕切壁上方の流動媒体通過域に篩を設け、前記熱
回収部の流動媒体中に設置する熱回収用伝熱面周
囲の間隙を、上記篩開孔径と同等以上の幅とした
ことを特徴としている。
(Means for Solving the Problems) In order to solve the problems of the prior art described above, the present invention aims to solve the problems of the prior art described above. Adjacent to the combustion part where things are put in and burned,
A heat recovery section that recovers heat from the fluidized medium is installed in a moving bed that changes the fluidized medium from a fixed bed to a weakly fluidized bed by gas blown upward from the bottom, and these heat recovery sections and combustion sections are connected. The combustion section is divided by a partition wall with the upper and lower parts communicating with each other, and the flow rate of the fluidizing gas per unit area of the combustion section is higher than the flow rate of the gas blowing per unit area of the heat recovery section. By increasing the size, the fluidized medium in the combustion section is allowed to flow into the heat recovery section over the partition wall, and the fluidized medium settles in the heat recovery section and flows back to the combustion section from the lower part of the partition wall, Fluidized bed heat using a fluidized bed in which a heat transfer surface for heat recovery into which a heat-receiving fluid is guided is provided in the moving bed of the heat recovery section, and a supply device is provided for supplying the material to be combusted to the combustion section. In the recovery device, a sieve is provided in the fluidized medium passage area above the partition wall, and the gap around the heat recovery heat transfer surface installed in the fluidized medium of the heat recovery section is set to have a width equal to or larger than the sieve opening diameter. It is characterized by

なお、実施に当つては、上記熱回収用伝熱面を
構成する伝熱管群を水平方向に配設し且つ管軸方
向に直角の断面上で千鳥状に配列し、或いはそれ
に加えて、該伝熱管群を仕切壁連通部の開口を含
む面とほぼ平行に延びるようにして配設するのが
望ましい。
In addition, in implementation, the heat transfer tube groups constituting the heat recovery heat transfer surface are arranged horizontally and arranged in a staggered manner on a cross section perpendicular to the tube axis direction, or in addition, It is desirable that the heat exchanger tube group is arranged so as to extend substantially parallel to a plane including the opening of the partition wall communication section.

(作用) 本発明は、上記のように熱回収部と燃焼部との
間の流動媒体が循環する流動層熱回収装置におい
て、熱回収部入口に篩を設けているので、熱回収
部に入り込む固形物の大きさは制限される。これ
により、熱回収部内の伝熱管のピツチを小さくす
ることができる。即ち、前記篩が無い場合には、
燃焼部内に投入された燃焼物に含まれる不燃物は
流動によつて引き起こされる運動によつて熱回収
部に入り込む可能性があるため、流体媒体を通す
伝熱面周囲は、予想される最大の不燃物が通り得
るようにある程度大きくしなければならなかつた
が、前記本発明のように篩を取り付けることによ
り、熱回収部に入り込む可能性のある不燃物の大
きさが制限されるため、伝熱面周囲の間隙が篩の
間隙より大きければ不燃物がひつかかる心配はな
く、篩開孔幅を或る程度小さくしておけば、それ
に応じて伝熱管のピツチを小さくすることができ
る。
(Function) The present invention provides a fluidized bed heat recovery device in which a fluidized medium circulates between the heat recovery section and the combustion section as described above, in which a sieve is provided at the inlet of the heat recovery section, so that a sieve is provided at the inlet of the heat recovery section. The size of the solids is limited. Thereby, the pitch of the heat exchanger tubes in the heat recovery section can be reduced. That is, if there is no sieve,
The area around the heat transfer surface through which the fluid medium passes should be However, by attaching a sieve as in the present invention, the size of noncombustibles that may enter the heat recovery section is limited, so the size of the incombustibles that can pass through is limited. If the gap around the hot surface is larger than the gap between the sieves, there is no fear that incombustibles will get trapped, and if the sieve opening width is made small to a certain extent, the pitch of the heat exchanger tubes can be reduced accordingly.

なお、上記篩自体は、篩が通過を阻止した不燃
物がひつかかつて篩自体の目詰まりを起こすこと
のないように、少なくとも流動媒体の大部分が通
過する流動層上面近傍から1m望ましくは1.5m程
度の部分については、垂直又は燃焼部側に傾斜さ
せ、不燃物が篩に沿つえ落下したあと流動層の流
動によつて流動層内に再び散つてしまうように
し、更に開孔を垂直方向のスリツト状として、篩
開孔にひつかかることのない構造とするのが望ま
しい。また該スリツトを形成する篩を、燃焼部側
と熱回収部側とに交互にジグザグ状にずらせるよ
うにすると、該篩に衝突した流動媒体も篩の脇
(側方)より熱回収部に飛び込み易くなり、且つ
該スリツトにはまり込む形で衝突するとを防いで
該スリツトに不燃物が噛み込むことが防止され
る。なお該スリツトを、内部に受熱流体を通した
管群で構成すると、該管群が冷却されるので運転
中の熱による劣化が防止され、また製作も容易と
なる。
The sieve itself should be placed at least 1m from the vicinity of the top surface of the fluidized bed through which most of the fluidic medium passes, preferably 1.5m, to prevent incombustible materials blocked from passing through the sieve from clogging the sieve itself. For the part of about m, it is made vertical or inclined towards the combustion part side so that the non-combustibles fall along the sieve and are scattered again into the fluidized bed by the flow of the fluidized bed, and the openings are made vertically. It is desirable to have a slit-like structure that does not get caught in the sieve openings. Furthermore, if the sieve forming the slit is alternately shifted in a zigzag pattern between the combustion section side and the heat recovery section side, the fluidic medium colliding with the sieve will also flow from the side of the sieve to the heat recovery section. This makes it easier to jump into the slit, and prevents the slit from colliding with the slit, thereby preventing incombustible materials from getting caught in the slit. Note that if the slit is constructed of a group of tubes through which a heat-receiving fluid is passed, the tube group is cooled, thereby preventing deterioration due to heat during operation, and making manufacturing easier.

