JP2643130B2 - Driverless vehicle guidance device - Google Patents

Driverless vehicle guidance device

Info

Publication number
JP2643130B2
JP2643130B2 JP62017921A JP1792187A JP2643130B2 JP 2643130 B2 JP2643130 B2 JP 2643130B2 JP 62017921 A JP62017921 A JP 62017921A JP 1792187 A JP1792187 A JP 1792187A JP 2643130 B2 JP2643130 B2 JP 2643130B2
Authority
JP
Japan
Prior art keywords
light
intersection
laser light
unmanned vehicle
set path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62017921A
Other languages
Japanese (ja)
Other versions
JPS63186305A (en
Inventor
喜正 沢田
正之 寺嶋
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP62017921A priority Critical patent/JP2643130B2/en
Publication of JPS63186305A publication Critical patent/JPS63186305A/en
Application granted granted Critical
Publication of JP2643130B2 publication Critical patent/JP2643130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、無人搬送システムにおいて、無人車の誘導
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to an unmanned vehicle guidance device in an unmanned transport system.

B.発明の概要 本発明は、無人車を所定の走行進路及び走行ルートに
誘導するにおいて、 設定進路に沿ったレーザ光を無人車が検出して設定進
路に沿った操舵を行い、設定進路の交差点を横切る光を
無人車が検出して交差点で進路変更操舵をすることによ
り、 軌道又は誘導路を不要にして無人車を確実に誘導でき
るようにしたものである。
B. SUMMARY OF THE INVENTION In the present invention, in guiding an unmanned vehicle to a predetermined traveling route and a traveling route, the unmanned vehicle detects laser light along the set route and performs steering along the set route, and The unmanned vehicles detect the light that crosses the intersection, and perform the course change steering at the intersection, so that the unmanned vehicles can be reliably guided without the need for a track or a taxiway.

C.従来の技術 無人搬送システムは、無人車を軌道又は地上床面に設
置した誘導路に沿って操舵制御することによって予めプ
ログラム又は設定された走行進路及び走行ルートが変え
られ、走行位置さらには積載重量に従った駆動制御によ
って加減速範囲,停止位置が変えられ、荷役や各種コン
トロールの無人運行が行われる。
C. Prior Art Unmanned transport systems are designed to control the unmanned vehicle along a taxiway installed on a track or ground floor, thereby changing the travel route and travel route that have been programmed or set in advance. Acceleration / deceleration ranges and stop positions are changed by drive control according to the loaded weight, and unmanned operation of cargo handling and various controls is performed.

このうち、誘導路方式では、第4図に示すように、地
上床面に縦横に埋設した誘導路Lを無人車Mが検出して
該誘導路Lに沿った操舵制御を行う。この方式におい
て、誘導路Lを誘導線として電流を流しておき、無人車
M側で誘導磁界として検出する方式、誘導路Lを光反射
テープとして無人車M側で発光受光器によって検出する
方式、さらに誘導路Lを鉄ベルトとして無人車M側で近
接磁気センサによって検出する方式等がある。
Of these, in the taxiway system, as shown in FIG. 4, the unmanned vehicle M detects a taxiway L buried vertically and horizontally on the ground floor, and performs steering control along the taxiway L. In this method, a method in which a current is caused to flow while using the guide path L as a guide line and a guide magnetic field is detected on the unmanned vehicle M side, a method in which the guide path L is detected as a light reflective tape on the unmanned vehicle M side by a light emitting and receiving device, Further, there is a method of detecting the guidance path L as an iron belt on the unmanned vehicle M side by a proximity magnetic sensor.

また、交差点における進路変更は、同図に示すよう
に、誘導路Lの交差点直前に設けた交差点標識CPLを無
人車Mの標識検出器が検出し、この検出と当該交差点で
の進路変更のプログラム指令によって指令方向への操舵
を行う。
Further, as shown in the figure, the course change at the intersection is performed by detecting the intersection sign CPL provided immediately before the intersection of the taxiway L by the sign detector of the unmanned vehicle M, and detecting this and the course change program at the intersection. The steering in the command direction is performed by the command.

D.発明が解決しようとする問題点 従来の誘導方式では、地上床面に軌道又は誘導路を設
置することを必要とし、このため多大な設備費を必要と
するし、そのレイアウト変更工事が大掛かりになる。こ
の点について、光反射テープ方式では比較的簡単になる
が、誘導路の汚損で誘導失敗を起す恐れがあるため、そ
のメンテナンスを頻繁に行うことを必要とする。
D. Problems to be Solved by the Invention The conventional guidance system requires installation of a track or a taxiway on the ground floor, which requires a large amount of equipment cost, and requires a large amount of layout change work. become. In this respect, the light reflection tape system is relatively simple, but the guideway may be damaged due to soiling of the guideway, so that frequent maintenance is required.

E.問題点を解決するための手段と作用 本発明は上記問題点に鑑みてなされたもので、地上床
面には設定進路毎に異なる変調をしたレーザ光を発射す
るレーザ光源を設け、前記設定進路の交差点を設定する
光を設定進路を横切る方向で交差点毎に異なる変調をし
た光を発射する4つの発光源を設け、無人車は、走行方
向に前記レーザ光源のレーザ光を検出するレーザ光検出
手段を設け、車体側部に前記発光源からの光を検出する
光検出手段を設け、前記レーザ光検出手段の検出信号の
変調別に判定した絶対番地で設定進路を区別すると共に
検出信号の入射位置から設定進路に対する位置ずれを検
出して該設定進路に沿った操舵制御を行い、前記発光源
の検出信号から交差点位置を判定しかつ検出信号の変調
別に判定した絶対番地で区別する交差点で進路変更操舵
制御を行う制御手段を設け、レーザ光源のレーザ光で無
人車の進路を設定し、発光源の光で交差点位置を設定
し、無人車はこれら光の検出で設定する進路に沿った走
行と交差点での進路変更の制御を行う。
E. Means and Action for Solving the Problems The present invention has been made in view of the above problems, and a laser light source that emits a laser beam modulated differently for each set path is provided on the ground floor, A laser for detecting the laser light of the laser light source in the traveling direction is provided with four light emitting sources for emitting light modulated differently for each intersection in a direction crossing the set course with light for setting the intersection of the set course. Light detection means is provided, and light detection means for detecting light from the light emitting source is provided on the side of the vehicle body, and a set course is distinguished by an absolute address determined according to a modulation of a detection signal of the laser light detection means, and a detection signal is detected. An intersection is detected by detecting a displacement from the incident position with respect to the set path, performing steering control along the set path, determining the intersection position from the detection signal of the light emitting source, and distinguishing by the absolute address determined according to the modulation of the detection signal. The control means for performing the course change steering control is provided, the course of the unmanned vehicle is set by the laser light of the laser light source, the intersection position is set by the light of the light emitting source, and the unmanned vehicle follows the course set by the detection of these lights. And control of course change at intersections.

F.実施例 第1図は、本発明の一実施例を示す装置構成図であ
る。地上床面には設定進路R(R1、R2、R3)を縦横に定
め、この設定進路Rの延長方向で無人車走行エリア外に
レーザ光源11、12、13が設けられ、各レーザ光源は設定
進路方向に互いに異なる周波数で変調されたレーザ光を
発射するように構成される。設定進路Rの交差点位置P
には夫々4つの隅に発光源21、22、23、24が設けられ、
各発光源は設定進路Rを横切る方向で交差点毎に異なる
周波数変調した光発射を行う構成にされる。これら発光
源21〜24は例えばレーザ光源としてもよい。
F. Embodiment FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention. On the ground floor set vertically and horizontally set path R (R 1, R 2, R 3), the laser light source 1 1, 1 2, 1 3 provided outside unmanned vehicle traveling area in the extension direction of the setting path R Each laser light source is configured to emit laser light modulated at a frequency different from each other in a set traveling direction. Intersection position P of set course R
The light source 2 1, 2 2, 2 3, 2 4 are provided in each of four corners in,
Each light-emitting source is configured to emit light with different frequency modulation at each intersection in a direction crossing the set course R. These light emitting sources 21 to 24 may be a laser light source, for example.

