JPS62226205A - Drive guiding device for unmanned carrier - Google Patents

Drive guiding device for unmanned carrier

Info

Publication number
JPS62226205A
JPS62226205A JP61069431A JP6943186A JPS62226205A JP S62226205 A JPS62226205 A JP S62226205A JP 61069431 A JP61069431 A JP 61069431A JP 6943186 A JP6943186 A JP 6943186A JP S62226205 A JPS62226205 A JP S62226205A
Authority
JP
Japan
Prior art keywords
drive
unmanned vehicle
carrier
gradient
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61069431A
Other languages
Japanese (ja)
Inventor
Yoshio Yoshimoto
吉本 好夫
Minoru Kondou
近堂 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP61069431A priority Critical patent/JPS62226205A/en
Publication of JPS62226205A publication Critical patent/JPS62226205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To attain the autonomous drive of an unmanned carrier with high accuracy by an inexpensive gyroscope by correcting an error due to the drift of the gyroscope, etc. through the steering control based on two detecting means for gradient and position shift of the carrier. CONSTITUTION:An unmanned carrier 1 contains a pair of drive wheels 2, 3, drive motors 4 and 5, etc. While a drive guiding device consists of an angle detector 20 containing a gas rate gyroscope 10, etc., a drive position shift detector 11, a drive gradient detector 14, a drive control CPU 24, a driving path pattern memory 23, etc. and controls both motors 4 and 5 so that the reference direction is always coincident with the reference distance. Then both the gradient and the position shift of the carrier 1 are detected at a prescribed point every time the data on the travelled distance is equal to the prescribed value. The speed difference between both wheels 2 and 3 is calculated for corrected drive based on the results of detection of both detectors 11 and 14. Thus the gradient and position shift of the carrier 1 can be eliminated. Then the drive of the carrier 1 is corrected based on the results of said operations and the accumulation of errors can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、工場や倉庫などに物品の搬送等を目的とし
て導入される無人走行車の走行誘導装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a travel guidance device for an unmanned vehicle that is introduced into factories, warehouses, etc. for the purpose of transporting goods.

〔従来の技術〕[Conventional technology]

上記無人走行車(以下、単に無人車という)の誘導方式
としては、走行経路に電磁誘導電線あるいは光学テープ
等の誘導線を敷設して、無人車の検出器でその誘導線の
位置を検出して、その誘導線に追従して走行するように
無人車の操舵を制御する方式、いわゆる無人車の固定経
路方式による誘導方式が現在、多く実用化されている。
The guidance method for the above-mentioned unmanned vehicle (hereinafter simply referred to as unmanned vehicle) is to lay a guide wire such as an electromagnetic induction wire or optical tape on the driving route, and detect the position of the guide wire with a detector on the unmanned vehicle. Currently, there are many methods of controlling the steering of unmanned vehicles so that they follow the guidance lines, so-called fixed-route guidance methods for unmanned vehicles.

一方で、より自由な走行を実現するために無経路誘導方
式の誘導方式が数多く開発・提案されている。その無経
路誘導方式の中に、ジャイロを用いた自律走行の方式、
すなわち該ジャイロを用いて走行方向の方位角データを
検出し、該方位角データと車輪回転量より計算される距
離データとをあらかじめ無人車に記憶させておいたデー
タと比較しながら操舵制御する方式がある。
On the other hand, many routeless guidance systems have been developed and proposed in order to realize more free driving. Among the routeless guidance methods, there is an autonomous driving method using a gyro,
In other words, the gyro is used to detect azimuth data in the driving direction, and the steering is controlled while comparing the azimuth data and distance data calculated from the amount of wheel rotation with data previously stored in the unmanned vehicle. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記ジャイロを用いた自律走行方式において
は、高精度のものは高価格となり実用的ではなく、一方
現時点において使用可能なジャイロ(例えば、ガスレー
トジャイロや振動ジャイロ)は未だ精度が充分でないた
め、ジャイロのみに基づいた自律走行は実現困難であっ
た。
However, in the autonomous driving system using the above-mentioned gyros, high-precision ones are expensive and impractical, and on the other hand, the gyros that are currently available (e.g. gas rate gyros and vibration gyros) are not yet accurate enough. However, autonomous driving based only on gyros was difficult to achieve.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記ジャイロを用いた自律走行方式であっ
て、任意の所定距離走行毎に無人走行車の傾きを検出す
る手段と、無人走行車の位置ずれを検出する手段と、該
2つの検出手段からの出力に基づいて無人走行車の走行
誤差を修正するために操舵制御する手段とを設けたもの
である。
The present invention is an autonomous driving system using the above-mentioned gyro, and includes means for detecting the inclination of an unmanned vehicle every time it travels an arbitrary predetermined distance, means for detecting a positional shift of the unmanned vehicle, and a means for detecting the two detections. and means for performing steering control to correct a running error of the unmanned vehicle based on the output from the means.

