JPH057725B2 - - Google Patents

Info

Publication number
JPH057725B2
JPH057725B2 JP56091396A JP9139681A JPH057725B2 JP H057725 B2 JPH057725 B2 JP H057725B2 JP 56091396 A JP56091396 A JP 56091396A JP 9139681 A JP9139681 A JP 9139681A JP H057725 B2 JPH057725 B2 JP H057725B2
Authority
JP
Japan
Prior art keywords
unmanned vehicle
light
receiving element
turning
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56091396A
Other languages
Japanese (ja)
Other versions
JPS57204915A (en
Inventor
Fumihide Sato
Hisashi Kato
Hirokazu Taki
Kunio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56091396A priority Critical patent/JPS57204915A/en
Priority to PCT/JP1982/000073 priority patent/WO1982003283A1/en
Priority to US06/438,850 priority patent/US4554498A/en
Priority to DE823237439T priority patent/DE3237439T1/en
Publication of JPS57204915A publication Critical patent/JPS57204915A/en
Publication of JPH057725B2 publication Critical patent/JPH057725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 この発明は、無人走行車の目標物に対する姿勢
を、所望の姿勢に制御する為の新規な姿勢制御方
法に関し、一組の発光素子と受光素子を備え、移
載装置等の目標物に反射体を設けることにより、
目標物に対する無人走行車の接近方向などの姿勢
を自由に簡単に制御することができる無人走行車
の姿勢制御方法を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel attitude control method for controlling the attitude of an unmanned vehicle with respect to a target object to a desired attitude. By installing reflectors on targets such as
It is an object of the present invention to provide a method for controlling the attitude of an unmanned vehicle, which can freely and easily control the attitude of the unmanned vehicle, such as the direction in which it approaches a target object.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図において、1は案内軌道を持
たない無人走行車システムの無人走行車であつ
て、モータ2L,2Rによつて、夫々個別に駆動
される左駆動輪3L、右駆動輪3Rを、車体の前
後中央部に具え、両駆動輪3L,3Rの夫々の車
軸にエンコーダ4L、4Rが結合されている。エ
ンコーダ4L,4Rの出力パルスは、夫々左駆動
輪の回転量検出部5L、右駆動輪の回転量検出部
5Rに入力され、回転量検出部5L,5Rの出力
は演算制御部6に供給される。無人走行車1は、
演算制御部6において、回転量検出部5L,5R
から入力される実走行距離データを、中央制御室
等から与えられる目的位置までの設定距離データ
とを比較演算しながら走行する型の案内軌道を持
たない無人走行車であつて、演算結果は、左駆動
輪の駆動部7L、右駆動輪の駆動部7Rを通して
モータ2L,2Rに夫々与えられる。本実施例で
は、無人走行車1のこの走行制御については説明
を省略する。8は、無人走行システムのヤード内
に配置された移動装置等の目標物である。1A,
1Bは、夫々、発光素子及び受光素子であつて、
無人走行車1の鉛直をなす前面の、走行車中心軸
Xを通る鉛直軸Z上に中心が位置するように取付
けられており、走行車の中心軸Xが光反射体8A
の反斜面に対して直角に向いた時に、受光素子1
Bの受光量が最大となる。光反射体8Aは、目標
物例えば移載装置8の一つの鉛直面部に取付けら
れている。
In FIGS. 1 and 2, reference numeral 1 denotes an unmanned vehicle of an unmanned vehicle system that does not have a guide track, and a left drive wheel 3L and a right drive wheel are respectively driven by motors 2L and 2R. 3R is provided at the center of the front and rear of the vehicle body, and encoders 4L and 4R are coupled to respective axles of both drive wheels 3L and 3R. The output pulses of the encoders 4L and 4R are input to the left drive wheel rotation amount detection section 5L and the right drive wheel rotation amount detection section 5R, respectively, and the outputs of the rotation amount detection sections 5L and 5R are supplied to the calculation control section 6. Ru. The unmanned vehicle 1 is
In the arithmetic control section 6, rotation amount detection sections 5L, 5R
This is an unmanned vehicle that does not have a guide track and runs while comparing and calculating the actual travel distance data inputted from the central control room with the set distance data given from the central control room etc., and the calculation results are as follows. The power is applied to the motors 2L and 2R through the drive section 7L for the left drive wheel and the drive section 7R for the right drive wheel, respectively. In this embodiment, a description of this travel control of the unmanned vehicle 1 will be omitted. Reference numeral 8 indicates a target object such as a moving device placed in the yard of the unmanned driving system. 1A,
1B are a light emitting element and a light receiving element, respectively,
It is attached so that the center is located on the vertical axis Z passing through the vehicle center axis X on the vertical front surface of the unmanned vehicle 1, and the center axis X of the vehicle is located on the light reflector 8A.
When the light receiving element 1 is oriented perpendicularly to the opposite slope of
The amount of light received by B is the maximum. The light reflector 8A is attached to one vertical surface of the target object, for example, the transfer device 8.

