JP2696823B2 - Driverless vehicle guidance device - Google Patents

Driverless vehicle guidance device

Info

Publication number
JP2696823B2
JP2696823B2 JP62017920A JP1792087A JP2696823B2 JP 2696823 B2 JP2696823 B2 JP 2696823B2 JP 62017920 A JP62017920 A JP 62017920A JP 1792087 A JP1792087 A JP 1792087A JP 2696823 B2 JP2696823 B2 JP 2696823B2
Authority
JP
Japan
Prior art keywords
laser light
unmanned vehicle
laser beam
course
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62017920A
Other languages
Japanese (ja)
Other versions
JPS63186304A (en
Inventor
喜正 沢田
正之 寺嶋
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP62017920A priority Critical patent/JP2696823B2/en
Publication of JPS63186304A publication Critical patent/JPS63186304A/en
Application granted granted Critical
Publication of JP2696823B2 publication Critical patent/JP2696823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、無人搬送システムにおいて、無人車の誘導
装置に関する。 B.発明の概要 本発明は、無人車を所定の走行進路及び走行ルートに
誘導するにおいて、 地上床面には設定進路に交差して複数のレーザ光走査
装置を設け、無人車では各レーザ光の入射角度から設定
進路及び距離の判定をし、この判定から誘導操舵を行う
ことにより、 軌道又は誘導路を不要にして無人車を確実に誘導でき
るようにしたものである。 C.従来の技術 無人搬送システムは、無人車を軌道又は地上床面に設
置した誘導路に沿って操舵制御することによって予めプ
ログラム又は設定された走行進路及び走行ルートが変え
られ、走行位置さらには積載重量に従った駆動制御によ
って加減速範囲,停止位置が変えられ、荷役や各種コン
トロールの無人運行が行われる。 このうち、誘導路方式では、第5図に示すように、地
上床面に縦横に埋設した誘導路Lを無人車Mが検出して
該誘導路Lに沿った操舵制御を行う。この方式におい
て、誘導路Lを誘導線として電流を流しておき、無人車
M側で誘導磁界として検出する方式、誘導路Lを光反射
テープとして無人車M側で発光受光器によって検出する
方式、さらに誘導路Lを鉄ベルトとして無人車M側で近
接磁気センサによって検出する方式等がある。 また、交差点における進路変更は、同図に示すよう
に、誘導路Lの交差点直前に設けた交差点標識CPLを無
人車Mの標識検出器が検出し、この検出と当該交差点で
の進路変更のプログラム指令によって指令方向への操舵
を行う。 D.発明が解決しようとする問題点 従来の誘導方式では、地上床面に軌道又は誘導路を設
置することを必要とし、このため多大な設備費を必要と
するし、そのレイアウト変更工事が大掛かりになる。こ
の点について、光反射テープ方式では比較的簡単になる
が、誘導路の汚損で誘導失敗を起す恐れがあるため、そ
のメンテナンスを頻繁に行うことを必要とする。 また、従来の誘導方式では、誘導路や軌道の他に、地
上床面には交差点標識や加減速開始位置標識などを設
け、無人車にはこれらの標識検出手段を必要とし、誘導
のための装置が複雑高価になる問題があった。 E.問題点を解決するための手段と作用 本発明は、上記問題点に鑑みてなされたもので、地上
床面には縦横に定めた2つの設定進路の交差点位置で該
2つの設定進路の3つの隅にそれぞれレーザ光走査装置
を設置し、無人車は交差点位置の3つのレーザ光走査装
置のうち設定進路に交差する2つのレーザ光走査装置か
らのレーザ光を1つのレーザ光検出器で受光してレーザ
光の入射角度を検出する入射角検出手段と、無人車が設
定進路上にあるか又は前記レーザ光検出器が2つのレー
ザ光走査装置の配置に対して平行であるときに前記両入
射角度の差異から設定進路に対する位置ずれを検出して
該設定進路に沿った操舵制御を行う制御手段とを備え、
レーザ光の入射角度の差異から各レーザ光走査位置すな
わち設定進路に対する無人車の位置ずれ量を検出し、こ
の位置ずれ量が一定になる方向に無人車の操舵制御を行
い、無人車を設定進路に沿って走行させる。 また、本発明は、各入射角度からレーザ光走査装置に
対する距離を検出して進路変更位置になったときに進路
変更操舵制御を行う制御手段を備え、レーザ光走査装置
位置に対する距離すなわち進路変更に定めた位置に対す
る無人車の距離を検出し、この距離から交差点位置を判
定して無人車を進路変更させる。 F.実 施 例 第1図は、本発明の一実施例を示す装置構成図であ
る。地上床面には設定進路R(R1、R2、R3)を縦横に定
め、この設定進路Rの交差点位置Pには夫々3つの隅に
レーザ光走査装置1、2、3が設けられる。これらレー
ザ光走査装置1、2、3は設定進路Rに直交して設けら
れる。例えば、レーザ光走査装置1、2は設定進路R1
挟む位置でそれに直交する方向に配置される。各レーザ
光走査装置1、2、3は、夫々床面に水平方向に一定速
度で旋回するレーザ光を発射し、その内1つは全方位に
レーザ光を発射し、残りの2つは直交す設定進路Rの前
後方向に向けてレーザ光を発射する。図示では、レーザ
光走査装置2は全方位にレーザ光を発射し、レーザ光走
査装置1は進路R1の前後方向をカバーする放射角θ
θの範囲でのみレーザ光を発射し、レーザ光走査装置
3は進路R3(進路R1とR2の交差点も同様)の前後方向を
カバーする放射角θとθの範囲でのみレーザ光を発
射する。 無人車4は、設定進路Rに直交する配置の2つのレー
ザ光走査装置からのレーザ光を受けて両レーザ光の入射
角度を検出するレーザ光検出器5を車体前部に備える。
そして、無人車4には検出器5が検出するレーザ光入射
角度の差異から設定進路を検出して該設定進路側に操舵
制御する制御装置を備える。ここで、設定進路は受光す
るレーザ光の発射光源になる2つのレーザ光走査装置の
位置、すなわち設定進路Rに沿った方向になる。レーザ
光検出器5は、第2図に示すように、2つのレーザ光走
査装置A、Bからのレーザ光をスリット51を通して車体
横方向に設けられる受光素子アレイ52で受光する構成に
される。この構成において、受光素子アレイ52の各素子
の内、レーザ光走査装置Aからのレーザ光を受光した素
子と、レーザ光走査装置Bからのレーザ光を受光した素
子の位置から夫々レーザ光の入射角度を検出する。例え
ば、レーザ光を受光した2つの素子が夫々受光素子アレ
イ52の中心からの素子位置Na、Nbとすると、2つのレー
ズ光走査装置A、Bの入射角度θa、θbとの間には次
の関係がある。 θa=tan-1 f/Na ……(1) θb=tan-1 f/Nb ……(2) ここで、fはスリット51と受光素子アレイ52の固定距離
であるため、受光素子位置Na、Nbから入射角度θaとθ
bを演算で求めること、またはテーブルデータとして用
意できる。 また、入射角度θaとθbは設定進路Yに対するレー
ザ光走査装置A、Bの距離Xa、Xbとの間に次の関係があ
る。 Xa・tan θ a=Xb・tan θ b……(3) 従って、無人車4の制御装置は、常に の関係を保つようにすれば、無人車4をレーザ光走査装
置A,Bに対して直交する設定進路Yに沿って走行させる
ことができる。 例えば、第3図Bに示すように、レーザ光走査装置A,
Bの配置に対して、受光素子アレイ52が平行でないと
き、前述の(3)、(4)式の関係は成立せず、Nb/Na
の値が所定のαになるよう矢印T方向に操舵制御され、
無人車4を設定進路Yに沿った走行に戻す。 また、第4図に示すように、設定進路Yに対して受光
素子アレイ52が平行にずれたとき、このときにも前述の
