JPS61259308A - Guiding method of luminescent point follow-up type unmanned vehicle - Google Patents
Guiding method of luminescent point follow-up type unmanned vehicleInfo
- Publication number
- JPS61259308A JPS61259308A JP60100107A JP10010785A JPS61259308A JP S61259308 A JPS61259308 A JP S61259308A JP 60100107 A JP60100107 A JP 60100107A JP 10010785 A JP10010785 A JP 10010785A JP S61259308 A JPS61259308 A JP S61259308A
- Authority
- JP
- Japan
- Prior art keywords
- bright spot
- vehicle
- guiding
- moving vehicle
- unmanned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 21
- 230000000007 visual effect Effects 0.000 claims abstract description 9
- 238000005286 illumination Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 9
- 230000004907 flux Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
3−1産業上の利用分野
無人搬送車や移動ロボットを予め設定した走行経路に沿
って誘導する技術に間する。DETAILED DESCRIPTION OF THE INVENTION 3-1 Industrial Field of Application This invention relates to technology for guiding automatic guided vehicles and mobile robots along preset travel routes.
3−2従来の技術
以下に代表的な4つの方式について述べる(1) 自
然情景による誘導方式
車載したテレビカメラに映る走行予定の画像について経
路及び経路と壁面を画像処理手段によって抽出し、その
直線によって代表される通路に沿って走行する。3-2 Conventional technology Four typical methods are described below. It runs along the path represented by .
(2) 点線追従方式
予定走行路上に直線を引いて、これに沿って走行する代
わりに、直線の代用として白線・テープなどの反射板を
、反射板の寸法とほぼ等しい間隔で設置し、1つ1つの
点に向けて順次接近することにより、予定走行路に沿っ
て走行する。(2) Dotted line following method Instead of drawing a straight line on the planned travel route and driving along it, reflectors such as white lines or tape are installed as a substitute for the straight line at intervals approximately equal to the dimensions of the reflectors. By approaching each point one by one, the vehicle travels along the planned travel route.
(3) 反射板バーコード追従方式 予定走行路にバーコードを含む反射板を設ける。(3) Reflector barcode tracking method Reflective panels containing barcodes will be installed along the planned route.
バーコードには運転条件や交差点や停止点などの情報を
含み、これをITVなどの視覚画像手段により検出して
、その情報に従って直進、旋回、停止などの運転を行な
い、予定経路に沿って走行する。The barcode contains information such as driving conditions, intersections, and stopping points, which is detected by visual imaging means such as ITV, and the driver drives according to the information, such as going straight, turning, and stopping, and continues along the planned route. do.
(4) 幾何形状に特徴を有する反射板追従方式予定走
行路上に幾何形状に特徴を有する反射を設ける。 幾何
形状によって、運転条件や交差点や停止点などの情報を
含みこれをITVなとの視覚画像手段により検出して、
その情報に従って、直進、旋回、停止などの運転を行な
い、予定経路に沿って走行する。(4) Reflector tracking method with characteristic geometric shapes A reflection plate with characteristic geometric shapes is provided on the planned travel route. The geometric shape contains information such as driving conditions, intersections and stopping points, which is detected by visual image means such as ITV.
According to this information, the vehicle moves straight, turns, stops, etc., and travels along the planned route.
3−3発明が解決しようとする問題点
(1) 自然情景による誘導方式に対して画像から経路
を示す直線を抽出するための画像処理に要する演算量が
莫大であり、車体に搭載可能な寸法の演算処理の処理速
度では時間がかかりすぎる。 その為、車体の誘導にあ
たり、高速で運転すると演算が終了せぬうちに画像が更
新されて正常に誘導できなくなる。 従って極めて低速
で走行せざるを得す。 実用的な車速を得ることができ
ない。 従って演算時間が少なくてすむ人工のマークを
用いる必要がある。3-3 Problems to be solved by the invention (1) Compared to the guidance method based on natural scenes, the amount of calculation required for image processing to extract a straight line indicating the route from the image is enormous, and the size that can be mounted on the vehicle body is large. It takes too much time at the processing speed of calculation processing. Therefore, when guiding the vehicle, if the vehicle is driven at high speed, the image will be updated before the calculation is completed, making it impossible to guide the vehicle properly. Therefore, they have no choice but to travel at extremely low speeds. Practical vehicle speed cannot be obtained. Therefore, it is necessary to use artificial marks that require less calculation time.