発光素子1Aは、発光素子用電源部9から、特
定周波数で変調された定レベルの出力を受けて変
調光を投光する。受光素子1Bの出力は、検知増
巾部10に入力される。検知増巾部10は、受光
素子1Bから、入射光量に比例したレベルの電気
信号を受け、上記特定周波数で復調する。従つ
て、発光素子1Aから光反射体8Aに投射された
光のうち、光反射体8Aによつて反射された光の
量に比例したレベルの電気信号を出力する。この
出力特性を第5図に示す。角度αは、中心軸Xが
光反射体8Aとなす角度である。11は、ピーク
検出部であつて、検知増巾部10の出力が、最大
値に達した時に、これを検出してピーク検出信号
Pを演算制御部6に供給する。演算制御部6は、
前記走行制御機能の他、後述する初期誘導位置ま
で無人走行車1が旋回し終えた時に、定点旋回走
査指令Sを出力して、無人走行車1を定点旋回動
作させる機能を有している。定点旋回走査指令S
は、駆動輪3L,3Rを互いに逆回転させる為の
指令であつて、上記初期誘導位置に対応して予め
定められている各駆動輪3L,3Rの回転方向を
その内容とし、モータ駆動部7L,7Rを通して
モータ2L,2Rに個別に与えられる。定点旋回
走査指令Sが出力されると、無人走行車1は、駆
動輪3L,3R間の中間点を旋回中心Oとして、
定点旋回する。この定点旋回走査指令Sは、演算
制御部6が、ピーク検知信号Pを受けると消滅す
る。同時に、演算制御部6は、回転量検出部5
L,5Rにクリア信号を送出し、以後、回転量検
出部5L,5Rから入力される駆動輪3L,3R
の回転量差から過旋回角度の有無を検出し、過旋
回している場合には、過旋回修正指令Sfを出力す
る。過旋回修正指令Sfは、過旋回角度にだけ、無
人走行車1を定点旋回させるのに必要な駆動輪3
L,3Rの回転量と回転方向を内容とし、モータ
駆動部7L,7Rを通してモータ2L,2Rに与
えられる。なお、この場合の駆動輪3L,3Rの
回転方向は定点旋回走査指令時の回転方向とは逆
方向である。
The light emitting element 1A receives a constant level output modulated at a specific frequency from the light emitting element power supply section 9, and projects modulated light. The output of the light receiving element 1B is input to the detection amplification section 10. The detection amplification unit 10 receives an electrical signal at a level proportional to the amount of incident light from the light receiving element 1B, and demodulates it at the above-mentioned specific frequency. Therefore, of the light projected onto the light reflector 8A from the light emitting element 1A, an electrical signal with a level proportional to the amount of light reflected by the light reflector 8A is output. This output characteristic is shown in FIG. The angle α is the angle that the central axis X makes with the light reflector 8A. Reference numeral 11 denotes a peak detection section, which detects when the output of the detection amplification section 10 reaches the maximum value and supplies a peak detection signal P to the calculation control section 6. The calculation control unit 6 is
In addition to the travel control function, it has a function of outputting a fixed point turning scan command S when the unmanned vehicle 1 finishes turning to an initial guidance position, which will be described later, to cause the unmanned vehicle 1 to perform a fixed point turning operation. Fixed point rotation scan command S
is a command for rotating the driving wheels 3L, 3R in opposite directions, and the content thereof is the rotational direction of each driving wheel 3L, 3R that is predetermined corresponding to the above-mentioned initial guidance position. , 7R to the motors 2L and 2R individually. When the fixed point turning scan command S is output, the unmanned vehicle 1 sets the turning center O to the intermediate point between the drive wheels 3L and 3R.
Turn at a fixed point. This fixed point rotation scanning command S disappears when the calculation control section 6 receives the peak detection signal P. At the same time, the calculation control section 6 controls the rotation amount detection section 5.
A clear signal is sent to L and 5R, and thereafter the drive wheels 3L and 3R are inputted from the rotation amount detection parts 5L and 5R.
The presence or absence of an over-turning angle is detected from the difference in the amount of rotation, and if over-turning occurs, an over-turning correction command Sf is output. The over-turn correction command Sf adjusts the drive wheels 3 necessary to make the unmanned vehicle 1 turn at a fixed point only at the over-turn angle.
The contents include the amount and direction of rotation of L and 3R, and are applied to motors 2L and 2R through motor drive units 7L and 7R. Note that the rotation direction of the drive wheels 3L and 3R in this case is opposite to the rotation direction when the fixed point turning scan command is issued.

次に、この実施例の動作を、第3図に示す目標
物8生産方式に適用する無人走行車システムにつ
いて説明する。
Next, an explanation will be given of an unmanned vehicle system in which the operation of this embodiment is applied to the target object 8 production method shown in FIG.

無人走行システムは、自動倉庫Yのある直線状
の主径路と、移載装置などの目標物8がある複数
の分岐径路とから成り、無人走行車1は中央制御
室及び自動倉庫Yにおいて、搬送物を積載し、次
いで行先となる目標物8を指定する指令を受け
て、目的地である目標物8に対応する初期誘導位
置Po(Poa、Pob、Poc)まで走行する。無人走
行車1の出発位置Psと各初期誘導位置間の主径
路は、無人走行車1の旋回に要する部分を除いて
は直線であつて、駆動輪3L,3Rに設けたエン
コーダ4L,4Rの出力パルス数と予め与えた初
期誘導位置Poaまでの距離とを比較演算させるこ
とにより目的とする位置に無人走行車1を位置決
めする。上記直線から無人走行車1が微妙に旋回
状にずれた場合には、図示しないジヤイロコンパ
スによつてそのずれが検出され、演算制御部6か
ら修正すべき角度がモータ2L,2Rに供給され
ることにより、自動修正が行われる。初期誘導位
置への旋回は予め旋回角度(図においては90°)
を設定しておき、この設定角度と上記ジヤイロコ
ンパスの出力に基づく値とを比較演算させて実行
させる。主径路から所定角度で分岐された分岐経
路に方向転換され、無人走行車1の上位旋回停止
後の姿勢が第4図に示す如く、光反射板中心軸Y
に対して角度θだけずれているとする。無人走行
車1が停止すると、演算制御部6から、定点旋回
走査指令Sが出力される。無人走行車1の中心軸
Xに対するずれ方向は、無人走行車1の初期誘導
位置Poaへの旋回方向によつて、予め定まつてお
り、今の場合には、左側にずれるようになつてい
る為、上記定点旋回走査指令Sは右旋回を指令
し、モータ駆動部7L,7Rを通して夫々モータ
2L,2Rに加えられ、無人走行車1は、右側へ
定点旋回を開始する。この定点旋回は、演算制御
部6がピーク検出部11からピーク検出信号Pを
受けるまで続けられる。無人走行車1の中心軸X
が、第4図に実線で示す如く、光反射体8Aに直
交する姿勢まで、無人走行車1が旋回し、上記ピ
ーク検出信号Pが出力されると、演算制御部6か
らの上記旋回走査指令Sが消滅する。無人走行車
1が、過旋回した場合には、演算制御部6から、
過旋回修正指令Sfが出力される為、無人走行車1
は、過旋回量だけ、上記定点旋回方向と逆向きに
定点旋回し、走行車中心軸Xが光反射体8Aの反
射面に直角に向く姿勢となる。
The unmanned driving system consists of a linear main route where the automated warehouse Y is located and a plurality of branch routes where there are targets 8 such as transfer devices. After loading objects, the vehicle then receives a command to specify the target object 8 as the destination, and travels to the initial guidance position Po (Poa, Pob, Poc) corresponding to the target object 8 as the destination. The main path between the starting position Ps of the unmanned vehicle 1 and each initial guidance position is a straight line except for the portion required for turning the unmanned vehicle 1, and The unmanned vehicle 1 is positioned at the target position by comparing the number of output pulses and the distance to the initial guidance position Poa given in advance. If the unmanned vehicle 1 slightly deviates from the above-mentioned straight line in a turning manner, the deviation is detected by a gyro compass (not shown), and the angle to be corrected is supplied from the calculation control unit 6 to the motors 2L and 2R. This will cause automatic correction. When turning to the initial guidance position, set the turning angle in advance (90° in the figure)
is set in advance, and a comparison calculation is made between this set angle and a value based on the output of the gyro compass. The direction of the unmanned vehicle 1 is changed to a branch route branched at a predetermined angle from the main route, and the attitude of the unmanned vehicle 1 after turning and stopping is as shown in FIG.
Suppose that it is shifted by an angle θ. When the unmanned vehicle 1 stops, the calculation control unit 6 outputs a fixed point turning scan command S. The direction of deviation of the unmanned vehicle 1 with respect to the center axis X is predetermined by the turning direction of the unmanned vehicle 1 toward the initial guidance position Poa, and in this case, it is shifted to the left. Therefore, the fixed point turning scan command S commands a right turn and is applied to the motors 2L, 2R through the motor drive units 7L, 7R, respectively, and the unmanned vehicle 1 starts a fixed point turn to the right. This fixed point turning continues until the calculation control section 6 receives the peak detection signal P from the peak detection section 11. Central axis X of unmanned vehicle 1
However, as shown by the solid line in FIG. 4, when the unmanned vehicle 1 turns to a position perpendicular to the light reflector 8A and the peak detection signal P is output, the turning scan command from the arithmetic control unit 6 is S disappears. When the unmanned vehicle 1 turns excessively, the arithmetic control unit 6 issues the following information:
Since the excessive turning correction command Sf is output, unmanned vehicle 1
The vehicle makes a fixed point turn in the opposite direction to the above fixed point turning direction by the amount of overturning, and takes a posture in which the traveling vehicle center axis X faces perpendicularly to the reflective surface of the light reflector 8A.

第6図は、この発明の他の実施例を示したもの
で、発光素子1Aと受光素子1Bを、例えば同一
パネルに取付けて、走査部12を構成し、この走
査部を無人走行車1上に旋回可能に設け、走査用
モータ13で旋回駆動するようにしてある。該モ
ータ13に、前記初期誘導位置に対応して予め定
められた回転方向を内容とする旋回走査指令Mが
演算制御部6から、走査用モータ駆動部14を通
して加えられる。15は、モータ13の回転数か
ら、走査部12の走行車中心軸Xに対する旋回角
度θを検出する方向検出部であつて、検出した旋
回角度θを演算制御部6に入力する。この旋回角
度θは、無人走行車1の走行車中心軸Xが、光反
射体中心軸Yとなす角度である。演算制御部6
は、入力された旋回角度θに基づいて、該旋回角
度θだけ、無人走行車1が定点旋回するのに必要
な駆動輪3L,3Rの回転量を演算し、算出され
た駆動輪3L3Rの回転量と、夫々の回転方向を
内容とする定点旋回指令Nを、駆動部7L,7R
を通して、モータ2L,2Rに夫々与える。上記
旋回走査指令Mは、ピーク検出部11から、ピー
ク検出信号Pが送出されると消滅する。
FIG. 6 shows another embodiment of the present invention, in which a light emitting element 1A and a light receiving element 1B are attached to, for example, the same panel to constitute a scanning section 12, and this scanning section is mounted on the unmanned vehicle 1. It is provided so as to be able to turn, and is driven to turn by a scanning motor 13. A rotation scanning command M having a predetermined rotation direction corresponding to the initial guidance position is applied to the motor 13 from the arithmetic control section 6 through the scanning motor drive section 14. Reference numeral 15 denotes a direction detection unit that detects the turning angle θ of the scanning unit 12 with respect to the vehicle center axis X from the rotational speed of the motor 13, and inputs the detected turning angle θ to the calculation control unit 6. This turning angle θ is an angle between the vehicle center axis X of the unmanned vehicle 1 and the light reflector center axis Y. Arithmetic control unit 6
calculates the amount of rotation of the driving wheels 3L, 3R necessary for the unmanned vehicle 1 to turn at a fixed point by the input turning angle θ based on the input turning angle θ, and calculates the calculated rotation of the driving wheels 3L3R. The fixed point turning command N containing the amount and each rotation direction is sent to the drive units 7L and 7R.
, to the motors 2L and 2R, respectively. The rotation scanning command M disappears when the peak detection signal P is sent out from the peak detection section 11.

この実施例では、無人走行車1が、初期誘導位
置で停止すると、演算制御部6から、旋回走査指
令Mが出力され、走査部12が旋回を開始し、該
旋回運動を、ピーク検知信号Pが出力されるまで
続ける。ピーク検知信号Pが出力されると、演算
制御部6から、定点旋回指令Nが出力され、無人
走行車1が、走査部12の旋回方向へ、定点旋回
し、走行車中心軸Xが光反射体8Aの反射面に直
交する姿勢となるまで旋回すると停止する。
In this embodiment, when the unmanned vehicle 1 stops at the initial guidance position, the arithmetic control unit 6 outputs a turning scanning command M, the scanning unit 12 starts turning, and the turning movement is detected by the peak detection signal P. Continue until output. When the peak detection signal P is output, a fixed point turning command N is outputted from the calculation control unit 6, and the unmanned vehicle 1 turns at a fixed point in the turning direction of the scanning unit 12, and the central axis X of the traveling vehicle reflects light. It stops when it turns until it assumes a posture perpendicular to the reflective surface of the body 8A.

なお、上記各実施例において、演算制御部6を
マイクロコンピユータ等を用いれば、ピーク検出
部11のピーク検出処理はソフトウエアで処理す
ることができ、又走査部12を駆動する為のモー
タ13としてパルスモータを用いれば、これを駆
動するパルス数を計数することにより、走査部1
2の方向を検出することができ、方向検出部15
とピーク検出部11は不要になる。更に、発光素
子1Aと受光素子1Bは車輪軸上に配置してもよ
い。
In each of the above embodiments, if a microcomputer or the like is used as the arithmetic control section 6, the peak detection process of the peak detection section 11 can be performed by software, and the motor 13 for driving the scanning section 12 can be used. If a pulse motor is used, the scanning unit 1 can be controlled by counting the number of pulses that drive the motor.
The direction detection unit 15 can detect two directions.
The peak detection section 11 becomes unnecessary. Furthermore, the light emitting element 1A and the light receiving element 1B may be arranged on the wheel shaft.