関係が成立せず、(4)式の関係が成立するように無人
車4の進路が矢印T方向に修正される。 なお、無人車4の制御装置は、マイクロコンピュータ
を制御中枢部とし、駆動系による駆動輪の駆動制御と操
舵系による操舵輪の操舵制御を行う。そのうち、操舵系
は受光素子アレイ52の受光素子位置Na、Nbから前述の式
に従った演算により、設定進路に沿った操舵制御を得
る。 上述の制御に加えて、無人車4の制御装置は、2つの
レーザ光走査装置A、Bからのレーザ光入射角度の検出
信号から、レーザ光走査装置に対する距離を検出して進
路変更位置(交差点)を判定し、当該進路変更位置での
進路変更制御に利用する。これを詳細に説明すると、前
述の(1)及び(2)式から、 Na・tanθ a=f ……(5) Nb・tanθ b=f ……(6) の関係にあり、第2図で無人車のスリット51とレーザ光
走査装置A、Bとの距離Lは、 Xa・tan θ a=L ……(7) Xb・tan θ b=L ……(8) の関係にある。従って、 L=f・Xa/Na=f・Xb/Nb ……(9) から、受光素子位置Na又はNbから距離Lを求めることが
できる。従って、距離Lから交差点等の位置までの距離
を求め、所定位置で進路変更制御を行うことで交差する
設定進路に向うことができる。進路変更終了後は当該設
定進路にレーザ光を発射しているレーザ光走査位置に対
する入射角検出によって誘導される。 なお、進路変更方法は、例えば、交差点直前で一定操
舵角による一定走行距離の走行制御により、一定曲率の
円弧軌跡を持つ走行でなされる。 以上の通り、本実施例によれば、地上床面には設定進
路の交差点に3つのレーザ光走査装置を設け、無人車の
レーザ光検出器と制御装置によって無人車を設定進路に
従った誘導及び交差点での進路変更を行わせることがで
き、従来の誘導路又は軌道を不要にするし、交差点標識
等の各種標識とその検出手段を不要にする。また、コー
スレイアウトの変更はレーザ光走査装置の設置位置を変
更するのみで良い。また、無人車の制御装置における前
述の(4)式のαの設定値を変えることによりコースを
任意に設定することができる。 なお、実施例では3つのレーザ光走査装置を設定進路
の交差点に設ける場合を示したが、これは3つのレーザ
光走査位置によって2つの交差進路の前後方向何れの方
向からの無人車の進入をもカバーするレーザ光を得るた
めのもので、交差点の無い部分や無人車の進入方向が一
方に決められるときには設定進路に対して、直交する又
は交差する2つのレーザ光走査装置を交差点に設置又は
無人車の走行範囲外に設置することで済む。 また、レーザ光走査装置は、そのレーザ光発射範囲を
設定進路によって変える場合を示したが、これは各レー
ザ光走査装置の波長を互いに異なるもの、又は異なる変
調を施し、無人車側で弁別する構成とすることで、発射
範囲を全方位とすることや誤ったレーザ光の検出を防止
したシステムとすることができる。 また、レーザ光検出器はスリットと受光素子アレイの
構成に限らず、レーザ光の入射角度を検出できるもので
あれば良い。 G.発明の効果 以上のとおり、本発明は、設定進路に交差する少なく
とも2つのレーザ光走査装置を設け、無人車側でレーザ
光の入射角度の差異から設定進路を検出して該設定進路
に操舵制御を行うようにしたため、従来の誘導路又は軌
道を不要にするなど地上側及び無人車側の設備を簡単化
し、また地上側のコースレイアウト変更を容易にしなが
ら確実な誘導を行うことができる効果がある。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to an unmanned vehicle guidance device in an unmanned transport system. B. Summary of the Invention The present invention provides a method for guiding an unmanned vehicle to a predetermined traveling route and a traveling route, wherein a plurality of laser light scanning devices are provided on the ground floor so as to intersect with the set traveling route. A set course and a distance are determined from the incident angle of the vehicle, and guided steering is performed based on this determination, so that an unmanned vehicle can be reliably guided without the need for a track or a guideway. C. Prior Art Unmanned transport systems are designed to control the unmanned vehicle along a taxiway installed on a track or ground floor, thereby changing the travel route and travel route that have been programmed or set in advance. Acceleration / deceleration ranges and stop positions are changed by drive control according to the loaded weight, and unmanned operation of cargo handling and various controls is performed. Of these, in the taxiway system, as shown in FIG. 5, the unmanned vehicle M detects a taxiway L buried vertically and horizontally on the ground floor, and performs steering control along the taxiway L. In this method, a method in which a current is caused to flow while using the guide path L as a guide line and a guide magnetic field is detected on the unmanned vehicle M side, a method in which the guide path L is detected as a light reflective tape on the unmanned vehicle M side by a light emitting and receiving device, Further, there is a method of detecting the guidance path L as an iron belt on the unmanned vehicle M side by a proximity magnetic sensor. Further, as shown in the figure, the course change at the intersection is performed by detecting the intersection sign CPL provided immediately before the intersection of the taxiway L by the sign detector of the unmanned vehicle M, and detecting this and the course change program at the intersection. The steering in the command direction is performed by the command. D. Problems to be Solved by the Invention The conventional guidance system requires