〔作用〕[Effect]

ジャイロのドリフトや車輪のスリップ等による走行の誤
差は、上記2つの検出手段による出力に基づく操舵制御
により修正される。
Driving errors due to gyro drift, wheel slip, etc. are corrected by steering control based on the outputs of the two detection means.

〔実施例〕〔Example〕

第5図は本発明を適用した無人車の一実施例を概略的に
示す図であり、この無人車(1)には車体前後方向はぼ
中央位置の左右に一対の駆動輪(2) (3)が設けら
れており、該駆動輪(2) (3)には走行モータ(4
) (5)がそれぞれ直結している。この無人車(1)
は左右の駆動輪(2)(3)の回転数を異ならすること
により旋回走行を可能にしている。(6)(7)はそれ
ぞれ駆動輪(2) (3)の減速あるいは停止のだめの
ブレーキを示し、 (8) (9)はそれぞれ駆動輪(
2) (3)の回転数を検出するパルスジェネレーター
を示している。(10)は公知のガスレートジャイロを
示し、該ガスレートジャイロ(10)はコリオリの加速
度を利用して角速度検出を可能にしたものであり、無人
車(1)走行中の方位は単位時間毎(例えば1秒毎)に
該ガスレートジャイロで計測し、予め記憶されている基
準方位と比較して、常に基準方向と一致するように両駆
動輸(2) (3)の速度化の制御を行う。
FIG. 5 is a diagram schematically showing an embodiment of an unmanned vehicle to which the present invention is applied, and this unmanned vehicle (1) has a pair of drive wheels (2) on the left and right sides of the approximately central position in the longitudinal direction of the vehicle body. 3) is provided, and the drive wheels (2) (3) are provided with a travel motor (4).
) (5) are directly connected to each other. This unmanned car (1)
The vehicle enables cornering by making the rotation speeds of the left and right drive wheels (2) and (3) different. (6) and (7) respectively indicate the brakes for decelerating or stopping the drive wheels (2) and (3), and (8) and (9) respectively indicate the brakes for the drive wheels (2) and (3).
2) Shows the pulse generator that detects the rotation speed in (3). (10) shows a known gas rate gyro, which makes it possible to detect angular velocity using Coriolis acceleration, and the direction of the unmanned vehicle (1) while traveling is determined every unit time. (For example, every second) is measured by the gas rate gyro and compared with a pre-stored reference direction, and the speed of both drive transports (2) and (3) is controlled so that it always matches the reference direction. conduct.

(11)は投光器(12)および受光素子列であるC 
CD (13)より成る走行位置ずれ検出器を示し、(
14)は受光素子列であるCODより成る走行傾き検出
器を示し、該CCD (14)は地上側に設置した投光
器(15)より投光される光を受光する。なお、(16
)はキャスター状に車体に支持されている従動輪を示し
ている。
(11) is the light emitter (12) and the light receiving element array C
A running position deviation detector consisting of CD (13) is shown, (
Reference numeral 14) indicates a travel inclination detector consisting of a COD, which is a light receiving element array, and the CCD (14) receives light projected from a light projector (15) installed on the ground side. In addition, (16
) indicates a driven wheel supported on the vehicle body in a caster-like manner.

第1図には、上記無人車(1)の走行制御系をブロック
図で示し、(20)は角度検出器であり、無人車(1)
走行中の方位を計測するガスレートジャイロ(10)と
、該ジャイロ(10)より出力されたアナログ出力をデ
ジタル出力に変換するA/、D変換器(21)と、該デ
ジタル出力により無人車(1)の方位を演算する角度演
算用CP U (22)とより成っている。該角度検出
器(20)より単位時間毎(例えば1秒毎)に送られて
くる無人車(1)の方位データ(il)と予め走行路パ
ターンメモリ(23)に記憶されている単位時間毎の基
準方位データ(12)が逐次、走行制御CP U (2
4)で比較され、同様にパルスジェネレーター(8) 
(9)で検出される距離データ(i3) (i4)と予
め走行路パターンメモリ(23)に記憶されている基準
距離データ(i5)(i6)が逐次、走行制御CP t
J (24)で比較され、常に基準方位および基準距離
と一致するように両駆動輸(2) (3)の速度比の制
御を行い、該制御指令(17)を上記走行剤′4it 
CP U (24)よりサーボ用CP U (25)に
送る。 (26)(27)はサーボドライバを示し、(
4) (5)は駆動モータをそれぞれ示している。
FIG. 1 shows a block diagram of the travel control system of the unmanned vehicle (1), in which (20) is an angle detector;
A gas rate gyro (10) that measures the direction while driving, an A/D converter (21) that converts the analog output output from the gyro (10) into a digital output, and an unmanned vehicle ( 1) and an angle calculation CPU (22) that calculates the orientation. Direction data (il) of the unmanned vehicle (1) sent from the angle detector (20) every unit time (for example, every second) and every unit time stored in advance in the travel path pattern memory (23) The reference direction data (12) of the travel control CPU (2
4) and similarly pulse generator (8)
The distance data (i3) (i4) detected in (9) and the reference distance data (i5) (i6) stored in advance in the travel route pattern memory (23) are sequentially transmitted to the travel control CP t.
J (24), the speed ratio of both drive transports (2) and (3) is controlled so that it always matches the reference direction and reference distance, and the control command (17) is transmitted to the above-mentioned traveling agent '4it.
It is sent from the CPU (24) to the servo CPU (25). (26) and (27) indicate the servo driver, (
4) (5) each indicates a drive motor.

次に、第2図に基づいて走行位置ずれ検出器(11)に
よる検出の原理を説明する。無人車(1)が走行位置ず
れしていない場合の検出器(11)を実線で示し、該実
線位置に対して位置ずれしている場合を鎖線(lla)
 (llb)でそれぞれ示している。所定の位置にある
時は、投光器(12)より投光された光は側壁(W)で
反射してCOD (13)の受光素子(rl)に入光さ
れる。
Next, the principle of detection by the traveling position deviation detector (11) will be explained based on FIG. The solid line indicates the detector (11) when the unmanned vehicle (1) is not deviated from its driving position, and the dashed line (lla) indicates the case where the unmanned vehicle (1) is deviated from the solid line position.
(llb) respectively. When in a predetermined position, the light projected from the light projector (12) is reflected by the side wall (W) and enters the light receiving element (rl) of the COD (13).

投光器(12)より該受光素子(rl)までの距離(d
)  と投光器(12)またはCCD (13)から側
壁(W)までの距離(14> は予め与えられることが
できる。今、無人車(1)が距離(Δl)だけ所定位置
よりずれたとすると、当然、検出器(lla)  も距
離(△β)だけ所定位置よりずれるわけであり、投光器
(12a) より投光される光が常に平行であるとして
、CCD (13aの受光素子(r2)と上記所定位置
での受光素子(rl)との距離を(△d)とすると、d
二△d;l:△lとなり、△βは、△p=ZXΔd/d
の式で与えられる。
Distance (d) from the light emitter (12) to the light receiving element (rl)
) and the distance (14>) from the floodlight (12) or CCD (13) to the side wall (W) can be given in advance. Now, suppose the unmanned vehicle (1) deviates from the predetermined position by a distance (Δl). Naturally, the detector (lla) also deviates from the predetermined position by a distance (△β), and assuming that the light emitted from the light emitter (12a) is always parallel, the light receiving element (r2) of the CCD (13a) and the above If the distance to the light receiving element (rl) at a predetermined position is (△d), then d
Two △d; l: △l, and △β is △p=ZXΔd/d
It is given by the formula.

次に、第3.4図に基づいて、走行傾き検出器(14)
による検出の原理を説明する。側壁に設置した投光器(
15)により単位時間(1)間隔を経て投光される2つ
の光をCOD (14)で受光する。上記時間(1)間
隔は投光器(15)の方でタイマー設定しても、COD
 (14)の方でタイマー設定してもよい。上記時間(
1)間に無人車(1)は所定l(m)走行する。第3.
4図には説明のため、CCD (14)を固定とし投光
器(15)を移動させているが、実際には逆になってい
る。第3図には傾きずれのない場合を示し、2つの受光
素子(r3) (r4)間の距atは(m)である。第
4図には、傾き(θ)のずれを生している場合を示し、
上記距離(m) は変わらないけれども、2つの受光素
子(r5) (r6)) 間の距離は(n)  となる
。したがって、傾き(θ)の値は、cosθ=m/n式
で与えられる。
Next, based on Figure 3.4, the running inclination detector (14)
The principle of detection will be explained below. Floodlight installed on the side wall (
The COD (14) receives two lights emitted at a unit time (1) interval by 15). Even if the above time (1) interval is set on the timer on the projector (15), COD
You may also set the timer in (14). The above time (
1) During this period, the unmanned vehicle (1) travels for a predetermined length of l (m). Third.
For the sake of explanation, in Figure 4, the CCD (14) is fixed and the projector (15) is moved, but in reality it is the opposite. FIG. 3 shows a case where there is no tilt shift, and the distance at between the two light receiving elements (r3) (r4) is (m). Fig. 4 shows a case where a deviation in the slope (θ) occurs.
Although the above distance (m) does not change, the distance between the two light receiving elements (r5) (r6)) becomes (n). Therefore, the value of the slope (θ) is given by the formula cosθ=m/n.

該傾き(θ)の値は無人車(1)の位置ずれに関係なく
与えられるので、該傾き(θ)の値に基づいて上記位置
ずれ値〈△l)は演算補正される。
Since the value of the inclination (θ) is given regardless of the positional deviation of the unmanned vehicle (1), the positional deviation value <Δl) is calculated and corrected based on the value of the inclination (θ).

上記の本実施例においては、走行位置ずれ検出器(11
)および走行傾き検出器(14)による投受光は無人車
の走行路の側壁を利用して行っているけれども、走行路
の床面を利用しても場合によっては天井面を利用しても
よい。
In the present embodiment described above, the traveling position deviation detector (11
) and the travel inclination detector (14) are performed using the side walls of the travel path of the unmanned vehicle, but the floor surface of the travel path or the ceiling may be used depending on the case. .

以上のような構成をした無人車(1)の走行側?B C
P U (24)の処理動作フローを第6図を用いて説
明する。まず、無人車(1)の走行駆動がステップ■で
開始されると、以下ステップ■から■までが次のように
実行される。
The driving side of the unmanned vehicle (1) configured as above? B C
The processing operation flow of P U (24) will be explained using FIG. 6. First, when the driving of the unmanned vehicle (1) is started in step (2), steps (2) to (2) are executed as follows.

ステップ■■:走行駆動開始と同時にパルスノエネレー
タ(8) (9)より駆動輪(2) (3)の回転数が
それぞれ入力され、該回転数より無人車(1)の走行距
離データ、旋回角度データおよび速度データが出力され
る。タイマー等の作用により単位時間経過後は次のステ
ップへといく。
Step ■■: Simultaneously with the start of driving, the rotational speed of the driving wheels (2) and (3) is input from the pulse generators (8) and (9), respectively, and from the rotational speed, the traveling distance data of the unmanned vehicle (1) and the turning Angle data and velocity data are output. After a unit of time has elapsed due to the action of a timer, etc., the process proceeds to the next step.

ステップ■■:上記単位時間経過後は、ジャイロ(10
)により方向を測定し、該方位データと上記走行距離デ
ータをそれぞれ基準データと比較する。
Step ■■: After the above unit time has passed, the gyro (10
), and the direction data and the travel distance data are each compared with reference data.

ステップ■■■:上記比較により両者が一致していれば
補正なく走行を続行し、一致していなければ一致するよ
うに両駅動輪(2)(3)の速度化の補正を演算し、該
演算結果に基づいて補正する。
Step ■■■: If the two match according to the above comparison, continue traveling without correction, and if they do not match, calculate the speed correction of both station driving wheels (2) and (3) so that they match, and Correct based on the calculation result.

通常は、上述したようにして無人車(1)は誘導走(テ
しているけれども、ジャイロ(10)のドリフトや車輪
のスリップ等により、走行の誤差が累積されていく。し
たがって、if !積誤差を修正するために、次のよう
な処理が行われる。(第7図の処理動作フロー参照。) ステップ■[相]0◎0:パルスジエネレータ(8) 
(9)より送られてくる走行距離データが所定量になる
毎に、前述のようにして所定地点で無人車の傾き(θ)
と位置ずれ (△2)が検出され、該2つの検出値(θ)(△e)に
基づいて、その2つの値(θ)(△Iりを解消するため
の修正走行のための両駅動輪(2) (3)の速度化が
演算され、該7Ei算結果に基づいて無人車(1)の走
行は修正される。
Normally, as described above, the unmanned vehicle (1) performs guided running (te), but errors in running accumulate due to drift of the gyro (10), wheel slip, etc. Therefore, if! In order to correct the error, the following processing is performed. (Refer to the processing flow in Figure 7.) Step ■ [Phase] 0◎0: Pulse generator (8)
(9) Every time the travel distance data sent from
and positional deviation (△2) are detected, and based on the two detected values (θ) (△e), the two stations are determined for corrective travel to eliminate the deviation (△I). The speeding up of the driving wheels (2) and (3) is calculated, and the running of the unmanned vehicle (1) is corrected based on the 7Ei calculation result.

ステップ0■:上記修正の後は無人車の走行距離および
走行方位はりセットされ、誤差の累積を防いでいる。
Step 0■: After the above correction, the traveling distance and traveling direction of the unmanned vehicle are set to prevent the accumulation of errors.

なお、上記の実施例においては、光により無人走行車の
傾きおよび位置ずれを検出しているけれども、レーザー
光や音波等を用いて検出してもよい。
In addition, in the above embodiment, although the inclination and positional shift of the unmanned vehicle are detected using light, they may be detected using laser light, sound waves, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、精度が充分でな
い安価なジャイロを用いても、所定経路に沿った確実で
しかも信頼のある無人車の自律走行を可能にした。
As explained above, according to the present invention, even if an inexpensive gyro with insufficient accuracy is used, reliable and reliable autonomous driving of an unmanned vehicle along a predetermined route is enabled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を適用した無人車の走行制御
系を示すブロック図、第2図は走行位置ずれ検出器によ
る無人車の位置ずれを検出する原理を説明するための模
式図、第3図は走行傾き検出器による無人車の傾きを検
出する原理を説明するための模式図、第4図も同じく模
式図、第5図は本発明を適用した無人車の一実施例を概
略的に示す平面図、第6図は無人車の走行制御cpuの
処理動作フローを示すフローチャート図、第7図は走行
による累積誤差を修正すめための処理動作フローを示す
フローチャート図である。 <1)・・・無人走行車 (8)(9)・・・パルスジェネレータ(10)・・・
ジャイロ (11)・・・走行位置ずれ検出器 (14)・・・走行傾き検出器 (23)・・・走行路パターンメモリ (24)・・・走行制御CPU 冷2図 あ7目
Fig. 1 is a block diagram showing a driving control system of an unmanned vehicle to which an embodiment of the present invention is applied, and Fig. 2 is a schematic diagram illustrating the principle of detecting positional deviation of an unmanned vehicle by a driving position deviation detector. , Fig. 3 is a schematic diagram for explaining the principle of detecting the inclination of an unmanned vehicle using a running inclination detector, Fig. 4 is also a schematic diagram, and Fig. 5 shows an embodiment of an unmanned vehicle to which the present invention is applied. FIG. 6 is a schematic plan view, FIG. 6 is a flowchart showing the processing operation flow of the driving control CPU of the unmanned vehicle, and FIG. 7 is a flowchart showing the processing operation flow for correcting cumulative errors caused by driving. <1)...Unmanned vehicle (8)(9)...Pulse generator (10)...
Gyro (11)... Traveling position deviation detector (14)... Traveling inclination detector (23)... Traveling path pattern memory (24)... Traveling control CPU Cold 2 Figure A7

Claims (1)

【特許請求の範囲】 無人走行車に搭載したジャイロにより無人 走行車の方位角データを検出し、該方位角データと車輪
回転量より計算される距離データとを予め無人走行車に
記憶させておいたデータと比較しながら無人走行車を操
舵制御する装置であって、任意の所定距離走行毎に無人
走行車の傾きを検出する手段と、無人走行車の位置ずれ
を検出する手段と、該2つの検出手段からの出力に基づ
いて無人走行車の走行誤差を修正するために操舵制御す
る手段とより成ることを特徴とする無人走行車の走行誘
導装置。
[Claims] A gyro mounted on the unmanned vehicle detects azimuth data of the unmanned vehicle, and the azimuth data and distance data calculated from the amount of wheel rotation are stored in advance in the unmanned vehicle. 2. A device for controlling the steering of an unmanned vehicle while comparing the data with data obtained by the unmanned vehicle, the device comprising: means for detecting the tilt of the unmanned vehicle every time it travels an arbitrary predetermined distance; and means for detecting a positional shift of the unmanned vehicle. 1. A driving guidance device for an unmanned vehicle, comprising: means for controlling steering to correct a traveling error of the unmanned vehicle based on outputs from two detection means.
JP61069431A 1986-03-27 1986-03-27 Drive guiding device for unmanned carrier Pending JPS62226205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069431A JPS62226205A (en) 1986-03-27 1986-03-27 Drive guiding device for unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069431A JPS62226205A (en) 1986-03-27 1986-03-27 Drive guiding device for unmanned carrier

Publications (1)

Publication Number Publication Date
JPS62226205A true JPS62226205A (en) 1987-10-05

Family

ID=13402433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069431A Pending JPS62226205A (en) 1986-03-27 1986-03-27 Drive guiding device for unmanned carrier

Country Status (1)

Country Link
JP (1) JPS62226205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114004A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Correction method of gyro sensor of robot cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114004A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Correction method of gyro sensor of robot cleaner

Similar Documents

Publication Publication Date Title
JP3266747B2 (en) Vehicle guidance and travel control device
JP3317159B2 (en) Automatic guided vehicle
JPS62226205A (en) Drive guiding device for unmanned carrier
JP2002108453A (en) Unmanned vehicle
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2840943B2 (en) Mobile robot guidance device
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JPH07248819A (en) Track control method for automatic running vehicle
JP2739262B2 (en) Moving object position measurement device
JP3727429B2 (en) Method for calculating positional relationship with respect to travel route of vehicle
JPH0542002B2 (en)
JPS5952310A (en) Control method of unmanned guide truck
JPS61139807A (en) Running controller of unattended running car
JPS63233413A (en) Method for detecting slip of automatically guided unmanned carrier car
JP2001318718A (en) Railless automatic carrier and control method for automatic carrier
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JPS62140106A (en) Dive control equipment for traveling vehicle
JPH057725B2 (en)
JPH07113538B2 (en) Mobile object position recognition device
JPS63318608A (en) Unmanned carrying vehicle
JPH09145393A (en) Position detector for unattended autonomous traveling carrier
JPS6362007A (en) Steering command signal generator for traveling object
JPS6031615A (en) Method for controlling unmanned carrier car
KR920006933B1 (en) Unmanned vehicle control method
JPS62164115A (en) Running control equipment for moving vehicle