以上の如く、この発明によれば、目標物に取付
けた反射体に対して無人走行車を姿勢制御せしめ
るものである為、走行路面下、又は路面上に誘導
体などを設ける必要は全くなく、又走行径路の変
更あるいは目標物の設置位置の変更に対しても極
めて柔軟に対処しうる効果がある。
As described above, according to the present invention, since the attitude of an unmanned vehicle is controlled with respect to a reflector attached to a target object, there is no need to provide a guide under or on the road surface, and This has the effect of being extremely flexible in dealing with changes in travel routes or changes in the installation positions of targets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ及びロは、夫々、この発明による無人
走行車の姿勢制御方法を実施した無人走行車の側
面図及び平面図、第2図は、上記姿勢制御方法を
実施した無人走行車の姿勢制御方法装置の実施例
のブロツク図、第3図は、この発明が適用される
無人走行車システムの概略図、第4図は第2図の
実施例の動作説明図、第5図は、上記実施例にお
ける検知増巾部の出力特性図、第6図は、この発
明の他の実施例のブロツク図である。 図において、1……無人走行車、1A……発光
素子、1B……受光素子、2L,2R……モー
タ、3A,3B……従動輪、3L,3R……駆動
輪、4L,4R……エンコーダ、5L,5R……
回転量検出部、6……演算制御部、7L,7R…
…モータ駆動部、8……目標物、8A……光反射
体、10……検知増巾部、11……ピーク検出
部、12……走査部、13……モータ、14……
モータ駆動部、15……方向検出部、X……走行
中心軸。
FIGS. 1A and 1B are a side view and a plan view, respectively, of an unmanned vehicle that has implemented the attitude control method for an unmanned vehicle according to the present invention, and FIG. 2 shows the attitude of an unmanned vehicle that has implemented the above attitude control method. FIG. 3 is a schematic diagram of an unmanned vehicle system to which the present invention is applied; FIG. 4 is an explanatory diagram of the operation of the embodiment of FIG. 2; and FIG. 5 is a block diagram of an embodiment of the control method device. FIG. 6, which shows the output characteristics of the detection amplification section in this embodiment, is a block diagram of another embodiment of the present invention. In the figure, 1... unmanned vehicle, 1A... light emitting element, 1B... light receiving element, 2L, 2R... motor, 3A, 3B... driven wheel, 3L, 3R... driving wheel, 4L, 4R... Encoder, 5L, 5R...
Rotation amount detection section, 6... Arithmetic control section, 7L, 7R...
...Motor drive unit, 8...Target, 8A...Light reflector, 10...Detection amplification unit, 11...Peak detection unit, 12...Scanning unit, 13...Motor, 14...
Motor drive unit, 15...direction detection unit, X...travel center axis.

Claims (1)

【特許請求の範囲】 1 直線の主径路に対して所定角度で分岐された
複数の分岐径路にそれぞれ設けられた目標物に向
けて無人走行車を走行制御する際に、上記無人走
行車が主径路から分岐径路に方向転換した初期誘
導位置まで旋回した際の目標物に対する姿勢を制
御するものであつて、上記無人走行車に組をなす
発光素子と受光素子を設けると共に、上記発光素
子からの投光を反射する光反射体を上記目標物に
配設し、且つ上記無人走行車には、上記初期誘導
位置に無人走行車が旋回し終えた時に、上記無人
走行車の左右の駆動輪の回転方向を内容とする定
点旋回走査指令を出す演算制御部を設け、 上記受光素子が上記光反射体から最大光量を受
光する姿勢になるまで、上記定点旋回走査指令を
出して、上記無人走行車を上記目標物近傍で定点
旋回せしめることを特徴とする無人走行車の姿勢
制御方法。 2 組をなす発光素子と受光素子が、無人走行車
と一体に取付けられていることを特徴とする特許
請求の範囲第1項記載の無人走行車の姿勢制御方
法。 3 組をなす発光素子と受光素子が、無人走行車
に対して旋回可能に設けられており、上記発光素
子と受光素子を、該受光素子が、光反射体から最
大光量を受光する向きまで旋回させた後、この向
きに走行車中心軸が一致するまで無人走行車を定
点旋回させることを特徴とする特許請求の範囲第
1項記載の無人走行車の姿勢制御方法。
[Scope of Claims] 1. When controlling an unmanned vehicle to travel toward a target provided on each of a plurality of branch routes branched at a predetermined angle with respect to a straight main route, the unmanned vehicle This system controls the attitude toward a target when turning from a route to a branch route to an initial guidance position, and the unmanned vehicle is provided with a pair of light emitting element and light receiving element, and the unmanned vehicle is provided with a pair of light emitting element and light receiving element, A light reflector that reflects the projected light is disposed on the target object, and the unmanned vehicle is provided with a light reflector that reflects the projected light, and when the unmanned vehicle finishes turning to the initial guidance position, the left and right drive wheels of the unmanned vehicle are An arithmetic control unit is provided that issues a fixed point turning scan command including a rotational direction, and the unmanned vehicle issues the fixed point turning scan command until the light receiving element assumes a posture in which it receives a maximum amount of light from the light reflector. A method for controlling the attitude of an unmanned vehicle, comprising: causing the vehicle to turn at a fixed point in the vicinity of the target object. 2. The attitude control method for an unmanned vehicle according to claim 1, wherein two sets of a light emitting element and a light receiving element are integrally attached to the unmanned vehicle. 3. A pair of a light emitting element and a light receiving element are provided so as to be able to turn with respect to the unmanned vehicle, and the light emitting element and the light receiving element are turned to a direction in which the light receiving element receives the maximum amount of light from the light reflector. 2. The method of controlling the attitude of an unmanned vehicle according to claim 1, wherein the unmanned vehicle is rotated at a fixed point until the center axis of the vehicle coincides with this direction.
JP56091396A 1981-03-16 1981-06-11 Control method for attitude of unattended running car Granted JPS57204915A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56091396A JPS57204915A (en) 1981-06-11 1981-06-11 Control method for attitude of unattended running car
PCT/JP1982/000073 WO1982003283A1 (en) 1981-03-16 1982-03-16 Movement controller for moving body
US06/438,850 US4554498A (en) 1981-03-16 1982-03-16 Control apparatus for running moving object
DE823237439T DE3237439T1 (en) 1981-03-16 1982-03-16 RUNNING CONTROL DEVICE FOR A RUNNING MOVABLE OBJECT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56091396A JPS57204915A (en) 1981-06-11 1981-06-11 Control method for attitude of unattended running car

Publications (2)

Publication Number Publication Date
JPS57204915A JPS57204915A (en) 1982-12-15
JPH057725B2 true JPH057725B2 (en) 1993-01-29

Family

ID=14025214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56091396A Granted JPS57204915A (en) 1981-03-16 1981-06-11 Control method for attitude of unattended running car

Country Status (1)

Country Link
JP (1) JPS57204915A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3787003T2 (en) 1986-05-21 1994-03-24 Komatsu Mfg Co Ltd STEERING DEVICE FOR BODIES MOVING UNMANNED.
JP2019220035A (en) * 2018-06-22 2019-12-26 株式会社明電舎 Unmanned guided vehicle, global map creation system for unmanned guided vehicle, and global map creation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119172A (en) * 1975-01-10 1976-10-19 Dixon & Co Ltd R D Improved apparatus for repairing floor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119172A (en) * 1975-01-10 1976-10-19 Dixon & Co Ltd R D Improved apparatus for repairing floor

Also Published As

Publication number Publication date
JPS57204915A (en) 1982-12-15

Similar Documents

Publication Publication Date Title
JP3266747B2 (en) Vehicle guidance and travel control device
US4554498A (en) Control apparatus for running moving object
JPH057725B2 (en)
JP2567619B2 (en) Position detection system for moving objects
JPH0215882B2 (en)
JPS6022215A (en) Drive controller for unmanned truck system
JPH0542002B2 (en)
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JP2733924B2 (en) Travel control device for moving objects
JPS5952310A (en) Control method of unmanned guide truck
JP2660534B2 (en) Guidance traveling control device for moving objects
JP2001318718A (en) Railless automatic carrier and control method for automatic carrier
JP3144122B2 (en) Automated guided vehicle steering speed controller
JPS6081609A (en) Supporting device of travelling course of omnidirectional movable truck
JPH087445Y2 (en) Unmanned vehicle guidance device
JPH01116810A (en) Unattended vehicle guiding device
JPS6017890B2 (en) Fixed position stop control system for transport vehicle for cable crane bucket
JPS6125219A (en) Optical guide type mobile truck control equipment
JPS63298411A (en) Guiding device for unmanned vehicle
JP2643130B2 (en) Driverless vehicle guidance device
SU1556947A1 (en) Automatic floor-type vehicle
JPS62226205A (en) Drive guiding device for unmanned carrier
JPH03192407A (en) Guide controller for unmanned vehicle and controlled variable calculator for the same
JPH01298408A (en) Working vehicle guiding device for beam light utilization
JPH031685B2 (en)