installation of a track or a taxiway on the ground floor, which requires a large amount of equipment cost, and requires a large amount of layout change work. become. In this respect, the light reflection tape system is relatively simple, but the guideway may be damaged due to soiling of the guideway, so that frequent maintenance is required. In addition, in the conventional guidance system, in addition to the guidance road and the track, an intersection sign and an acceleration / deceleration start position sign are provided on the ground floor, and these unmanned vehicles require these sign detection means. There is a problem that the device becomes complicated and expensive. E. Means and Actions for Solving the Problems The present invention has been made in view of the above problems, and the ground floor surface is provided at the intersection of the two set paths defined vertically and horizontally at the intersection of the two set paths. Laser light scanning devices are installed at each of the three corners, and the unmanned vehicle uses one laser light detector to detect the laser light from two laser light scanning devices that intersect the set path among the three laser light scanning devices at the intersection. Incident angle detection means for receiving and detecting the incident angle of the laser light, the unmanned vehicle being on a set course or when the laser light detector is parallel to the arrangement of the two laser light scanning devices, Control means for detecting a positional deviation with respect to the set course from the difference between the two incident angles and performing steering control along the set course,
The laser beam scanning position is detected from the difference in the incident angle of the laser light, that is, the amount of displacement of the unmanned vehicle with respect to the set path is detected, the steering control of the unmanned vehicle is performed in a direction in which the amount of displacement becomes constant, and the unmanned vehicle is set to the set path. Run along. Further, the present invention includes a control unit that detects a distance to the laser beam scanning device from each incident angle and performs a course change steering control when the vehicle reaches the course change position, and controls the distance to the laser beam scanning device position, that is, the course change. The distance of the unmanned vehicle with respect to the determined position is detected, and the intersection position is determined from this distance to change the course of the unmanned vehicle. F. Embodiment FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention. Set paths R (R 1 , R 2 , R 3 ) are defined in the vertical and horizontal directions on the ground floor, and laser beam scanning devices 1, 2, and 3 are provided at three corners at intersections P of the set paths R, respectively. . These laser beam scanning devices 1, 2, and 3 are provided orthogonal to the setting path R. For example, the laser beam scanning device 1 is arranged in a direction perpendicular thereto at a position sandwiching the set course R 1. Each of the laser beam scanning devices 1, 2, and 3 emits a laser beam that rotates horizontally at a constant speed on the floor surface, one of which emits a laser beam in all directions, and the other two are orthogonal. A laser beam is emitted in the forward and backward directions of the set course R. In the drawing, the laser light scanning device 2 emits laser light in all directions, and the laser light scanning device 1 emits laser light only in the range of the radiation angles θ 1 and θ 2 covering the front-back direction of the course R 1 , The laser beam scanning device 3 emits a laser beam only in the range of the radiation angles θ 3 and θ 4 covering the front-back direction of the path R 3 (also the intersection of the paths R 1 and R 2 ). The unmanned vehicle 4 has a laser beam detector 5 at the front of the vehicle body that receives laser beams from two laser beam scanning devices arranged orthogonal to the set course R and detects the incident angle of both laser beams.