(2) 点線追跡方式に対して 走行路の曲がり方に沿って点線を設定する必要がある。(2) For dotted line tracing method It is necessary to set dotted lines along the curves of the driving route.
又、全ての走行予定路上に、狭い間隔でマークを設け
る必要がある為、マーク布設に時間がかかりすぎる。Furthermore, since marks must be placed at narrow intervals on all planned travel routes, it takes too much time to lay out the marks.
(3) 反射板バーコード追従方式と(4) 幾何形状
に特徴を有する反射板誘導方式に対してマークの図柄な
いし形状によって運転方法も・しくは現在位置の情報を
表わしている。 従ってマークの一部が汚れた場合、本
来の情報を正確に伝達することができなくなる。 つま
りマークを汚損すると機能を失うので、マークの上を歩
いたり、車両が走ったりすることを行なってはならない
。In contrast to (3) the reflector barcode tracking method and (4) the reflector guidance method characterized by its geometric shape, the design or shape of the mark represents the driving method or information about the current location. Therefore, if a part of the mark becomes dirty, the original information cannot be accurately transmitted. In other words, if the mark is defaced, it will lose its function, so do not walk or drive a vehicle over it.
従って汚損させぬ為には、本来、人間等が歩くべく設け
られた走行路に設けたマークを避けて通行せねばならな
いが、マークの寸法が大きく路面に対する占有面積が大
きいので、人間は歩きにくくなるという実用上の欠点が
あり、小さな寸法のマークを使わねばならない。Therefore, in order to avoid contamination, it is necessary to avoid markings set up on roads intended for people to walk on, but since the marks are large and occupy a large area on the road surface, it is difficult for people to walk on them. This has the practical disadvantage of having to use marks with small dimensions.
3−4問題点を解決するための手段及び作用回帰反射性
を有する透明な玉やLED等の寸法の小さな輝点を経路
形状と運転指令とを同時に表現する様に意味付けし、無
人移動車両の予定経路に配置するとともに、無人移動車
両に搭載された視覚画像装置により、輝度が一定値以上
の輝点のみを検出し、無人移動車両を自動操舵する一方
通信手段により遠隔地にモニタするようにしたものであ
る。3-4 Means and effects for solving the problem A transparent ball with retroreflectivity or a bright spot of small size such as an LED is given meaning so as to express the route shape and driving command at the same time, and an unmanned moving vehicle is created. At the same time, a visual imaging device mounted on the unmanned vehicle detects only bright spots with brightness above a certain value, automatically steers the unmanned vehicle, and monitors a remote location using communication means. This is what I did.
3−5実施例
(1) 輝点の配置と通路の特徴付は
第2図及び第3図に輝点り1)で通路を表現する方の境
界に輝点点列を作る場合である。 輝点の配置は単に通
路を表わすのみでなく、あらかじめ定められたパターン
に配置することにより、各種情報を与えることも可能で
ある。 第11図(a)−(g)に輝点の配列に各種意
味付けを行った配置例な示す。3-5 Embodiment (1) The arrangement of bright spots and the characterization of passages are shown in FIGS. 2 and 3 in which a row of bright spots is created at the boundary of the path representing the passage. The arrangement of bright spots not only represents a path, but also provides various information by arranging them in a predetermined pattern. FIGS. 11(a) to 11(g) show examples of arrangement in which various meanings are given to the arrangement of bright spots.
これらの輝点点列を構成する点としては安価で容易に設
置でき長期の使用に耐える回帰反射性のあるガラスピー
ズ、コーナーキューブ、小型反射板、反射シート片また
は小型の発光物(LED、豆球なと)を用いる。The points that make up these bright spot arrays include glass beads, corner cubes, small reflectors, pieces of reflective sheets, or small light-emitting objects (LEDs, miniature bulbs) that are inexpensive, easy to install, and durable for long-term use. (nato) is used.
(2) 輝点の検出
第4図に複数個の輝点を検出する視覚画像装置(200
)として、テレビカメラ(5)を用いた場合を示す。
周囲の外乱光によらず、確実に輝点を検出するためには
できるだけ高い輝度をもった、輝点であることが望まし
い。 輝点として発光体を用いる場合は高輝度なものを
選ぶが、回帰反射特性をもつ反射体の場合はそれを照明
する光源と検出するテレビカメラとの配置により輝点の
明るさが大きく変化する。 すなわち回帰反射特性をも
つ反射物は反射物体に入射した光線と同一方向(反射光
の進行方向は入射光と逆で光源に向かう方向)に対して
、最も多くの光束を反射するからである。(2) Detection of bright spots Figure 4 shows a visual image device (200
), the case where a television camera (5) is used is shown.
In order to reliably detect a bright spot regardless of ambient disturbance light, it is desirable that the bright spot has as high a brightness as possible. When using a light emitter as a bright spot, choose one with high brightness, but in the case of a reflector with retroreflection characteristics, the brightness of the bright spot will vary greatly depending on the arrangement of the light source that illuminates it and the television camera that detects it. . In other words, a reflective object with retroreflection characteristics reflects the largest amount of light in the same direction as the light beam incident on the reflective object (the traveling direction of the reflected light is opposite to the incident light and toward the light source).
第4図において半透過性を持つ、ハーフ葵う−(6)に
対して互いに同じ角度θをなし、等距離な位置に照明装
置(4)の発光点、AV子テレビカメラレンズ主点がく
る様に配置する。 照明装置かξ
%外(4)からの光はハーフシラー(6)を透過してを
透過させテレビカメラ(5)に入射する。 この時、テ
レビカメラ(5)は照明装置(4)と等価的に同じ位置
で、反射光を受けることになり、非常にするので、本方
式の有効な条件を以下に示す。In Fig. 4, the light emitting point of the illumination device (4) and the principal point of the AV child TV camera lens are at the same angle θ and equidistant from the semi-transparent half-light beam (6). Arrange it as you like. Light from outside the illumination device (4) passes through the half-shiller (6) and enters the television camera (5). At this time, the television camera (5) receives the reflected light at equivalently the same position as the illumination device (4), which is extremely dangerous.The conditions under which this method is effective are shown below.
(3) 照明装置とテレビカメラの位置関係の導出
ミ
第4図においてランプからの光束■、ハーフ諏ワラ−よ
る光束の減衰率r、外乱光の光束rr、マークの光束反
射率η、外乱物体表面の外乱光束反射率ηnとする。
また、第5図の従来の方式に於いてマークの光束反射率
η2とすると、カメラに入射する光束のマークからのも
のど外乱物体からのものの比、すなわちS/N比を求め
ると以下の様になる。(3) Derivation of the positional relationship between the lighting device and the television camera In Fig. 4, the luminous flux from the lamp ■, the attenuation rate r of the luminous flux due to the half wall, the luminous flux rr of the disturbance light, the luminous flux reflectance η of the mark, and the disturbance object. Let the disturbance light flux reflectance of the surface be ηn.
In addition, in the conventional method shown in Fig. 5, if the light flux reflectance of the mark is η2, the ratio of the light flux incident on the camera from the mark to that from the disturbance object, that is, the S/N ratio, is calculated as follows. become.
〈従来方式〉
片:σ、70亡しL
すなわ″ぢ′、Q、507>>η′なる条件で用いる場
合に有効である。<Conventional method> It is effective when used under the condition that σ, 70 loss L, Q, 507 >>η'.
ところで、一般に回帰反射特性をもつマークは光の入射
した方向に対して非常に小さい広がり角を持って光を反
射する。 例えば、道路のセンタラインに設置しである
ガラス玉などは、l095〜1.5度位の角度をなす。Incidentally, marks having retroreflective characteristics generally reflect light with a very small spread angle with respect to the direction in which the light is incident. For example, a glass ball placed on the center line of a road forms an angle of about 1095 to 1.5 degrees.
(第6図参考) 故に光源と反射マークの距離が数m以
上離れた場合はηとη′は近い値をもつが、5m以下程
度の距離ではη′に比してか、非常に大きく本方式が有
効となる。(Refer to Figure 6) Therefore, when the distance between the light source and the reflective mark is several meters or more, η and η' have close values, but at a distance of about 5 meters or less, the value is very large compared to η'. method becomes valid.
(4) 画像処理装置
第7図にテレビカメラ(5)で撮像した画面を2値化し
た場合を示す。(4) Image processing device FIG. 7 shows a case where a screen imaged by a television camera (5) is binarized.
第8図に輝点の画面上での位置を高速で求めるため、テ
レビカメラ(5)からの信号を直接処理して、それぞれ
の輝点の座標を求める画像処理装置を示す。FIG. 8 shows an image processing device that directly processes signals from a television camera (5) to determine the coordinates of each bright spot in order to quickly determine the position of the bright spot on the screen.
次に、第8図に基づき画像処理の手順を説明するテレビ
カメラ(5)から出力される映像信号を同期信号分離回
路(+01)に入力し、同期信号を取り出し、トリガ回
路(103)に入力し、リセット信号。Next, the video signal output from the television camera (5), which explains the image processing procedure based on Fig. 8, is input to the synchronization signal separation circuit (+01), and the synchronization signal is extracted and input to the trigger circuit (103). and reset signal.
走査線切替信号2画面切替信号をそれぞれ発生させる。A scanning line switching signal and two screen switching signals are respectively generated.
一方同期信号分離回路(+01)からの画像データを2
値化回路(102)に入力し、2値の信号(明るい点が
あるか無いか)に変換しトリガ回路(107)に人力す
る。On the other hand, the image data from the synchronization signal separation circuit (+01) is
The signal is input to a value converting circuit (102), converted into a binary signal (bright spot or not), and manually inputted to a trigger circuit (107).
カウンタ回路(+05)ではトリガ回路(103)のリ
セット信号を基準として、クロック回路(104)から
のパルスをカウントし、Xの値を出力する。The counter circuit (+05) counts pulses from the clock circuit (104) using the reset signal of the trigger circuit (103) as a reference, and outputs the value of X.
他方カウンタ回路(106)では、画像切替信号を基準
に走査線切替信号をカウントし、yの値を出力する。On the other hand, the counter circuit (106) counts the scanning line switching signal based on the image switching signal and outputs the value of y.
ここにXは、輝点が現れるまでのカウント数、yは走査
線の本数を示すこととなる。Here, X represents the number of counts until a bright spot appears, and y represents the number of scanning lines.
次に、画面に輝点があると、トリガ回路(107)より
ラッチ信号を発生し、x、yの値をラッチ回路(108
)にラッチして、メモリー(110)のデータ端子へ出
力する。Next, when there is a bright spot on the screen, a latch signal is generated from the trigger circuit (107), and the x and y values are sent to the latch circuit (108).
) and output to the data terminal of the memory (110).
又、カウンタ回路(109)により輝点の数を数え、メ
モリー(110)のアドレス端子へ出力するとともに、
データとアドレスがそろった時点で、トリガ回路(10
7)から書込信号を発生することにより、メモリー(1
10)に輝点のx、yの値を記録する。In addition, the counter circuit (109) counts the number of bright spots and outputs it to the address terminal of the memory (110).
When the data and address are complete, the trigger circuit (10
By generating a write signal from memory (1)
10) Record the x and y values of the bright spot.
以上のようにして、テレビカメラ(5)より一画面分の
画像データが送られると同時に、−画面中のすべての輝
点のx、yの値をメモリー(110)に記録し、その後
演算装置(111)によりそれらX+Vの値を取り出し
、演算処理することができる。As described above, at the same time that one screen worth of image data is sent from the television camera (5), the x and y values of all the bright spots on the screen are recorded in the memory (110), and then the arithmetic unit (111) allows the values of X+V to be extracted and subjected to arithmetic processing.
(5) 車両の誘導及び操舵
(I)通路に沿って点列を配置した場合点列を結ぶ直線
からの横変位、偏角を計測するこ示せず)を制御し車両
を誘導する。(5) Guidance and steering of the vehicle (I) When a dot array is arranged along the path, the vehicle is guided by measuring the lateral displacement and deflection angle from a straight line connecting the dot array (not shown).
(II)床と壁の境界に配置した場合
車体が通路中央にいて、通路に平行な向きに停止してい
る時の画像より、通路の端が画像中に占める位置を記録
する。 第9図を用いて説明すると、走査線の位置Yと
その走査線上で境界が現れる位置Xを組みにして記録す
る。 以上の様に記録された座標のS組を、車体が通路
中央にいる時の目標状態とする。一方、走行中に得られ
る画像より、輝点(つまり、通路の境界上の点)の座標
を求め、上記の記録された座標と比較することにより、
通路に対する車両の偏りを知り、(1)と同様に車両を
誘導することができる。(II) When placed at the boundary between the floor and wall: The position occupied by the end of the aisle in the image is recorded from the image when the vehicle is in the center of the aisle and stopped parallel to the aisle. To explain using FIG. 9, the position Y of a scanning line and the position X where a boundary appears on the scanning line are recorded as a set. The S set of coordinates recorded as described above is set as the target state when the vehicle body is in the center of the passage. On the other hand, by determining the coordinates of the bright spot (i.e., a point on the boundary of the passage) from the image obtained while driving and comparing it with the recorded coordinates above,
By knowing the bias of the vehicle with respect to the passage, it is possible to guide the vehicle in the same way as in (1).
(6) 通路の認識
実際に得られる画像は、輝点の画像上の座標であるが、
ITVなとのイメージセンサ(5)の取付は高さく11
)及び、角度(12)を固定し、回帰反射物体(例えば
ビーズ玉)を床面などの一定の高さに設置することによ
り容易にITV等を塔載した無人移動車両(13)から
輝点(1)までの距離情報におき換えられる。 また、
通路に沿って点列を配置した場合は、それらの複数個の
距離情報より通路のある位置を知ることができる。 さ
らには、床と壁の境界に配置した場合は通路の両端の位
置を知ることができる。 (第10図参照)3−6発
明の効果
以上のように、本発明によれば路面に対するマークの占
有面積が少なくなるとともに、予定経路に布設するマー
クの数に対し、伝達情報量を増大させることができる。(6) Path recognition The image actually obtained is the coordinates of the bright spot on the image, but
The installation height of the image sensor (5) of ITV Nato is 11
) and by fixing the angle (12) and installing a retroreflective object (e.g. beads) at a certain height such as the floor, it is possible to easily detect a bright spot from an unmanned vehicle (13) carrying an ITV etc. It is replaced with distance information up to (1). Also,
When a series of points is arranged along a passage, the position of the passage can be known from the distance information of the plurality of points. Furthermore, if it is placed at the boundary between the floor and wall, the positions of both ends of the passage can be known. (See Figure 10) 3-6 Effects of the Invention As described above, according to the present invention, the area occupied by marks on the road surface is reduced, and the amount of transmitted information is increased relative to the number of marks installed on the planned route. be able to.
また、画像を高速で処理するので、車速を大きくする
ことができるとともに、テレビモニタにより遠隔地の監
視者に情報を伝達することもできるという効果をも有す
る。Furthermore, since images are processed at high speed, vehicle speed can be increased, and information can also be transmitted to a remote observer via a television monitor.
第1図は実施例を示す斜視図、第2図は輝点を予定経路
に沿って配置すると同時に、予定経路形状を示す特徴あ
る輝点配置とした際の実施例を示す斜視図、第3図は輝
点な予定経路の床と壁の境界に沿って配置すると同時に
予定経路形状を示す特徴ある輝点配置とした際の実施例
を示す 斜視図、第4図は輝点として2回帰反射物体を
用いた際、輝点が最大輝度を示すテレビカメラ、ハーフ
ミラ−9照明装置の位置関係を示す平面配置図、第5図
は従来のテレビカメラと照明装置との位置関係を示す平
面配置図。
第6図は2回帰反射物体の有する反射光の指向性の良さ
を図解的に示す。第7図は第2図及び第3図を輝度によ
り2値化処理した後の画像を図解的に示す。第8図は本
案実施例にかかわる画像処理装置の構成図、第9図は輝
点を予定経路の床と壁の境界に配置した場合、無人車両
が予定経路中央にいて、該経路に平行な向きに停止して
いる時視覚画像装置の画像より2通路の端が画像中に占
める位置を記録する方法を図解的に示す。第10図は予
定経路床面上の点と画像が一対一に対応することを図解
的に示す。
第11図は輝点の配置に各種意味付けを行った例
1・・・輝点、2・・・予定経路、3・・・壁、4・・
・照明装置、5・・・ITV、6・・・ハーフミラ−1
7・・・回帰反射物体、8・・・入射平行光線、9・・
・反射光。FIG. 1 is a perspective view showing an embodiment; FIG. 2 is a perspective view showing an embodiment in which bright spots are arranged along a planned route and at the same time a distinctive bright spot arrangement indicating the shape of the planned route; The figure shows an example in which a bright spot is placed along the boundary between the floor and wall of the planned route, and at the same time a distinctive bright spot arrangement that indicates the shape of the planned route is used.A perspective view, and Figure 4 shows two recursive reflections as a bright spot. FIG. 5 is a plan layout diagram showing the positional relationship between a television camera whose bright spot has maximum brightness when an object is used, and a half mirror 9 illumination device. FIG. 5 is a plan layout diagram showing the positional relationship between a conventional television camera and a lighting device. . FIG. 6 diagrammatically shows the good directivity of reflected light of a birecursion reflecting object. FIG. 7 schematically shows an image obtained by binarizing the images in FIGS. 2 and 3 based on luminance. Fig. 8 is a block diagram of the image processing device according to the embodiment of the present invention, and Fig. 9 shows a case where the bright spot is placed at the boundary between the floor and wall of the planned route, when the unmanned vehicle is in the center of the planned route, and when the unmanned vehicle is in the center of the planned route, Fig. 2 schematically shows a method for recording the positions occupied by the ends of two paths in an image from an image of a visual imaging device when stopped in the same direction. FIG. 10 schematically shows that there is a one-to-one correspondence between points on the planned route floor and images. Figure 11 shows an example of assigning various meanings to the arrangement of bright spots 1...Bright spot, 2...Planned route, 3...Wall, 4...
・Lighting device, 5...ITV, 6...Half mirror-1
7... Retroreflection object, 8... Incident parallel rays, 9...
·reflected light.
Claims (5)
って誘導する無人移動車両の誘導方法において該走行用
予定経路(2)又はそれと壁との境界上にそって配置に
意味付けを行った輝点(1)を複数配置し、視覚画像装
置により該輝点(1)を検出することにより走行用予定
経路上の該無人移動車両の位置と、走行用予定経路の形
状と、該無人移動車両にたいする運転指令情報とを受信
可能とし、輝点に追従しながら誘導することを特徴とす
る無人移動車両の誘導方法。(1) In a method of guiding an unmanned moving vehicle along a preset scheduled running route, a meaning is attached to the arrangement along the scheduled running route (2) or the boundary between it and a wall. By arranging a plurality of bright spots (1) and detecting the bright spots (1) with a visual image device, the position of the unmanned vehicle on the planned route for travel, the shape of the planned route for travel, and the unmanned vehicle can be determined. A method for guiding an unmanned moving vehicle, characterized by being able to receive driving command information for the moving vehicle and guiding the moving vehicle while following a bright spot.
以外の物体を含む画像を輝度の強弱から2値化し、高レ
ベル輝度の輝点(1)の画面上の座標データをメモリ(
110)に記憶し、該座標データと予め設定した輝点の
配置を示すデータとを比較することにより該輝点(1)
に追従しながら誘導することを特徴とする特許請求の範
囲第1項記載の無人移動車両の誘導方法。(2) Binarize the image containing the bright spot (1) and other objects from the visual image device based on the intensity of brightness, and store the coordinate data on the screen of the bright spot (1) with high level brightness in memory (
110), and by comparing the coordinate data with data indicating the arrangement of bright spots set in advance, the bright spot (1) is stored.
2. A method for guiding an unmanned moving vehicle according to claim 1, characterized in that the unmanned moving vehicle is guided while following.
とを特徴とする特許請求の範囲第1項記載の輝点追従に
よる無人移動車両の誘導方法。(3) A method for guiding an unmanned moving vehicle by following a bright spot according to claim 1, characterized in that a light emitter with a small surface area is used as the bright spot.
を用い、該回帰反射性を有する透明な玉を、照射すべく
照明装置を車載したこと を特徴とする特許請求の範囲第1項記載の輝点追従によ
る無人移動車両の誘導方法。(4) A transparent ball with retroreflectivity is used instead of the bright spot, and a lighting device is mounted on the vehicle to illuminate the transparent ball with retroreflectivity. A method for guiding an unmanned moving vehicle by bright spot tracking as described in 2.
性の鏡を用いることにより等価的に同一の光軸上に設け
ることを特徴とする特許請求の範囲第4項記載の輝点追
従による無人移動車両の誘導方法。(5) Bright spot tracking according to claim 4, characterized in that the visual image device and the illumination device are arranged equivalently on the same optical axis by using a semi-transparent mirror. A method for guiding unmanned moving vehicles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60100107A JPS61259308A (en) | 1985-05-10 | 1985-05-10 | Guiding method of luminescent point follow-up type unmanned vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60100107A JPS61259308A (en) | 1985-05-10 | 1985-05-10 | Guiding method of luminescent point follow-up type unmanned vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61259308A true JPS61259308A (en) | 1986-11-17 |
Family
ID=14265155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60100107A Pending JPS61259308A (en) | 1985-05-10 | 1985-05-10 | Guiding method of luminescent point follow-up type unmanned vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61259308A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63186304A (en) * | 1987-01-28 | 1988-08-01 | Meidensha Electric Mfg Co Ltd | Guiding device for unmanned vehicle |
JPH01151602A (en) * | 1987-12-09 | 1989-06-14 | Fujita Corp | Road for superconducting magnetic levitation body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962917A (en) * | 1982-09-30 | 1984-04-10 | Tsubakimoto Chain Co | Introduction method of unattended car |
JPS5975315A (en) * | 1982-10-21 | 1984-04-28 | Nippon Yusoki Co Ltd | Unattended carrying car |
JPS59112311A (en) * | 1982-12-20 | 1984-06-28 | Komatsu Ltd | Guiding method of unmanned moving body |
-
1985
- 1985-05-10 JP JP60100107A patent/JPS61259308A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962917A (en) * | 1982-09-30 | 1984-04-10 | Tsubakimoto Chain Co | Introduction method of unattended car |
JPS5975315A (en) * | 1982-10-21 | 1984-04-28 | Nippon Yusoki Co Ltd | Unattended carrying car |
JPS59112311A (en) * | 1982-12-20 | 1984-06-28 | Komatsu Ltd | Guiding method of unmanned moving body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63186304A (en) * | 1987-01-28 | 1988-08-01 | Meidensha Electric Mfg Co Ltd | Guiding device for unmanned vehicle |
JPH01151602A (en) * | 1987-12-09 | 1989-06-14 | Fujita Corp | Road for superconducting magnetic levitation body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4687326A (en) | Integrated range and luminance camera | |
US6957493B2 (en) | Automatic tracking apparatus for reflector | |
US4947094A (en) | Optical guidance system for industrial vehicles | |
King et al. | Helpmate autonomous mobile robot navigation system | |
US5207003A (en) | Target and system for three-dimensionally measuring position and attitude using said target | |
US20170317748A1 (en) | Vehicle positioning by visible light communication | |
US20140198206A1 (en) | System and Method for Estimating the Position and Orientation of an Object using Optical Beacons | |
JP2005331784A (en) | Optical lens system and position measuring system using it | |
JPS63501103A (en) | Navigation method | |
CN101952793A (en) | Touch screen adopting an optical module system using linear infrared emitters | |
CN210464466U (en) | Auxiliary light vision detection device based on indoor environment and mobile robot | |
US5041722A (en) | Method of guiding movement of unmanned vehicle by following a number of luminous points | |
JPS5994005A (en) | Position detector for unmanned self-travelling truck | |
CN110471403B (en) | Method for guiding an autonomously movable machine by means of an optical communication device | |
CN110163200A (en) | Vehicle detection apparatus and lamp system for vehicle | |
CN103925541B (en) | Motor vehicle spotlight | |
CN115769258A (en) | Projector for diffuse illumination and structured light | |
JP2001202497A (en) | Vehicle detection system and method | |
US4786167A (en) | Optical navigation system | |
WO2019176418A1 (en) | Vehicular lamp, vehicle detection method, and vehicle detection device | |
US3566119A (en) | Infrared scanning device using a spherical lens | |
CN112747723A (en) | Auxiliary light vision detection device based on indoor environment and mobile robot | |
JPS61259308A (en) | Guiding method of luminescent point follow-up type unmanned vehicle | |
JPH04193641A (en) | Obstacle detection device for vehicle | |
JPH09203631A (en) | Distance-measuring sensor |