次に、伝熱管周囲の流れの作用について説明す
る。
Next, the effect of the flow around the heat exchanger tube will be explained.

一般に、伝熱管の配列には、管軸方向に直角な
断面に対して第3図に示す千鳥配列と、第4図に
示す直交配列とがある。流動媒体に導入されたガ
スは、第3図の矢印イ及び第4図の矢印ロでそれ
ぞれ示すように、下から上に向けて流れ、該ガス
の通過に伴なつて流動媒体は撹拌される。
In general, there are two types of arrangement of heat exchanger tubes: a staggered arrangement shown in FIG. 3 with respect to a cross section perpendicular to the tube axis direction, and an orthogonal arrangement shown in FIG. 4. The gas introduced into the fluid medium flows from bottom to top, as shown by arrows A in Figure 3 and arrow B in Figure 4, respectively, and the fluid medium is stirred as the gas passes through. .

上記第3図に示す千鳥配列では、ガスが垂直に
上昇するのを妨げるように伝熱管1が配列されて
いるため、流動媒体を撹拌する効果が大きく、流
動媒体の動きの殆んどない部分は、図中斜線部1
aのように管1の上面の僅かの部分であるのに対
し、第4図に示す直交配列では、ガスが伝熱管2
同士の間を垂直に抜けて上昇してしまい、伝熱管
2周辺の流動媒体を十分撹拌せず、管2同士が垂
直に挟む図中斜線部2aにおいて流動媒体の動き
が殆どなく、管両側の垂直に近い面の僅かな部分
しか、流動ないし移動する流動媒体に曝されない
ことが、実験によつて観察されている。この傾向
は、特に第6図の寸法bで示す垂直方向の幅が小
さい程顕著である。但し、下から上に向けて流れ
るガス量が増加して流動が激しくなるにつれて、
この流動媒体の動きの殆どない2aの部分は管上
面より上方に離れるに従つて狭まり、台形から更
に第3図1aの形にまで縮小する。それはガス量
が最低流動化ガス量の3ないし5倍辺りから急激
に進行する。
In the staggered arrangement shown in Fig. 3 above, the heat transfer tubes 1 are arranged so as to prevent the gas from rising vertically, so the effect of stirring the fluid medium is large, and the part where there is almost no movement of the fluid medium is is the shaded area 1 in the figure.
In the orthogonal arrangement shown in FIG.
As a result, the fluid medium around the heat transfer tubes 2 is not sufficiently stirred, and there is almost no movement of the fluid medium in the shaded area 2a in the figure where the tubes 2 are vertically sandwiched, and the fluid medium on both sides of the tubes is It has been observed experimentally that only a small portion of the near-vertical surface is exposed to the flowing or moving fluid medium. This tendency is particularly noticeable as the width in the vertical direction indicated by dimension b in FIG. 6 is smaller. However, as the amount of gas flowing from the bottom to the top increases and the flow becomes more intense,
The portion 2a where there is almost no movement of the fluid medium narrows as it moves away from the upper surface of the tube, and further reduces from a trapezoid to the shape shown in FIG. 3, 1a. It progresses rapidly when the gas amount is around 3 to 5 times the minimum fluidizing gas amount.

上記の結果、熱回収は、流動ないし移動する流
動媒体に曝される面積及び流動ないし移動する流
動媒体の撹拌の度合からも分るように、千鳥配列
の方が、より効率的に行なわれる。このことは、
特にガス量が小さい場合ほど顕著であり、直交配
列との差も大きい。しかしながら、上述したよう
にガス量を高めて激しい流動とすると、動きにく
い斜線部分2aも流動し始める傾向があり、且つ
流動媒体同士の混合もさかんとなつて全体として
の熱回収効率の千鳥配列と直交配列との差は小さ
くなる。
As a result of the above, heat recovery is performed more efficiently in a staggered arrangement, as can be seen from the area exposed to the flowing or moving fluid medium and the degree of agitation of the flowing or moving fluid medium. This means that
This is particularly noticeable when the gas amount is small, and the difference from the orthogonal arrangement is also large. However, as described above, when the gas amount is increased to create a strong flow, the diagonal lined portion 2a, which is difficult to move, also tends to start flowing, and the mixing of the fluidized media increases, resulting in a staggered arrangement of heat recovery efficiency as a whole. The difference from the orthogonal arrangement becomes smaller.

また伝熱管のピツチは、流動媒体に含まれる不
燃物の大きさと流動媒体の撹拌状態によつて制限
を受ける。即ち、千鳥配列の場合は、前述のよう
に流動媒体の撹拌が良好であるため、第5図に示
す伝熱管2同士の間隙a又はbは、流動媒体に含
まれる不燃物の最大の大きさより大きければよ
い。これまでの通例では、上記寸法aは少くとも
100mm以上が現実的であつた。これに対し、直交
配列の場合は、第6図に示すように、横方向の伝
熱管2の間隙aは流動媒体中に含まれる不燃物を
詰まらせないためにその最大の大きさより大きく
する必要があるが、縦方向の伝熱管2の間隙b
は、流動媒体のひつかかりが第4図の説明からも
分かるように心配ないことから、間隙aよりもか
なり小さな寸法とすることが可能である。このた
め、従来の流動層熱回収装置では、直交配列の縦
方向の伝熱管間隙bを横方向の間隙aより小さく
することにより、直交配列によつて千鳥配列とす
るよりも熱回収部伝熱面積を同一容積内がかなり
大きいものとすることができる。これにより、熱
回収部容積を小さくし且つガスを多量に即ち最低
流動化ガス量の3ないし5倍以上通して激しい流
動とし所定の伝熱量を得ているが、伝熱面の摩耗
もガス量の2〜3乗で増加するために、短い伝熱
面の寿命という避け難い問題に直面する。しかし
ながら、本発明者らは実験により、伝熱面摩耗を
考慮してガス量を抑え、伝熱係数が最大となると
いわれる最低流動化ガス量(Gmf)の1.5倍前後
の吹込ガス量にて運転する場合の弱い流動ないし
移動のみの状態においては、千鳥配列の方が全伝
熱面積の合計は小さくても、第3図、第4図で説
明したように、保有伝熱面が生かされ、流動媒体
の撹拌度合強いために同一容積において結果的に
多い伝熱量を得られるという知見を得ている。
Furthermore, the pitch of the heat transfer tubes is limited by the size of the incombustibles contained in the fluidized medium and the stirring state of the fluidized medium. That is, in the case of a staggered arrangement, since the fluidized medium is well stirred as described above, the gap a or b between the heat exchanger tubes 2 shown in FIG. The bigger the better. Conventionally, the above dimension a is at least
100mm or more was realistic. On the other hand, in the case of an orthogonal arrangement, as shown in Figure 6, the gap a between the heat transfer tubes in the lateral direction needs to be larger than its maximum size in order to avoid clogging with incombustibles contained in the fluidizing medium. However, there is a gap b between the heat exchanger tubes 2 in the vertical direction.
As can be seen from the explanation of FIG. 4, there is no concern that the fluid medium will get stuck, so it is possible to make the size of the gap a considerably smaller than that of the gap a. For this reason, in conventional fluidized bed heat recovery equipment, by making the longitudinal gap b of the heat transfer tubes in the orthogonal arrangement smaller than the horizontal gap a, the heat transfer in the heat recovery section is better than using the orthogonal arrangement in a staggered arrangement. The area can be made quite large within the same volume. As a result, the volume of the heat recovery section is reduced and a large amount of gas is passed through, that is, 3 to 5 times or more of the minimum fluidization gas amount to create intense flow and obtain the specified amount of heat transfer. 2 to 3 times, we face the inevitable problem of short heat transfer surface life. However, the present inventors conducted experiments to reduce the amount of gas in consideration of heat transfer surface wear, and at a blowing gas amount of around 1.5 times the minimum fluidizing gas amount (Gmf), which is said to maximize the heat transfer coefficient. In operating conditions where there is only weak flow or movement, the staggered arrangement may have a smaller total heat transfer area, but as explained in Figures 3 and 4, the retained heat transfer surface is utilized. It has been found that a large amount of heat transfer can be obtained in the same volume due to the strong agitation of the fluid medium.

即ち、本発明によれば、熱回収部に入り込む不
燃物の最大の大きさは、篩の間隙寸法であり、該
篩の構造により40mm程度までは容易に小さくする
ことができる。またこのため、伝熱管を千鳥配列
にすると、吹込ガス量が最低流動化ガス量の1.5
倍前後、通常2倍以下、工夫すれば3倍以下にお
いては直交配列するよりも熱回収部容積を寧ろ小
さくすることができる。また、熱回収部に入り込
む不燃物の大きさに制限があるため、都市ごみ等
の燃焼物を破砕せずに燃焼させる装置において
も、予想に反する大型の不燃物が伝熱管にひつか
かつてトラブル起こす恐れがない。
That is, according to the present invention, the maximum size of the noncombustibles that enter the heat recovery section is the gap size of the sieve, which can be easily reduced to about 40 mm depending on the structure of the sieve. Also, for this reason, if the heat transfer tubes are arranged in a staggered manner, the amount of blown gas will be 1.5 of the minimum fluidizing gas amount.
If the heat recovery section is about twice the size, usually less than twice the size, and three times or less if it is devised, the volume of the heat recovery section can be made smaller than when arranged orthogonally. In addition, there is a limit on the size of non-combustibles that can enter the heat recovery section, so even in equipment that burns combustible materials such as municipal waste without crushing them, unexpectedly large non-combustibles may get stuck in the heat transfer tubes, causing problems in the past. There is no risk of it happening.

更に、熱回収部出口に、仕切壁を支持する部材
や熱回収部での散気管などが該出口を貫通するよ
うにして設けられている場合でも、この部分の孔
径を伝熱面周囲の間隙よりも更に大きくとれば、
不燃物がひつかかる恐れは生じない。
Furthermore, even if the exit of the heat recovery section is provided with a member that supports the partition wall or a diffuser pipe in the heat recovery section so as to pass through the exit, the hole diameter of this portion should be determined by the gap around the heat transfer surface. If you take it even larger than
There is no risk of non-combustible materials being caught.

他方、本発明における熱回収部は、仕切壁を中
心とした流動媒体の流れの大きな影響下にあり、
熱回収部での流動媒体の流れや回収熱量は仕切壁
との位置関係によつて大きく変化する。即ち、熱
回収部の仕切壁に対する距離が変わることによつ
て異なる挙動を示すともいえる。従つて、熱回収
部設計における諸量の設定には、流動媒体の流れ
に沿つた面(第1図に示す例では図示された面)
での流れを同一形状又は単純な形状の繰り返えし
とし、そのために流動媒体の流れに対して垂直の
方向(第1図に示す例では紙面に直角な方向)に
延長させる形でスケールアツプすることが好まし
く、これによつて設計諸量を再現よく得ることが
できる。このような理由により、伝熱管等も上記
のスケールアツプの方向に延長させること、つま
り伝熱管を仕切壁連通部の開口を含む面とほぼ平
行に延びるように配備することが望ましい。
On the other hand, the heat recovery section in the present invention is under the great influence of the flow of the fluid medium centered on the partition wall,
The flow of the fluid medium and the amount of heat recovered in the heat recovery section vary greatly depending on the positional relationship with the partition wall. In other words, it can be said that different behaviors are exhibited depending on the distance between the heat recovery section and the partition wall. Therefore, when setting various quantities in the heat recovery section design, it is necessary to consider the plane along the flow of the fluidized medium (the plane shown in the example shown in Figure 1).
The flow in the flow is made to repeat the same shape or a simple shape, and for this purpose, scale-up is carried out in a direction perpendicular to the flow of the fluid medium (in the example shown in Fig. 1, a direction perpendicular to the plane of the paper). It is preferable to do this, and thereby the design quantities can be obtained with good reproducibility. For this reason, it is desirable that the heat exchanger tubes and the like extend in the direction of scale-up, that is, it is desirable to arrange the heat exchanger tubes so that they extend substantially parallel to the plane containing the opening of the partition wall communication portion.

上記のように配備すると、大型で伝熱面を多く
必要とするものにおいては、熱回収部形状を第1
図に示された図における仕切壁と外壁との間の幅
に対してスケールアツプの方向即ち紙面に直角に
相似形に近い形で引き延ばされた方向の幅が!?か
に大きい形となり、そのため伝熱管の曲げ部の数
も減らすことができ、しかも伝熱管の外壁での出
入数も少なくなるから、無駄な空間を生じさせ
ず、コンパクトにできる。更に、流動媒体の流れ
は、スケールアツプ幅方向(第1図では紙面に直
角方向)に対し常に同一配列状態となるので、流
動媒体の流れが均一化され、伝熱管と流動媒体と
の熱交換も改善され、伝熱が高められる。
When deployed as described above, the shape of the heat recovery section will be
Compared to the width between the partition wall and the outer wall in the diagram shown in the figure, the width in the direction of scale-up, that is, in the direction in which they are stretched in a shape close to similar shapes perpendicular to the plane of the paper, is much larger!? Therefore, the number of bent portions of the heat exchanger tube can be reduced, and the number of entrances and exits at the outer wall of the heat exchanger tube is also reduced, so it can be made compact without creating wasted space. Furthermore, since the flow of the fluid medium is always arranged in the same manner in the scale-up width direction (direction perpendicular to the plane of the paper in Figure 1), the flow of the fluid medium is made uniform, and heat exchange between the heat transfer tube and the fluid medium is improved. is also improved and heat transfer is enhanced.

(実施例) 次に、本発明の実施例を図面と共に説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明を適用した好適な蒸気ボイラ
である熱回収装置の一実施例を示す断面図であ
る。図において、熱回収装置11内底部には、送
風機12より流動用ガス導入管13から導入され
る流動化ガスの散気装置14が備えられ、該散気
装置14は、その空気吹込位置が両側縁部が中央
部より低く、炉11の中心線に対してほぼ対称的
な山形断面状(屋根状)に形成されている。そし
て、送風機12から送られる流動用ガスは、空気
室15,16,17を経て散気装置14から上方
に噴出させるようになつており、両側縁部の空気
室15,17から噴出する流動化ガスの重量速度
は、炉11内の流動媒体の流動層を形成するのに
十分な速度とするが、中央部の空気室16から噴
出する流動化ガスの質量速度は、前者15,17
よりも小さく選ばれている。
FIG. 1 is a sectional view showing an embodiment of a heat recovery device which is a preferred steam boiler to which the present invention is applied. In the figure, an air diffuser 14 for fluidizing gas introduced from a blower 12 through a fluidizing gas introduction pipe 13 is provided at the inner bottom of the heat recovery device 11, and the air diffuser 14 has air blowing positions on both sides. The edges are lower than the center and are formed into a chevron-shaped cross section (roof-like) that is approximately symmetrical with respect to the center line of the furnace 11. The fluidizing gas sent from the blower 12 passes through air chambers 15, 16, and 17 and is ejected upward from the air diffuser 14. The mass velocity of the gas is sufficient to form a fluidized bed of the fluidized medium in the furnace 11, but the mass velocity of the fluidizing gas ejected from the air chamber 16 in the center is
is chosen to be smaller than.

両側縁部の空気室15,17の上部には、流動
化ガスの上向き流路をさえぎり、空気室15,1
7から噴出される流動化ガスを熱回収装置11内
の流動層中央に向けて反射転向させる反射壁とし
ての機能を果たし、また熱回収装置11の流動媒
体で形成された層を燃焼部と熱回収部とに仕切る
仕切壁18が設けられ、該仕切壁18と噴出する
流動化ガスの質量速度との差によつて図面中の矢
印で示す方向の旋回流が生じる。なお、熱回収装
置11の外壁は、壁面伝熱管を並設しこれらをフ
インで互いにつないだメンブレン外壁として構成
されており、該メンブレン外壁の上下に設けられ
た管寄せ19,20から水管21を分岐して、そ
れぞれの下方斜めの部分にメンブレン壁の仕切を
傾斜させて設け燃焼部側を耐火構造とした仕切壁
18が構成されている。
The upper portions of the air chambers 15, 17 on both side edges block the upward flow path of the fluidizing gas.
It functions as a reflecting wall that reflects and diverts the fluidized gas ejected from the heat recovery device 11 toward the center of the fluidized bed, and also connects the layer formed by the fluidized medium of the heat recovery device 11 with the combustion section. A partition wall 18 is provided that separates the recovery section from the recovery section, and the difference between the partition wall 18 and the mass velocity of the jetted fluidizing gas causes a swirling flow in the direction shown by the arrow in the drawing. The outer wall of the heat recovery device 11 is configured as a membrane outer wall in which wall heat exchanger tubes are arranged side by side and connected to each other by fins, and the water pipes 21 are connected to the headers 19 and 20 provided above and below the membrane outer wall. A partition wall 18 is constructed in which a membrane wall partition is provided at an inclined lower part of each branch and the combustion part side has a fireproof structure.

一方、上記仕切壁18の背面と炉壁面に熱回収
室(部)22が形成され、運転中に流動媒体の一
部が仕切壁18の上部を越えて該熱回収室22に
入り込むように構成されている。また、熱回収室
22の下部の炉底よりも高いレベルには、送風機
23からの導入管24を経て、ガスを導入する散
気管などの散気装置25が設けられ、熱回収室2
2の散気装置25を設置した近傍には開口部26
が設けらえ、熱回収室22に入り込んだ流動媒体
は、運転状態によつて連続的又は継続的に弱い流
動層又は固定層に近い移動層を形成しつつ沈降
し、開口部26を経て燃焼部10へ戻り循環す
る。
On the other hand, a heat recovery chamber (section) 22 is formed on the back surface of the partition wall 18 and the furnace wall surface, and is configured such that a part of the fluidized medium passes over the top of the partition wall 18 and enters the heat recovery chamber 22 during operation. has been done. In addition, an aeration device 25 such as an aeration pipe that introduces gas through an introduction pipe 24 from a blower 23 is provided at a level higher than the bottom of the furnace at the lower part of the heat recovery chamber 22.
There is an opening 26 near where the air diffuser 25 of No. 2 is installed.
is provided, and the fluidized medium that has entered the heat recovery chamber 22 settles while forming a weak fluidized bed or a moving bed close to a fixed bed continuously or continuously depending on the operating condition, and burns through the opening 26. The process returns to section 10 and circulates.

上記の沈降量は、熱回収室散気風量、燃焼部の
流動化ガス風量によつて制御される。
The amount of sedimentation mentioned above is controlled by the amount of diffused air in the heat recovery chamber and the amount of fluidized gas in the combustion section.

熱回収装置11の天井部に設けられた燃焼物投
入口28より燃焼部10に投入された燃焼物F
は、流動化ガスにより旋回流動している流動媒体
と共に流動しながら燃焼する。この時、空気室1
6の上方中央部付近の流動媒体は吹込風量が少い
ために激しい上下動は伴わず、弱い流動状態にあ
る下降移動層を形成している。この移動層の幅
は、上方は狭いが裾の方は分散板14の傾斜の作
用も相俟つてやや広がつており、裾の一部は両側
縁部の空気室15,17の上方に達しているの
で、この両空気室からの大きな質量速度の流動化
ガスの噴射を受けて吹き上げられる。すると、裾
の先端の流動媒体が除かれ、且つ空気室16の直
上上方には、空気室15,17の上方の流動層か
らの流動媒体が補給されて堆積するので、空気室
16の直上の層は下降し、これを繰り返して空気
室16の上方の流動媒体は速やかに連続的に下降
する移動層を形成する。
The combustible material F is introduced into the combustion section 10 from the combustible material inlet 28 provided in the ceiling of the heat recovery device 11.
burns while flowing together with the fluidized medium which is swirled by the fluidizing gas. At this time, air chamber 1
6, the fluidized medium near the upper central part does not move violently up and down because the amount of air blown is small, and forms a descending moving layer in a weak fluid state. The width of this moving layer is narrow at the top, but it becomes slightly wider at the bottom due to the effect of the slope of the dispersion plate 14, and a part of the bottom reaches above the air chambers 15, 17 on both side edges. Therefore, the fluidizing gas is blown up at a high mass velocity from both air chambers. Then, the fluidized medium at the tip of the hem is removed, and the fluidized medium from the fluidized bed above the air chambers 15 and 17 is replenished and deposited directly above the air chamber 16. The layer descends and repeats this process so that the flowing medium above the air chamber 16 quickly forms a continuously descending moving layer.

空気室15,17上に移動した流動媒体は上方
に吹き上げられるが、仕切壁18に当つて反射転
向して炉11の中央に向かつて旋回し、中央部の
移動層の頂部に落下し、再び前述のように循環さ
れると共に、流動媒体の一部は仕切壁18の上部
を越えて熱回収室22内に入り込む。そして該熱
回収室22に堆積した流動媒体の沈降速度が遅い
場合には、熱回収室22の上部には安息角を形成
し余剰の流動媒体は仕切壁18上部から燃焼部1
0に落下する。
The fluidized medium that has moved onto the air chambers 15 and 17 is blown upward, but when it hits the partition wall 18, it is reflected and turned, turning toward the center of the furnace 11, falling onto the top of the moving bed in the center, and being blown up again. While being circulated as described above, a portion of the fluidized medium passes over the top of the partition wall 18 and into the heat recovery chamber 22 . When the sedimentation speed of the fluidized medium deposited in the heat recovery chamber 22 is slow, an angle of repose is formed in the upper part of the heat recovery chamber 22, and the excess fluidized medium flows from the upper part of the partition wall 18 to the combustion section 1.
Fall to 0.

熱回収室22内に入り込んだ流動媒体は、散気
装置25の噴気孔25aから吹き込まれるガス量
の加減によつ、完全な固定層ないし緩やかな流動
又は固定に近い状態に調節されつつ徐々に下降す
る下降移動層に変様する層が形成され、内蔵され
た伝熱管29との熱交換が極端に抑えられたり極
度に促進されたり調節されながら行われた後、開
口部26から燃焼部10へ還流される。この熱回
収室22内で散気装置25から導入される散気ガ
スの質量速度は、0〜3Gmf、好ましくは完全停
止か0.5〜2Gmfの範囲内で必要な熱回収量に応じ
て調節される。
The fluidized medium that has entered the heat recovery chamber 22 is gradually transformed into a completely fixed bed, a slow flowing state, or a state close to a fixed state, depending on the amount of gas blown in from the blowholes 25a of the air diffuser 25. After a changing layer is formed in the descending descending layer, and heat exchange with the built-in heat transfer tube 29 is extremely suppressed, extremely promoted, or controlled, the combustion section 10 is transferred from the opening 26 to the combustion section 10. It is refluxed to. The mass velocity of the diffused gas introduced from the diffuser 25 into the heat recovery chamber 22 is adjusted according to the required amount of heat recovery within the range of 0 to 3 Gmf, preferably 0.5 to 2 Gmf or completely stopped. .

燃焼物中に流動媒体より大きな径の不燃物があ
る場合には、燃焼残渣は一部の流動媒体と共に、
不燃物取出口30を経て炉底部のスクリユーンベ
ア31より排出される。
If there is a non-combustible material with a larger diameter than the fluidized medium in the combustion material, the combustion residue will be mixed with some of the fluidized media.
It is discharged from the screen bearer 31 at the bottom of the furnace through the incombustible material outlet 30.

この実施例において、上記水管21は、仕切壁
18をサポートすると共に流動媒体が熱回収室2
2へ入り込む時の入口の篩の働きをしている。図
中、32は排ガス出口、33は汽水ドラムを示
す。
In this embodiment, the water pipe 21 supports the partition wall 18 and the fluidized medium is connected to the heat recovery chamber 2.
It acts as a sieve at the entrance when entering 2. In the figure, 32 indicates an exhaust gas outlet, and 33 indicates a brackish water drum.

第2図は、第1図における熱回収室付近の詳細
を示す要部断面図であつて、図中、第1図に記載
した符号と同一の符号は同一ないし同類部分を示
すものとする。
FIG. 2 is a sectional view of a main part showing details of the vicinity of the heat recovery chamber in FIG. 1, and in the figure, the same reference numerals as those shown in FIG. 1 indicate the same or similar parts.

図において、水管21による入口の篩(スクリ
ーン)は、第2図のA−A線断面図である第2a
図に示すように、1本おきに喰違つたジグザグの
配列とされており、これにより不燃物が挟まるの
を防いでいる。上記篩を通過して燃焼部10より
熱回収室22内に入ることができる粒子の大きさ
は、該篩を構成する水管21同士の間隙以下であ
る。
In the figure, the inlet sieve (screen) by the water pipe 21 is the sieve 2a, which is the sectional view taken along the line A-A in FIG.
As shown in the figure, every other wire is arranged in a zigzag pattern, which prevents incombustible materials from getting caught. The size of particles that can pass through the sieve and enter the heat recovery chamber 22 from the combustion section 10 is equal to or smaller than the gap between the water tubes 21 constituting the sieve.

このため、第2b図に示す伝熱管29同士の間
隙を、入口の篩の水管21の間隙より大きくして
おけば、不燃物が伝熱管29の間に挟まれる恐れ
はなく且つ伝熱管29のピツチを小さくできて、
熱回収効率の良い千鳥状配列としても不燃物ひつ
かかりの不安なくコンパクトにおさまつて何ら問
題はない。また、この実施例に示すように、熱回
収室22から燃焼部10へ流動媒体を戻すための
開口26にも水管21が存在する場合は、第2図
C−C線断面図である第2c図に示すように、水
管21同士の間隙を伝熱管29の間隙と同等以上
に大きくとればよい。
Therefore, if the gap between the heat transfer tubes 29 shown in FIG. The pitch can be made smaller,
Even with a staggered arrangement, which has good heat recovery efficiency, there is no problem as it can be stored compactly without worrying about catching incombustibles. In addition, as shown in this embodiment, when the water pipe 21 is also present in the opening 26 for returning the fluidized medium from the heat recovery chamber 22 to the combustion section 10, As shown in the figure, the gap between the water tubes 21 may be made larger than the gap between the heat transfer tubes 29 or more.

なお、上記した実施例において、仕切壁18上
部の流動媒体が通過する部分の水管21の周りに
は、図示しないプロテクタを取り付けて摩耗等か
ら保護するのが望ましい。また、熱回収装置11
の炉壁をメンブレン外壁で構成したものについて
説明したが、他の壁水管冷却構造や耐火壁構造で
も差支えないことは勿論である。
In the above-described embodiment, it is desirable to attach a protector (not shown) around the water pipe 21 in the upper part of the partition wall 18 through which the fluid medium passes to protect it from wear and the like. In addition, the heat recovery device 11
In the above description, the furnace wall is composed of a membrane outer wall, but it goes without saying that other wall water tube cooling structures or fireproof wall structures may be used.

(発明の効果) 以上説明したように、本発明によれば、仕切壁
で区分された熱回収部と燃焼部との間を流動媒体
が循環する流動層熱回収装置において、仕切壁上
方の流動媒体通過域に篩を設け、熱回収部内の熱
回収用伝熱面周囲の間隙を上記篩用孔径の間隙と
同等以上の幅としたことにより、熱回収部に入り
込む固形物の大きさが制限されるので、熱回収部
内の伝熱管に不燃物の詰まり等によるトラブルが
なく、従つて粗破砕或いは無破砕のまま、或る程
度大きな塊状物までも含む燃焼物を受け入れて熱
回収することが可能となり、また、熱回収部内の
伝熱管のピツチを小さくできるので、コンパクト
にでき、また熱回収率を向上させることができ
る。
(Effects of the Invention) As explained above, according to the present invention, in a fluidized bed heat recovery device in which a fluidized medium circulates between a heat recovery section and a combustion section that are separated by a partition wall, By installing a sieve in the medium passage area and making the gap around the heat recovery heat transfer surface in the heat recovery section equal to or larger than the gap in the sieve hole diameter, the size of solids that enter the heat recovery section is limited. Therefore, there is no trouble such as clogging of non-combustible materials in the heat transfer tubes in the heat recovery section, and therefore, it is possible to accept combustion materials including even large lumps and recover heat without crushing or crushing them. In addition, since the pitch of the heat exchanger tubes in the heat recovery section can be reduced, it can be made compact and the heat recovery rate can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した一実施例を示す断面
図、第2図は第1図の要部拡大断面図、第2a図
は第2図のA−A線断面図、第2b図は第2図の
伝熱管の要部断面図、第2c図は第2図のC−C
線断面図、第3図ないし第6図は伝熱管群に関す
る説明図である。 10……燃焼部、11……熱回収装置、14…
…散気装置、15,16,17……空気室、18
……仕切壁、21……水管、22……熱回収室、
25……散気管、29……伝熱管。
Fig. 1 is a sectional view showing an embodiment to which the present invention is applied, Fig. 2 is an enlarged sectional view of the main part of Fig. 1, Fig. 2a is a sectional view taken along line A-A in Fig. 2, and Fig. 2b is a sectional view showing an embodiment of the present invention. Figure 2 is a sectional view of the main part of the heat transfer tube, Figure 2c is C-C in Figure 2.
The line sectional views and FIGS. 3 to 6 are explanatory diagrams regarding the heat exchanger tube group. 10... Combustion section, 11... Heat recovery device, 14...
...Air diffuser, 15, 16, 17...Air chamber, 18
... Partition wall, 21 ... Water pipe, 22 ... Heat recovery room,
25...Air diffuser pipe, 29...Heat transfer tube.

Claims (1)

【特許請求の範囲】 1 底部から上方に向けて吹き込む流動化ガスに
より流動媒体を流動化させる流動層内で被燃焼物
を投入して燃焼する燃焼部に隣接させて、底部か
ら上方に向けて吹き込むガスにより流動媒体を固
定層から弱い流動層の状態にさせる移動層内で流
動媒体より熱を回収する熱回収部を設置し、これ
らの熱回収部と燃焼部とを上下部を連通させた状
態で仕切壁によつて区分し、該燃焼部の少くとも
前記仕切壁近傍における単位面積当りの流動化ガ
ス吹込風量を前記熱回収部の単位面積当りのガス
吹込風量よりも大きくとることにより、該燃焼部
の流動媒体を前記仕切壁を越えて前記熱回収部に
流入させ、該熱回収部内を流動媒体が沈降して前
記仕切壁下部から燃焼部に還流させるようにし、
前記熱回収部の移動層中に、内部に受熱流体が導
かれる熱回収用伝熱面を設け、前記燃焼部へ被燃
焼物を供給する供給装置を設けている流動層を用
いた流動層熱回収装置において、前記仕切壁上方
の流動媒体通過域に篩を設け、前記熱回収部の流
動媒体中に設置する熱回収用伝熱面周囲の間隙
を、上記篩開孔径と同等以上の幅としたことを特
徴とする熱回収装置の伝熱面。 2 上記仕切壁下方の連通部開孔径が、熱回収用
伝熱面周囲の間隙と同等以上の幅とされている特
許請求の範囲第1項記載の熱回収装置の伝熱面。 3 上記熱回収用伝熱面を構成する伝熱管群がほ
ぼ水平方向に配設され且つ管軸に直角の断面上で
千鳥状に配列されている特許請求の範囲第1項又
は第2項記載の熱回収装置の伝熱面。 4 上記熱回収用伝熱面を構成する伝熱管が、前
記仕切壁連通部の開口を含む面とほぼ平行に延び
るようにして配備されている特許請求の範囲第1
項、第2項又は第3項の何れか1項記載の熱回収
装置の伝熱面。
[Scope of Claims] 1. Adjacent to the combustion section where the material to be combusted is charged and combusted in a fluidized bed in which a fluidized medium is fluidized by fluidizing gas blown upward from the bottom, upward from the bottom. A heat recovery section is installed to recover heat from the fluidized medium in a moving bed that changes the fluidized medium from a fixed bed to a weakly fluidized bed state by blowing gas, and these heat recovery sections and the combustion section are connected at the top and bottom. The combustion section is divided by a partition wall, and the fluidizing gas blowing air volume per unit area of the combustion section is set to be larger than the gas blowing air flow per unit area of the heat recovery section, The fluidized medium of the combustion section is caused to flow into the heat recovery section over the partition wall, and the fluidized medium settles in the heat recovery section and flows back to the combustion section from the lower part of the partition wall,
Fluidized bed heat using a fluidized bed in which a heat transfer surface for heat recovery into which a heat-receiving fluid is guided is provided in the moving bed of the heat recovery section, and a supply device is provided for supplying the material to be combusted to the combustion section. In the recovery device, a sieve is provided in the fluidized medium passage area above the partition wall, and the gap around the heat recovery heat transfer surface installed in the fluidized medium of the heat recovery section has a width equal to or larger than the sieve opening diameter. A heat transfer surface of a heat recovery device characterized by: 2. The heat transfer surface of the heat recovery device according to claim 1, wherein the opening diameter of the communicating portion below the partition wall is equal to or larger than the gap around the heat recovery heat transfer surface. 3. According to claim 1 or 2, the heat transfer tube group constituting the heat recovery heat transfer surface is arranged substantially horizontally and arranged in a staggered manner on a cross section perpendicular to the tube axis. heat transfer surface of a heat recovery device. 4. Claim 1, wherein the heat transfer tubes constituting the heat recovery heat transfer surface are arranged so as to extend substantially parallel to a surface including the opening of the partition wall communication section.
The heat transfer surface of the heat recovery device according to any one of Items 1, 2, and 3.
JP61253645A 1986-10-27 1986-10-27 Heat transfer surface for heat recovery device Granted JPS63108109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253645A JPS63108109A (en) 1986-10-27 1986-10-27 Heat transfer surface for heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253645A JPS63108109A (en) 1986-10-27 1986-10-27 Heat transfer surface for heat recovery device

Publications (2)

Publication Number Publication Date
JPS63108109A JPS63108109A (en) 1988-05-13
JPH0577924B2 true JPH0577924B2 (en) 1993-10-27

Family

ID=17254205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253645A Granted JPS63108109A (en) 1986-10-27 1986-10-27 Heat transfer surface for heat recovery device

Country Status (1)

Country Link
JP (1) JPS63108109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236818A (en) * 1993-02-12 1994-08-23 Kasutamu Denshi Kk Inductor and carrier tape

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147135A (en) * 2005-11-25 2007-06-14 Dowa Holdings Co Ltd Fluidized bed furnace
US7722218B2 (en) * 2007-06-14 2010-05-25 Wing Fai Leung Method of and device for attracting aquatic life forms using an electromagnetic field generation
WO2013035615A1 (en) * 2011-09-07 2013-03-14 荏原環境プラント株式会社 Fluidized bed furnace and waste disposal method using fluidized bed furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893426A (en) * 1974-03-25 1975-07-08 Foster Wheeler Corp Heat exchanger utilizing adjoining fluidized beds
JPS5246683A (en) * 1975-10-09 1977-04-13 Babcock Hitachi Kk Device for controlling a fluidized bed
JPS5611989A (en) * 1979-07-12 1981-02-05 Mitsubishi Heavy Ind Ltd Temperature control of jet layer heat exchanger
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell
JPS5749701A (en) * 1980-09-10 1982-03-23 Babcock Hitachi Kk Fluidized bed boiler
JPS58183937A (en) * 1982-04-20 1983-10-27 ヨ−ク−シツプレイ・インコ−ポレ−テツド Rapid fluidized bed type reaction method and furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893426A (en) * 1974-03-25 1975-07-08 Foster Wheeler Corp Heat exchanger utilizing adjoining fluidized beds
JPS5246683A (en) * 1975-10-09 1977-04-13 Babcock Hitachi Kk Device for controlling a fluidized bed
JPS5611989A (en) * 1979-07-12 1981-02-05 Mitsubishi Heavy Ind Ltd Temperature control of jet layer heat exchanger
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell
JPS5749701A (en) * 1980-09-10 1982-03-23 Babcock Hitachi Kk Fluidized bed boiler
JPS58183937A (en) * 1982-04-20 1983-10-27 ヨ−ク−シツプレイ・インコ−ポレ−テツド Rapid fluidized bed type reaction method and furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236818A (en) * 1993-02-12 1994-08-23 Kasutamu Denshi Kk Inductor and carrier tape

Also Published As

Publication number Publication date
JPS63108109A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
CA1154335A (en) Fluidized bed heat exchanger with water cooled air distributor and dust hopper
EP0740109B1 (en) Fluidized-bed combuster
US4823740A (en) Thermal reactor
JPH04227403A (en) Fluidized-bed combustion apparatus and operating method thereof
JPS59112113A (en) Waste incinerator
US6139805A (en) Fluidized-bed reactor
JPH07101088B2 (en) Non-catalytic denitration method of fluidized bed furnace
US4442796A (en) Migrating fluidized bed combustion system for a steam generator
US4359968A (en) Fluidized bed heat exchanger utilizing a baffle system
JPH0571708A (en) Fluidized bed reactor and method of operating fluidized bed reactor utilizing improved particle removing device
EP0402089A1 (en) Fluidized bed reactor utilizing an internal solids separator
PL183100B1 (en) Method of and apparatus for circulating solids in a fluidised bed reactor
JP2969369B2 (en) Combustion devices, especially swirl-bed combustion devices
JPH0577924B2 (en)
JP2905082B2 (en) Fluid material circulation method and apparatus
JPH0756361B2 (en) Fluidized bed heat recovery apparatus and control method thereof
JPH09292112A (en) Fluid bed type incinerator
JPS6324201B2 (en)
JP3107544B2 (en) Swirl combustion furnace
JP2980513B2 (en) Fluid bed incinerator
JPH09196313A (en) Fluidized bed reactor
JPH07109282B2 (en) Fluidized bed heat recovery device and diffuser thereof
JP2967035B2 (en) Fluidized bed heat recovery apparatus and operation method thereof
JPH0567875B2 (en)
US5826519A (en) Hearth bed and a furnace with a particle hearth bed

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term