The unmanned vehicle 4 is provided with a control device that detects a set path from a difference in the incident angle of the laser beam detected by the detector 5 and controls the steering toward the set path. Here, the set path is the position of the two laser beam scanning devices serving as the emission light sources of the received laser beams, that is, the direction along the set path R. Laser beam detector 5, as shown in FIG. 2, two laser beam scanning apparatus A, is the laser light from the B to the configuration in which received by the light receiving element array 5 2 provided in the vehicle body laterally through the slit 5 1 You. In this configuration, among the elements of the photodiode array 5 2, and the element that receives the laser light from the laser beam scanning device A, from the position of the element that receives the laser beam from the laser beam scanning device B each laser beam Detect the angle of incidence. For example, the following is provided between the sensor position Na of the two elements which receives the laser beam from the center of the respective light receiving element array 5 2, when Nb, two erase optical scanning device A, the incident angle θa of B, and θb There is a relationship. θa = tan -1 f / Na ...... (1) θb = tan -1 f / Nb ...... (2) where, f is because a fixed length of the slit 5 1 and the light receiving element array 5 2, the light receiving element position From Na and Nb, the incident angles θa and θ
b can be calculated or prepared as table data. The incident angles θa and θb have the following relationship between the distances Xa and Xb of the laser beam scanning devices A and B with respect to the set path Y. Xa · tan θa = Xb · tan θb (3) Accordingly, the control device of the unmanned vehicle 4 is always By maintaining the relationship, the unmanned vehicle 4 can travel along the set course Y orthogonal to the laser beam scanning devices A and B. For example, as shown in FIG.
With respect to the arrangement of B, when the light receiving element array 5 2 are not parallel, the aforementioned (3), (4) the relationship of the equation does not hold, Nb / Na
Is controlled in the direction of arrow T so that the value of
The unmanned vehicle 4 is returned to traveling along the set course Y. Further, as shown in FIG. 4, setting course when the light-receiving element array 5 2 is shifted parallel to Y, this time to be not established that the relationships described above, equation (4) so that relationship is established Then, the course of the unmanned vehicle 4 is corrected in the direction of the arrow T. The control device of the unmanned vehicle 4 uses a microcomputer as a control center, and performs drive control of the drive wheels by the drive system and steering control of the steered wheels by the steering system. Among them, the steering system is receiving element position Na of the photodiode array 5 2, by calculation in accordance with the Nb in the above equation to obtain a steering control along the set route. In addition to the above control, the control device of the unmanned vehicle 4 detects the distance to the laser light scanning device from the detection signals of the laser light incident angles from the two laser light scanning devices A and B, and changes the course change position (intersection). ) Is determined and used for the course change control at the course change position. To explain this in detail, from the above equations (1) and (2), there is a relationship of Na · tan θ a = f (5) Nb · tan θ b = f (6), and FIG. slit 5 1 and the laser beam scanning apparatus a of the unmanned vehicle, the distance L between B are in a relationship of Xa · tan θ a = L ...... (7) Xb · tan θ b = L ...... (8). Therefore, the distance L can be obtained from the light receiving element position Na or Nb from L = f.Xa / Na = f.Xb / Nb (9). Therefore, the distance from the distance L to the position of the intersection or the like is obtained, and by performing the course change control at the predetermined position, the vehicle can head for the set course to cross. After the end of the course change, the guide is guided by the detection of the incident angle with respect to the laser beam scanning position emitting the laser beam on the set course. The course change method is performed, for example, by running the vehicle with a circular arc locus having a fixed curvature by running control of a fixed running distance with a fixed steering angle immediately before an intersection. As described above, according to the present embodiment, three laser light scanning devices are provided at the intersection of the set path on the ground floor, and the unmanned vehicle is guided by the laser light detector and the control device of the unmanned vehicle according to the set path. In addition, a course change at an intersection can be performed, so that a conventional taxiway or track is not required, and various signs such as an intersection sign and detection means thereof are not required. Further, the course layout needs to be changed only by changing the installation position of the laser beam scanning device. Further, the course can be arbitrarily set by changing the set value of α in the above-mentioned equation (4) in the control device of the unmanned vehicle. In the embodiment, the case where three laser light scanning devices are provided at the intersections of the set paths has been described. It is also for obtaining a laser beam that covers, and when there is no intersection or when the approach direction of the unmanned vehicle is determined to be one, two laser beam scanning devices that are orthogonal or intersect with the set course are installed at the intersection or It can be installed outside the driving range of unmanned vehicles. Also, the laser light scanning device has shown a case where the laser light emission range is changed according to the set course, but this is one in which the wavelength of each laser light scanning device is different from each other, or different modulation is performed, and discrimination is performed on the unmanned vehicle side. With this configuration, it is possible to provide a system in which the emission range is set to all directions and detection of erroneous laser light is prevented. Further, the laser light detector is not limited to the configuration of the slit and the light receiving element array, but may be any as long as it can detect the incident angle of the laser light. G. Effects of the Invention As described above, the present invention provides at least two laser light scanning devices that intersect the set course, detects the set course from the difference in the incident angle of the laser light on the unmanned vehicle side, and Since steering control is performed, equipment on the ground side and unmanned vehicles can be simplified by eliminating the need for a conventional taxiway or track, and reliable guidance can be performed while easily changing the course layout on the ground side. effective.