無人車3は、マイクロコンピュータを制御中枢部と
し、駆動系による駆動輪の駆動制御と操舵系による操舵
輪の操舵制御を行う。ここで、無人車3には車体前部と
後部にレーザ光検出器4、5を備える。これら検出器
4、5は前方又は後方からのレーザ光源11等からのレー
ザ光の水平方向入射位置を検出する構成にされる。第2
図は検出器4(又は5)の構成を示し、レーザ光源Aか
らのレーザ光を光学系41を介して受光素子アレイ42に受
光し、受光素子アレイ42の受光位置を設定進路Rに対す
る無人車の位置ずれ量に対応づけた検出信号を得る。例
えば、第3図に示すように、レーザ光源Aのレーザ照射
方向に対して無人車のレーザ光検出器4が水平方向に角
度θだけずれた方向にあるとき、受光素子アレイ42の受
光位置がその中央から角度θに比例した位置ずれ量Nの
検出信号を得る。この検出信号は後述の制御装置に取込
まれて無人車を設定進路Rに沿って走行させるために使
用され、例えば第3図に示すレーザ光検出状態では受光
素子アレイ42の中央でレーザ光を受光するように無人車
を矢印方向P側に操舵制御する。
The unmanned vehicle 3 uses a microcomputer as a control center, and performs drive control of drive wheels by a drive system and steering control of steerable wheels by a steering system. Here, the unmanned vehicle 3 includes laser light detectors 4 and 5 at the front and rear portions of the vehicle body. These detectors 4 and 5 are configured to detect a horizontal incident position of laser light from the laser light source 11 or the like from the front or the rear. Second
Figure shows the arrangement of the detector 4 (or 5), receiving the laser light from the laser light source A to the light-receiving element array 4 2 via the optical system 4 1, sets the receiving position of the light receiving element array 4 2 path R And a detection signal corresponding to the amount of displacement of the unmanned vehicle with respect to. For example, as shown in FIG. 3, when the laser beam detector 4 of the unmanned vehicle with respect to the laser irradiation direction of the laser light source A is in the direction deviated by an angle θ in the horizontal direction, the light receiving position of the light-receiving element array 4 2 Obtains a detection signal of the displacement amount N proportional to the angle θ from the center. The detection signal is used to travel along a set path R unmanned vehicle is taken into the control device described later, for example, a laser beam at the center of the light receiving element array 4 2 in the laser light detection state shown in FIG. 3 The steering control of the unmanned vehicle is performed in the direction of the arrow P so as to receive the control signal.

一方、無人車3には車体下側部に光検出器6を備え
る。この検出器6は車体側部からの発光源21等からの光
を検出する構成にされる。
On the other hand, the unmanned vehicle 3 includes a photodetector 6 on the lower side of the vehicle body. The detector 6 is the structure for detecting light from the light source 2 1 etc. from the vehicle body side portion.

そして、無人車3には検出器4又は5が検出するレー
ザ光入射位置から目標とする設定進路Rに対する位置ず
れ量を検出し、設定進路側に操舵制御する制御装置を備
える。また、この制御装置は、目標とするレーザ光源を
その変調周波数から弁別し、設定進路の絶対番地を検出
すると共に他のレーザ光を誤って検出するのを防止す
る。一方、無人車3には検出器6が検出する光有りの信
号から交差点に到達したことの判定をし、必要に応じて
当該交差点での進路変更制御に入る制御装置を備える。
この制御装置は、発光源の変調周波数とレーザ光源の変
調周波数とから当該交差点の絶対番地を判定し、プログ
ラムされた走行ルートの進路変更交差点番地との突合せ
で進路変更操舵を行う。
The unmanned vehicle 3 is provided with a control device that detects the amount of displacement with respect to the target set course R from the laser beam incident position detected by the detector 4 or 5, and controls the steering toward the set course. Further, this control device discriminates a target laser light source from its modulation frequency, detects an absolute address of a set course, and prevents erroneous detection of another laser light. On the other hand, the unmanned vehicle 3 is provided with a control device that determines that the vehicle has reached the intersection based on the signal with light detected by the detector 6 and enters a course change control at the intersection as needed.
This control device determines the absolute address of the intersection from the modulation frequency of the light emitting source and the modulation frequency of the laser light source, and performs the course change steering by abutting with the course change intersection address of the programmed traveling route.

こうした構成により、無人車3はレーザ光源11、12
13等からのレーザ光を検出器4又は5で検出しながら当
該レーザ光源の方向即ち設定進路に沿って走行し、交差
点で発光源21、22、23、24等からの光を検出器6が受光
したときに目標とする交差点の絶対番地との突合せによ
って進路変更を得る。
With such a configuration, the unmanned vehicle 3 has the laser light sources 1 1 , 1 2 ,
1 while detecting with the detector 4 or 5 a laser beam from 3 etc. traveling along a direction, that set the path of the laser light source, the light source 2 1 at intersections, 2 2, 2 3, 2 light from 4 etc. When the detector 6 receives light, a change of course is obtained by matching with the absolute address of the target intersection.

なお、進路変更方法は、例えば、交差点直前で発光源
からの光を検出器6で検出するとともに一定操舵角によ
る一定走行距離の走行制御により、一定曲率の円弧軌跡
を持つ走行でなされる。
Note that the course change method is, for example, running with a circular arc locus having a constant curvature by detecting light from the light emitting source with the detector 6 immediately before the intersection and controlling the running for a certain running distance by a certain steering angle.

以上の通り、本実施例によれば、地上床面には設定進
路用に周波数変調したレーザ光源と交差点標識用に周波
数変調した発光源を設け、無人車前後のレーザ光検出器
と側部の光検出器と制御装置によって無人車を設定進路
に従った誘導及び交差点での進路変更を行わせることが
でき、従来の誘導又は軌道を不要にする。また、コース
レイアウトの変更はレーザ光源の増設や設置位置を変更
するのみで良い。また、無人車はレーザ光源と発光源か
らの2つの周波数変調光から各交差点の絶対番地を判定
することができるため、無人車には走行ルートのプログ
ラムとして進路変更交差点位置の絶対番地のみを書込ん
でおけば良く走行ルートの設定を簡単にし、また交差点
位置の誤った判定が無くなる。
As described above, according to the present embodiment, a laser light source frequency-modulated for the set course and a light-emitting source frequency-modulated for the intersection sign are provided on the ground floor, and the laser light detectors before and after the unmanned vehicle and the side portions are provided. The photodetector and the control device can guide the unmanned vehicle according to the set course and change the course at the intersection, eliminating the need for the conventional guide or track. Further, the course layout needs to be changed only by increasing the number of laser light sources or changing the installation position. Also, since unmanned vehicles can determine the absolute address of each intersection from two frequency-modulated lights from a laser light source and a light emitting source, only the absolute address of the route change intersection position is written as a traveling route program for unmanned vehicles. If it is included, the setting of the traveling route is simplified, and erroneous determination of the intersection position is eliminated.

なお、実施例において、無人車3がスピンターン可能
の駆動系を備えるときには、無人車3は交差点中央でス
ピンターンによる進路変更を行わせ、交差点の発光源21
等を設けることなく、横方向のレーザ光源からのレーザ
光を無人車側部の光検出器6で交差点位置信号として検
出する構成とすることができる。
Incidentally, in the embodiment, when the unmanned vehicle 3 is provided with a spin turn enables the drive system, the unmanned vehicle 3 is caused to perform a course change by spin turn at an intersection center, the intersection of the light source 2 1
Without providing such an arrangement, it is possible to adopt a configuration in which the laser beam from the lateral laser light source is detected as an intersection position signal by the photodetector 6 on the unmanned vehicle side.

また、実施例では周波数変調の光で絶対番地を設定す
る場合を示したが、これはパルス変調など他の変調方式
にして同等の作用効果を得ることができる。
Further, in the embodiment, the case where the absolute address is set by the frequency-modulated light is shown. However, the same operation and effect can be obtained by using another modulation method such as pulse modulation.

また、実施例では、無人車の前後にレーザ光検出器
4、5を設けう場合を示したが、これは設定進路の一方
からのレーザ光に対して無人車の前部又は後部で検出で
きるようにするためのもので、設定進路に対して無人車
の進行方向が一方に限られるシステムでは無人車の前部
又は後部の一方に検出器を備える構成で済む。
Further, in the embodiment, the case where the laser light detectors 4 and 5 are provided before and after the unmanned vehicle has been described, but this can be detected at the front or rear of the unmanned vehicle with respect to the laser light from one of the set courses. In a system in which the traveling direction of the unmanned vehicle is limited to one direction with respect to the set course, it is sufficient to provide a detector at one of the front and rear portions of the unmanned vehicle.

G.発明の効果 以上のとおり、本発明は、設定進路を設定するレーザ
光を発射するレーザ光源と、設定進路の交差点を設定す
る光を設定進路を横切る方向で発射する発光源を設け、
無人車側でレーザ光に従った操舵と、側部発光源からの
光検出による交差点での進路変更操舵を行うようにした
ため、従来の誘導路又は軌道を不要にするなど地上側及
び無人車側の設備を簡単化し、また地上側のコースレイ
アウト変更を容易にしながら確実な誘導を行うことがで
きる効果がある。特に交差点位置を各交差点位置に設け
る発光源で設定するため、任意の位置に交差点を設定で
きる効果がある。また交差点に4つの発光源を設ける場
合には、無人車の進行方向に拘わらず交差点位置を無人
車が検出できる。また、各発光源が互いに異なる変調を
していることにより交差点位置を絶対番地で検出できる
効果がある。さらに、交差点毎に発光源を設けて交差点
を特定するため、走行路上に複数の無人車が走行する場
合にも他の無人車が光を遮ることなく交差点を確実に検
出できる効果がある。
G. Effects of the Invention As described above, the present invention provides a laser light source that emits a laser beam that sets a set course and a light emitting source that emits light that sets an intersection of the set course in a direction crossing the set course,
Steering according to the laser beam on the unmanned vehicle side and the course change steering at the intersection by detecting light from the side emission source are performed, so that the conventional taxiway or track is unnecessary, and the ground side and unmanned vehicle side There is an effect that simplification of the equipment can be performed, and reliable guidance can be performed while easily changing the course layout on the ground side. In particular, since the intersection position is set by the light source provided at each intersection position, there is an effect that the intersection can be set at an arbitrary position. When four light emitting sources are provided at the intersection, the unmanned vehicle can detect the intersection position regardless of the traveling direction of the unmanned vehicle. In addition, since each light source modulates differently, there is an effect that an intersection position can be detected at an absolute address. Furthermore, since a light-emitting source is provided for each intersection to specify the intersection, there is an effect that even when a plurality of unmanned vehicles are traveling on the traveling road, the intersection can be detected without interruption by other unmanned vehicles.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す装置構成図、第2図は
レーザ光検出器の構成図、第3図はレーザ光検出と無人
車の操舵方向を示す図、第4図は従来の誘導路の模式図
である。 11、12、13……レーザ光源、21、22、23、24……発光
源、3……無人車、4、5……レーザ光検出器、42……
受光素子アレイ、6……光検出器、71……スリット、72
……受光素子アレイ。
FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a block diagram of a laser beam detector, FIG. 3 is a diagram showing laser beam detection and a steering direction of an unmanned vehicle, and FIG. It is a schematic diagram of a taxiway. 1 1 , 1 2 , 1 3 …… Laser light source, 2 1 , 2 2 , 2 3 , 2 4 …… Emission source 3… Unmanned vehicle 4, 5 …… Laser light detector, 4 2
Photodetector array, 6 ... Photodetector, 7 1 ... Slit, 7 2
... Light receiving element array.