【図面の簡単な説明】 第1図は本発明の一実施例を示す装置構成図、第2図は
レーザ光検出器の構成図、第3図は及び第4図は実施例
におけるレーザ光入射角に対する操舵制御態様を示す
図、第5図は従来の誘導路の模式図である。 1、2、3……レーザ光走査装置、4……無人車、5…
…レーザ光検出器、51……スリット、52……受光素子ア
レイ、R1、R2、R3……設定進路、A、B……レーザ光走
査装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a block diagram of a laser beam detector, FIG. 3 and FIG. FIG. 5 is a diagram showing a steering control mode with respect to a corner, and FIG. 5 is a schematic diagram of a conventional taxiway. 1, 2, 3 ... laser beam scanning device, 4 ... unmanned vehicle, 5 ...
... laser light detector, 5 1 ...... slit, 5 2 ...... photodiode array, R 1, R 2, R 3 ...... set route, A, B ...... laser scanner.

Claims (1)

(57)【特許請求の範囲】 1.地上床面には縦横に定めた2つの設定進路の交差点
位置で該2つの設定進路の3つの隅にそれぞれレーザ光
走査装置を設置し、無人車は交差点位置の3つのレーザ
光走査装置のうち設定進路に交差する2つのレーザ光走
査装置からのレーザ光を1つのレーザ光検出器で受光し
てレーザ光の入射角度を検出する入射角検出手段と、無
人車が設定進路上にあるか又は前記レーザ光検出器が2
つのレーザ光走査装置の配置に対して平行であるときに
前記両入射角度の差異から設定進路に対する位置ずれを
検出して該設定進路に沿った操舵制御を行う制御手段と
を備えたことを特徴とする無人車の誘導装置。 2.地上床面には縦横に定めた2つの設定進路の交差点
位置で該2つの設定進路の3つの隅にそれぞれレーザ光
走査装置を設置し、無人車は交差点位置の3つのレーザ
光走査装置のうち設定進路に交差する2つのレーザ光走
査装置からのレーザ光を1つのレーザ光検出器で受光し
てレーザ光の入射角度を検出する入射角検出手段と、無
人車が設定進路上にあるか又は前記レーザ光検出器が2
つのレーザ光走査装置の配置に対して平行であるときに
前記両入射角度からレーザ光走査装置に対する距離を検
出して進路変更位置になったときに進路変更操舵制御を
行う制御手段とを備えたことを特徴とする無人車の誘導
装置。
(57) [Claims] Laser light scanning devices are installed on the ground floor at the intersections of the two set paths determined vertically and horizontally, respectively, at three corners of the two set paths, and the unmanned vehicle is one of the three laser light scanners at the intersection position. Incident angle detecting means for detecting the incident angle of the laser light by receiving the laser light from the two laser light scanning devices intersecting the set path with one laser light detector, and whether the unmanned vehicle is on the set path or The laser light detector is 2
Control means for detecting a position shift with respect to a set course from the difference between the two incident angles when the laser beam scanning apparatus is parallel to the arrangement of the two laser beam scanning apparatuses, and performing steering control along the set course. Guidance device for unmanned vehicles. 2. Laser light scanning devices are installed on the ground floor at the intersections of the two set paths determined vertically and horizontally, respectively, at three corners of the two set paths, and the unmanned vehicle is one of the three laser light scanners at the intersection position. Incident angle detecting means for detecting the incident angle of the laser light by receiving the laser light from the two laser light scanning devices intersecting the set path with one laser light detector, and whether the unmanned vehicle is on the set path or The laser light detector is 2
Control means for detecting a distance to the laser beam scanning device from the two incident angles when the laser beam scanning device is parallel to the arrangement of the two laser beam scanning devices and performing a course change steering control when the vehicle reaches the course change position. An unmanned vehicle guidance device, characterized in that:
JP62017920A 1987-01-28 1987-01-28 Driverless vehicle guidance device Expired - Fee Related JP2696823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017920A JP2696823B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017920A JP2696823B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Publications (2)