フロントページの続き (56)参考文献 特開 昭61−292710(JP,A) 特開 昭60−239612(JP,A) 特開 昭59−56178(JP,A) 特開 昭59−212922(JP,A)Continuation of front page (56) References JP-A-61-292710 (JP, A) JP-A-60-239612 (JP, A) JP-A-59-56178 (JP, A) JP-A-59-212922 (JP) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地上床面には設定進路毎に異なる変調をし
たレーザ光を発射するレーザ光源を設け、前記設定進路
の交差点を設定する光を設定進路を横切る方向で交差点
毎に異なる変調をした光を発射する4つの発光源を設
け、 無人車は、走行方向に前記レーザ光源のレーザ光を検出
するレーザ光検出手段を設け、車体側部に前記発光源か
らの光を検出する光検出手段を設け、前記レーザ光検出
手段の検出信号の変調別に判定した絶対番地で設定進路
を区別すると共に検出信号の入射位置から設定進路に対
する位置ずれを検出して該設定進路に沿った操舵制御を
行い、前記発光源の検出信号から交差点位置を判定しか
つ検出信号の変調別に判定した絶対番地で区別する交差
点で進路変更操舵制御を行う制御手段を設けたことを特
徴とする無人車の誘導装置。
1. A ground floor surface is provided with a laser light source for emitting laser light modulated differently for each set path, and a light for setting an intersection of the set path is subjected to different modulation at each intersection in a direction crossing the set path. Four light-emitting sources for emitting the emitted light, the unmanned vehicle is provided with laser light detecting means for detecting the laser light of the laser light source in the traveling direction, and light detection for detecting light from the light-emitting source on the side of the vehicle body. Means for distinguishing a set path by an absolute address determined for each modulation of a detection signal of the laser beam detection means, and detecting a displacement from the incident position of the detection signal with respect to the set path to perform steering control along the set path. An unmanned vehicle provided with control means for determining an intersection position from a detection signal of the light emitting source and performing a course change steering control at an intersection distinguished by an absolute address determined according to the modulation of the detection signal. Guidance device.
JP62017921A 1987-01-28 1987-01-28 Driverless vehicle guidance device Expired - Lifetime JP2643130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017921A JP2643130B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017921A JP2643130B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Publications (2)

Publication Number Publication Date
JPS63186305A JPS63186305A (en) 1988-08-01
JP2643130B2 true JP2643130B2 (en) 1997-08-20

Family

ID=11957230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017921A Expired - Lifetime JP2643130B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Country Status (1)

Country Link
JP (1) JP2643130B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453483A (en) * 1977-10-03 1979-04-26 Sumitomo Heavy Ind Ltd Device for guiding running truck
JPS60235214A (en) * 1984-05-08 1985-11-21 Mitsubishi Electric Corp Position detecting and guiding device of robot
JPS625313U (en) * 1985-06-24 1987-01-13

Also Published As

Publication number Publication date
JPS63186305A (en) 1988-08-01

Similar Documents

Publication Publication Date Title
JPH0795094B2 (en) Driving method for automated guided vehicles
JPS6233612B2 (en)
JPS6233613B2 (en)
JP2643130B2 (en) Driverless vehicle guidance device
JP3690211B2 (en) Autonomous mobile trolley and its self-position estimation method
JP2521430B2 (en) Golf vehicle guidance method
JP2696823B2 (en) Driverless vehicle guidance device
JPH0276009A (en) Unmanned vehicle operating system
JPH0436404B2 (en)
JPH01116810A (en) Unattended vehicle guiding device
JPS6125219A (en) Optical guide type mobile truck control equipment
JPS6077208A (en) Unmanned carrier car
JP2987858B2 (en) Travel control method for carrier vehicles
JPS63298411A (en) Guiding device for unmanned vehicle
JPS61193210A (en) Transport control system for unmanned truck
JPS59191617A (en) Controlling method of automatic travelling truck
JPS63253411A (en) Guiding method for unmanned vehicle
JP2841736B2 (en) How to control unmanned vehicles
JPS63186306A (en) Guiding device for unmanned vehicle
JPH049325B2 (en)
JPH04112214A (en) Traveling controller for unmanned carrier
JP2002182745A (en) Travel controller for unmanned carrier
JPS63186307A (en) Guiding device for unmanned vehicle
JPH01232403A (en) Guidance control method for unmanned carriage
JPS622650Y2 (en)