Publication Number Publication Date
JPS63186304A JPS63186304A (en) 1988-08-01
JP2696823B2 true JP2696823B2 (en) 1998-01-14

Family

ID=11957199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017920A Expired - Fee Related JP2696823B2 (en) 1987-01-28 1987-01-28 Driverless vehicle guidance device

Country Status (1)

Country Link
JP (1) JP2696823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666769A (en) * 2019-10-28 2020-01-10 玲睿(上海)医疗科技有限公司 Automatic surface treatment system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887287A (en) * 1972-02-28 1973-11-16
DE2966785D1 (en) * 1978-08-01 1984-04-19 Ici Plc Driverless vehicle carrying directional detectors auto-guided by light signals
JPS5770473A (en) * 1980-10-20 1982-04-30 Toshihiro Tsumura Follow-up signal generator of moving object
JPS5916017A (en) * 1982-07-16 1984-01-27 Kubota Ltd Unmanned movement system for moving body
JPS59116813A (en) * 1982-12-24 1984-07-05 Hitachi Ltd Carrier vehicle
JPS60171471A (en) * 1984-02-16 1985-09-04 Hitachi Kiden Kogyo Ltd Course detection apparatus of laser guidance system
JPS61169909A (en) * 1985-01-23 1986-07-31 Toshiba Corp Guiding device of unmanned carrier car
JPS61259308A (en) * 1985-05-10 1986-11-17 Komatsu Ltd Guiding method of luminescent point follow-up type unmanned vehicle

Also Published As

Publication number Publication date
JPS63186304A (en) 1988-08-01

Similar Documents

Publication Publication Date Title
JP2696823B2 (en) Driverless vehicle guidance device
JPH0276009A (en) Unmanned vehicle operating system
JPS59153211A (en) Guiding method of unmanned carrier car
JP3244642B2 (en) Mobile body guidance equipment
JPS61118816A (en) Optical guiding truck control equipment
JP2643130B2 (en) Driverless vehicle guidance device
JPH0436404B2 (en)
JPH0215882B2 (en)
JP2503534Y2 (en) Vehicle position / speed detector
JPH01116810A (en) Unattended vehicle guiding device
JP2007052705A (en) Guidance system for automated guided vehicle
JPS6081609A (en) Supporting device of travelling course of omnidirectional movable truck
JPS61169909A (en) Guiding device of unmanned carrier car
JPS63186307A (en) Guiding device for unmanned vehicle
JPH087445Y2 (en) Unmanned vehicle guidance device
JP3144156B2 (en) Guidance control device for automatic guided vehicles
JPS63298412A (en) Guiding device for unmanned vehicle
JPS63253411A (en) Guiding method for unmanned vehicle
JPS61168023A (en) Guiding device of unmanned carrier car
JP2001318718A (en) Railless automatic carrier and control method for automatic carrier
JPS63298411A (en) Guiding device for unmanned vehicle
JPS6125219A (en) Optical guide type mobile truck control equipment
JPH03105207A (en) Position detecting apparatus for moving object
JP2503533Y2 (en) Vehicle position / speed detector
JPH0756629A (en) Guiding equipment for mobile vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees