JPS63318608A - Unmanned carrying vehicle - Google Patents

Unmanned carrying vehicle

Info

Publication number
JPS63318608A
JPS63318608A JP62154530A JP15453087A JPS63318608A JP S63318608 A JPS63318608 A JP S63318608A JP 62154530 A JP62154530 A JP 62154530A JP 15453087 A JP15453087 A JP 15453087A JP S63318608 A JPS63318608 A JP S63318608A
Authority
JP
Japan
Prior art keywords
attitude angle
guided vehicle
vehicle
automatic guided
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154530A
Other languages
Japanese (ja)
Inventor
Moriaki Hatsuta
八田 衛明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62154530A priority Critical patent/JPS63318608A/en
Publication of JPS63318608A publication Critical patent/JPS63318608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To attain guidance control with high accuracy at low cost by the self-contained navigation, by confirming the attitude angle information by utilizing a difference in speed of revolution of the right and left wheels when an attitude angle changes, and a marker which is laid on a fixed position, and detecting the attitude angle without using a gyroscope. CONSTITUTION:By starting a motor controller 16, and rotating the running use motors 17a, 17b, the right and left running driving wheels rotates and a carrying car starts to run. The rotation of the driving wheel is detected by encoders 4a, 4b, and a distance pulse being proportional to the speed of revolution of the driving wheel is generated. Subsequently, this pulse is inputted to the corresponding counter circuits 6a, 6b, respectively, and the distance pulse is counted by setting a prescribed time as a counting period. Whenever the prescribed time elapses, a count value is outputted, and after it cleared, counting is executed again. The count value is fed to an adding circuit 7 and a subtracting circuit 8 and calculated, fed to a present position arithmetic unit 9, and by calculating an attitude angle and a moving distance, the present position is obtained. When the vehicle has passed through a position detecting marker 12, the device 9 corrects the attitude angle and the position by the output of an absolute position detecting device 11.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は主として工場内の自動搬送を目的として使用さ
れる自立航法式の無人搬送車に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a self-contained navigation type automatic guided vehicle used primarily for automatic transportation within a factory.

(従来の技術) 近年、生産工場におけるFA()1クトリ・オートメ−
シラン)化が進み、工場内の各種搬送物を効率良く、目
的の場所に自動搬送する目的で無人搬送車が利用されて
いる。これら無人搬送車の誘導方式は、走行床面に埋設
したN磁誘導線に高周波の電流を流し、これにより発生
する誘導磁界を車上に設けたコイルで検出して誘導を行
う電磁誘導式と、走行ルート上に貼シ付けた反射テープ
を車上の光センサで検出して誘導を行う光学誘導式が一
般的である。これらは、いずれも電線やデータの成す経
路に沿って無人搬送車を走行させる方式であるが、これ
とは別に、搬送車自身に設けたセンサにより自車の位置
を知り、与えられた走行ルート情報に基づき誘導制御を
行う自立航法式の無人搬送車が最近普及しつつある。こ
の方式は、電磁誘導線や反射テープなどの布設工事が不
要であシ、また比較的複雑なルートにも対応できるとい
う特長を有する。
(Conventional technology) In recent years, FA () one-factory automation in production factories has been increasing.
(silane), and automated guided vehicles are being used to efficiently and automatically transport various objects within factories to their desired locations. The guidance method of these automatic guided vehicles is an electromagnetic induction method in which a high-frequency current is passed through an N magnetic induction wire buried in the running floor, and the induced magnetic field generated by this is detected by a coil installed on the vehicle. Optical guidance systems are common, in which reflective tape pasted on the driving route is detected by an on-vehicle optical sensor to provide guidance. These are all methods in which an automated guided vehicle travels along a route formed by electric wires or data, but apart from this, there is also a method that uses sensors installed on the guided vehicle itself to know the location of the vehicle and follow a given travel route. Autonomous guided vehicles with autonomous navigation that perform guidance and control based on information have recently become popular. This method has the advantage that it does not require installation of electromagnetic induction wires or reflective tape, and can also be applied to relatively complicated routes.

自立航法式無人搬送車が自車の位置を知る手段としては
種々のものがあるが、たとえばレートジャイロを用いる
ものがある。レートジャイロは自身の回転角速度に対応
したアナログ値を出力するもので、この場合、無人搬送
車の走行方位角を求める為に使用される。この方式では
、ある既知の定点を基に、レートジャイロより得た走行
方位角と走行車輪の回転数から得られる走行距離によっ
て自軍の現在位置を演算し、与えられた走行ルート情報
に従って誘導制御を行う。
There are various means for a self-navigating automatic guided vehicle to know the position of its own vehicle, and for example, there is one that uses a rate gyro. The rate gyro outputs an analog value corresponding to its own rotational angular velocity, and in this case is used to determine the running azimuth of the automatic guided vehicle. In this method, based on a known fixed point, the current position of the own army is calculated based on the travel distance obtained from the travel azimuth obtained from the rate gyro and the rotation speed of the travel wheels, and guidance control is performed according to the given travel route information. conduct.

(発明が解決しようとする問題点) このように自立航法式の無人搬送車は、自車の走行方位
角を求める為にレートジャイロを用いているが、レート
ジャイロをはじめとして、レートジャイロよシ出力され
る搬送車の角速度を積分して走行方位角変化を求める積
分器が必要となシ、誘導ルlJ御装置系が複雑となる。
(Problem to be solved by the invention) In this way, self-navigating automatic guided vehicles use a rate gyro to determine the traveling azimuth of the own vehicle. An integrator is required to integrate the output angular velocity of the conveyance vehicle to determine a change in traveling azimuth, and the guidance control system becomes complicated.

また、レートジャイロの検出誤差は搬送車の誘導誤差に
大きく影響し、よシ精度の高いレートジャイロを使用す
れば誘導制御装置の価格の上昇を招く。
Furthermore, the detection error of the rate gyro greatly affects the guidance error of the guided vehicle, and if a highly accurate rate gyro is used, the price of the guidance control device will increase.

そこでこの発明の目的とするところは、搬送車の走行方
位角をレートジャイロで代表される方位角検出装置をm
−ずに精度良く検出できるようにして誘導制御装置のコ
ストダウンを図ることができるようにした自立航法式の
無人搬送車を提供することばある。
Therefore, it is an object of this invention to detect the traveling azimuth of a guided vehicle by using an azimuth angle detection device represented by a rate gyro.
An object of the present invention is to provide a self-contained navigation type automatic guided vehicle that can perform detection with high accuracy without any noise and can reduce the cost of a guidance control device.

〔発明の構成] (問題点を解決するための手段) 上記目的を達成するため、本発明は次のように構成する
。すなわち、車体中央部にそれぞれ左右独立に駆動され
る一対の駆動車輪を有し、これら左右駆動車輪の回転数
に対応したパルスをそれぞれ左車輪用の回転数検出器に
より発生させてこれよシ距離情報を得、左右駆動車輪の
回転数差制御を行って方向制御するようにした無人搬送
車において、所定アップリング期間毎に求めた両回転数
検出器出力の和及び差の情報を得る計算手段と、走行ル
ートの路面所定位置に配されるマーカと、少なくとも無
人搬送車の走行方向が走行ルー)1c一致するとき上記
マーカを同時に検出するよう無人搬送車に設けられた左
右一対のセンサと、上記計算手段の両出力情報をもとく
現在の座標位置と姿勢角を演算し、且つ、上記一対のセ
ンサの出力をもとにこれらの演算値の修正を行う現在位
置演算手段と、予め設定された走行ルートのデータを基
準に上記現在位置演算手段の求めた座標位置と姿勢角情
報を比較し、位置偏差情報を得る位置偏差演算手段と、
この位置偏差情報に対応して該偏差を抑制する方向に上
記左右の駆動車輪駆動用電動機の回転数を制御する電動
機制御手段とを具備して構成する。
[Configuration of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. In other words, there is a pair of drive wheels in the center of the vehicle body that are driven independently on the left and right sides, and a rotation speed detector for the left wheel generates pulses corresponding to the rotation speeds of these left and right drive wheels, respectively. Calculation means for obtaining information on the sum and difference of the outputs of both rotation speed detectors obtained every predetermined uplink period in an automated guided vehicle that controls the rotation speed difference between left and right drive wheels to perform direction control based on the information obtained. and a pair of left and right sensors provided on the automatic guided vehicle to simultaneously detect the markers when at least the traveling direction of the automatic guided vehicle coincides with a marker placed at a predetermined position on the road surface of the traveling route; a current position calculation means that calculates the current coordinate position and attitude angle based on both output information of the calculation means, and corrects these calculated values based on the outputs of the pair of sensors; positional deviation calculating means for obtaining positional deviation information by comparing the coordinate position and attitude angle information obtained by the current position calculating means based on data of the travel route determined by the current position calculating means;
A motor control means for controlling the rotational speed of the left and right drive wheel drive motors in a direction to suppress the deviation in accordance with the positional deviation information.

〔作用〕[Effect]

このような構成において、あるマーカ位置に車体を移動
し、ここを基準点として走行を開始させる。走行を開始
すると左右車輪用の回転数検出器より回転数対応の・ぐ
ルスが発生する。この・qルスは計算手段に与えられて
ここで所定チンプリング期間を周期に両パルスの和と差
の値を得る。そして、この和と差の値をもとに現在位置
演算手段は車体の現在位置の座標と姿勢角を演算する。
In such a configuration, the vehicle body is moved to a certain marker position and traveling is started using this as a reference point. When you start driving, the rotation speed detectors for the left and right wheels generate a signal corresponding to the rotation speed. This q pulse is given to calculation means, where the sum and difference values of both pulses are obtained at intervals of a predetermined chimpling period. Then, based on the sum and difference values, the current position calculation means calculates the coordinates and attitude angle of the current position of the vehicle body.

この座標と姿勢角の演算値は位置偏差演算手段に与えら
れ、この演算手段は予め設定されている上記走行ルート
に関するデータを基準に上記現在位置演算手段の求めた
座標と姿勢角情報を比較して位置偏差情報を得る。この
位置偏差情報は電動機制砲手段に与えられ、該電動機制
御手段は位置偏差情報に対応して該偏差を抑制する方向
く上記左右の駆動車輪駆動用の電動機の回転数を制御す
る。
The calculated values of the coordinates and attitude angle are given to the position deviation calculation means, and this calculation means compares the coordinates and attitude angle information obtained by the current position calculation means with reference to data regarding the travel route set in advance. to obtain position deviation information. This positional deviation information is given to the electric motor control means, and the electric motor control means controls the rotational speed of the electric motors for driving the left and right drive wheels in accordance with the positional deviation information so as to suppress the deviation.

また、マーカ位置を走行した時点で、左右一対のセンサ
がこれを検出する。これら一対のセンサは向に対して姿
勢が傾いているときは検出時点に差が生じる。そのため
、このマーカ検出出力のタイミングにより実際の姿勢角
がわかシ、ま九マーカは定位置にあるので、絶対位置座
標も知ることができる。従って、マーカ検出出力を利用
して現在位置の座標、姿勢角の修正を行い、誤差修正を
する。
Furthermore, when the vehicle passes a marker position, a pair of left and right sensors detect this. When the posture of these pair of sensors is tilted with respect to the direction, a difference occurs in the detection time. Therefore, the actual attitude angle is determined by the timing of this marker detection output, and since the marker is at a fixed position, the absolute position coordinates can also be known. Therefore, the coordinates of the current position and the attitude angle are corrected using the marker detection output to correct the error.

このよう釦姿勢角が変わるとき左右車輪の回転数差が生
じることを利用して車体の姿勢角を求めるようKしたの
で、ジャイロ等の方位角検出器を使用せずに自立航法に
よる無人走行を行うことができ、しかも、定位置に布設
されたマーカを利用して絶対的な座標位置と姿勢角の情
報を確認するようKしたので、システムが安価で高精度
の誘導が行−得る自立航法式の無人搬送車を提供するこ
とができる。
Since the attitude angle of the vehicle body is determined by utilizing the difference in rotation speed between the left and right wheels when the button attitude angle changes, unmanned driving using autonomous navigation is possible without using an azimuth angle detector such as a gyro. Moreover, since the absolute coordinate position and attitude angle information can be confirmed using markers installed at fixed positions, the system is inexpensive and can perform independent navigation with high precision guidance. We can provide a type of automated guided vehicle.

(実施例) 以下、本発明の一実施例について、図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

一般に2軸独立瓜動力式を用いた自立航法式無人搬送車
では、レートジャイロにより搬送車の走行方位角を、ま
た左右の駆動車輪の平均回転数により走行距離を求め、
これによりロ車の位置座標を逐次演算し、与えられた走
行ルート情報に従って誘導制御を行っているが、本発明
は、左右の駆動車輪の回転数差により搬送車の走行方位
角を、左右の駆動車輪の平均回転数により走行距離を求
めて誘導制御を行う。
In general, in self-navigating automatic guided vehicles using a two-axis independent power system, the traveling azimuth of the guided vehicle is determined by a rate gyro, and the traveling distance is determined by the average rotation speed of the left and right drive wheels.
As a result, the position coordinates of the transport vehicle are calculated sequentially and guidance control is performed according to the given travel route information. However, the present invention allows the traveling azimuth of the transport vehicle to be adjusted based on the rotational speed difference between the left and right drive wheels. Guidance control is performed by determining the travel distance based on the average rotation speed of the drive wheels.

すなわち、2軸独立駆動の無人搬送車では、左右の駆動
輪の回転数を検出するために、一般に走行駆動ユニット
部に駆動車輪それぞれの回転数に比例した距離ノ4ルス
を発生するエンコーダを備えている。そして、無人搬送
車の走行方位が変化すれば、左右駆動車輪の回転数に反
映されるので、エンコーダの出力する左右駆動車輪の距
離/臂ルスよシ走行方位角の情報を得て誘導制御に利用
する。
That is, in an automatic guided vehicle with two-axle independent drive, in order to detect the rotation speed of the left and right drive wheels, the travel drive unit is generally equipped with an encoder that generates a distance pulse proportional to the rotation speed of each drive wheel. ing. If the running direction of the automated guided vehicle changes, it will be reflected in the rotation speed of the left and right drive wheels, so information on the distance/arm length and running azimuth of the left and right drive wheels output by the encoder is obtained and used for guidance control. Make use of it.

本発明の実施例を詳しく説明する。Examples of the present invention will be described in detail.

第2図は2軸独立駆動方式の無人搬送車の構成を示す下
部平面図でアシ、図中1は車体を示す。
FIG. 2 is a bottom plan view showing the configuration of a two-axis independent drive automatic guided vehicle. In the figure, 1 indicates the vehicle body.

また、1m、Ibは走行駆動車輪であ〕、車体1の下部
中央左右にそれぞれ配しである。31゜3bはそれぞれ
走行駆動車輪1m、2b毎に独立して設けられた車輪走
行制動制御のための走行駆動ユニットであり、それぞれ
電動機、減速機、ブレーキを有している。4m、4bは
それぞれ走行駆動車輪1m、2bに設けてあって、走行
駆動車輪2m、:Ibの回転数に比例した距離パルスを
出力するエンコーダ、5a、〜5dは自在式従動車輪(
キャスタ)である、この自在式従動車輪5a、〜5cは
車体1の前後部左右に設けである。
Further, 1 m and Ib are driving wheels], which are arranged on the left and right sides of the lower center of the vehicle body 1, respectively. 31.degree. 3b is a travel drive unit for wheel travel braking control that is provided independently for each travel drive wheel 1m and 2b, and each has an electric motor, a speed reducer, and a brake. 4m and 4b are provided on the running drive wheels 1m and 2b, respectively, and are encoders that output distance pulses proportional to the rotational speed of the running drive wheels 2m and 2m; 5a and 5d are adjustable driven wheels (
These flexible driven wheels 5a, 5c, which are casters), are provided on the front, rear, left and right sides of the vehicle body 1.

この無人搬送車は図示しない誘導制御装置の制御のもと
く左右の走行駆動ユニツ) J m e j bが動作
し、操舵は左右の走行駆動車輪j!a、2bの回転数差
制御によつて行うものである。
This automatic guided vehicle operates under the control of a guidance control device (not shown), and the left and right travel drive units (J m e j b) operate, and the left and right travel drive wheels j! This is done by controlling the rotational speed difference between a and 2b.

第1図は本発明による自立航法式無人搬送車の誘導制御
装置の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a guidance control device for a self-navigating automatic guided vehicle according to the present invention.

図において、4m、4bは上述のエンコーダ。In the figure, 4m and 4b are the above-mentioned encoders.

1m、6bはそれぞれ対応するエンコーダ4a。1m and 6b are respectively corresponding encoders 4a.

4bの出カッ譬ルスをある一定時間内でカウントし、こ
の時間内に走行駆動車輪1m、2bが走行した距離デー
タとして出力するカウンタ回路、1はこれら両カウンタ
回路6m、6bの出力するカウント値を加算して出力す
る加算回路、8は両カウンタ回路6a、fibのカウン
ト値の差を求める減算回路、#はこれら加算回路2と減
算回路8の出力値と絶対位置検知装置11の出力とをも
とに現在位置を求める現在位置演算装置、1zは搬送車
の走行ルート上に布設された絶対位置検知目標となる被
検知マーカs 13a、Isbはこの被検知マーカ12
を検出する車上側のセンサであ)、前述の絶対位置検知
装置11はセン+13m、13bの被検知マーカ12検
知出力により搬送車の姿勢角と走行ルート上の絶対位置
を求めるため検知出力を出力するものである。
A counter circuit that counts the output pulses of 4b within a certain period of time and outputs it as distance data traveled by the driving wheels 1m and 2b within this time, 1 is a count value output by both counter circuits 6m and 6b. 8 is a subtraction circuit that calculates the difference between the count values of both counter circuits 6a and fib, and # is a subtraction circuit that calculates the difference between the count values of both the counter circuits 6a and fib. 1z is a detected marker s installed on the travel route of the transport vehicle and serves as an absolute position detection target; 13a and Isb are the detected markers 12;
The above-mentioned absolute position detection device 11 outputs a detection output in order to determine the attitude angle of the transport vehicle and the absolute position on the traveling route based on the detection output of the detected marker 12 of sensor+13m and 13b. It is something to do.

14は位置偏差演算装置で、現在位置演算装置9Vcよ
って求められた搬送車の現在位置と予め設定された走行
ルートデータ15とにより、定められた走行ルートから
の偏差−を求めるものである。
Reference numeral 14 denotes a position deviation calculating device which calculates a deviation from a predetermined traveling route based on the current position of the guided vehicle determined by the current position calculating device 9Vc and preset traveling route data 15.

また、16は走行用IItMJ機制御装置であり、上記
偏差ξをもとく搬送車の走行方向を修正し、搬送車の位
置座標を定められた走行ルート上の座標九一致させるべ
く、上記走行駆動ユニツ)Ja。
Further, 16 is a traveling IItMJ machine control device, which corrects the traveling direction of the guided vehicle based on the deviation ξ, and adjusts the traveling direction of the guided vehicle so that the position coordinates of the guided vehicle coincide with the coordinates on the determined traveling route. Drive unit) Ja.

3bt−構成している走行用電動pi9.17 m 、
 17 bを回転数差制御するものである。
3bt-Electric driving pi9.17 m,
17b is controlled by the rotational speed difference.

次に上記構成の本装置の作用を説明する。Next, the operation of this device having the above configuration will be explained.

はじめに走行ルート上の予め定めた複数地点に、それぞ
れ位置検知マーカ12を設置し、車上にはこれらのマー
カ設置情報も含めて走行ルートデータ15を予めセット
しておく。位置検知マーカI2は車体1の姿勢角情報も
検知できるようにするために、三角形としてあり、車上
のセンサ13m、13bはζこの三角形の位置検知マー
カ12の中心線を車体1の中心が通過した場合に三角形
の左右対称位置をそれぞれ検知できるように車体1に設
けてあシ、車体1が位置検知マーカ12に対し、偏位し
ていない限り、センチ13a、13bは同時に検出出力
を発生できる。
First, position detection markers 12 are installed at a plurality of predetermined points on the driving route, and driving route data 15 including information on the installation of these markers is set in advance on the vehicle. The position detection marker I2 has a triangular shape in order to also detect attitude angle information of the vehicle body 1, and the on-vehicle sensors 13m and 13b are arranged so that the center of the vehicle body 1 passes through the center line of this triangular position detection marker 12. The centimeters 13a and 13b can generate detection outputs at the same time unless the vehicle body 1 is deviated from the position detection marker 12. .

電動機制御装置16を起動させ、走行用電動機17m、
17bを回転駆動させると走行駆動輪2a 、Jbが回
転し、搬送車は走行を開始する。
The electric motor control device 16 is activated, and the driving electric motor 17m is activated.
When the wheel 17b is rotated, the travel drive wheels 2a and Jb rotate, and the transport vehicle starts traveling.

このとき、左右の走行駆動輪2a、2bの回転は二ンコ
“748口 4bKより検出され、エンコーダ4m、4bは走行駆動
輪1m、2bの回転数に比例した距離パルスを発生する
。この距離ノタルスはそれぞれ対応のカウンタ回路6a
、6bに入力され、所定時間を計数期間として各々のカ
ウンタ回路6m、6bは距離ノ臂ルスのカウントを行う
、そして、上記所定時間経過毎にカウント値を出力し、
クリアしてから、再びカウントを実行する。これらのカ
ウント値は加算回路r、減算回路8に与えられ、それぞ
れの回路7.1は加算、減算を行つて現在位置演算装置
9Vc与える。
At this time, the rotation of the left and right running drive wheels 2a, 2b is detected by the two encoders 4bK, and the encoders 4m, 4b generate distance pulses proportional to the rotational speed of the running drive wheels 1m, 2b. are the corresponding counter circuits 6a, respectively.
, 6b, each of the counter circuits 6m, 6b counts the distance to the elbow with a predetermined time as a counting period, and outputs the count value every time the predetermined time elapses;
Clear it and then run the count again. These count values are given to an adder circuit r and a subtracter circuit 8, and each circuit 7.1 performs addition and subtraction and provides the result to a current position arithmetic unit 9Vc.

現在位置演算装置9はこれらの計算値をもとに姿勢角と
移動距離を計算し、現在位置を求める。
The current position calculation device 9 calculates the attitude angle and the movement distance based on these calculated values, and determines the current position.

廿た、位置検知マーカ12位置を通過したときは、絶対
位置検知装置11の出力によυ現在位置演算装置9は姿
勢角と位置の修正を行う。
Furthermore, when the vehicle passes through the position of the position detection marker 12, the current position calculation device 9 corrects the attitude angle and position based on the output of the absolute position detection device 11.

ここで、現在位置は次のようにして求めることができる
Here, the current position can be determined as follows.

走行ルート上のある定点を原点とし、該ルート平面上に
xy直交座標系をとる。また、搬送車10の進行方向と
X軸とのなす角である走行方位角(姿勢角)は、X軸を
始角とし、反時計方向を正とする。第3図において今、
時刻t における走行中O搬送車10が座標(”n*3
’n)K位置し、また走行方位角(姿勢角)がθ。であ
るとする。
A certain fixed point on the travel route is set as the origin, and an xy orthogonal coordinate system is established on the route plane. Further, the running azimuth angle (attitude angle), which is the angle between the traveling direction of the transport vehicle 10 and the X-axis, has the X-axis as the starting angle and the counterclockwise direction as positive. In Figure 3, now,
The traveling O-transported vehicle 10 at time t has the coordinates (”n*3
'n) K position, and the running azimuth (attitude angle) is θ. Suppose that

さて、△を時間後の時刻tn+tにおける搬送車の座標
(Xn+r * Yn+ r )及び姿勢角θ。+、は
、このΔを時間内に走行した左右の走行駆動車輪2m。
Now, the coordinates (Xn+r*Yn+r) and attitude angle θ of the transport vehicle at time tn+t after a time of Δ. + means 2 m of the left and right running drive wheels that traveled this Δ within the time.

2I)の距離データ1.、lbにより求めることができ
る。すなわち、Δを時間内に搬送車10が半径Rで旋回
走行をして、この間の姿勢角変化を△θと仮定すれば、 (R−T)・Δθ=l、     ・・・・・・・・・
・・・・・・(1)(R+ T)  ・ Δθ=lb 
      ・・川・・・曲・・・(2)(ただし W
:駆動車輪のトレッドで既知)より が得られる。よって時刻in+1における座標CXfl
+Is )’n+* 、姿勢角θ。+、は、θn+ t
 =θ。+Δθ          ・・・曲・・(7
)となり、第1図に示すカウンタ回路6m、6bの出力
データ1m−6b により求めることができる。
2I) Distance data 1. , lb. That is, if we assume that the guided vehicle 10 makes a turn with radius R within the time Δ and the attitude angle change during this time is Δθ, then (R-T)・Δθ=l, . . .・・・
・・・・・・(1)(R+T)・Δθ=lb
・・River・Song・(2) (However, W
: known for the tread of the drive wheel). Therefore, the coordinate CXfl at time in+1
+Is)'n+*, attitude angle θ. +, is θn+t
=θ. +Δθ...Song...(7
), which can be obtained from the output data 1m-6b of the counter circuits 6m and 6b shown in FIG.

加算回路7及び減算回路8はそれぞれla+lbを計算
する回路であシ、結果は現在位置演算装置9′¥C入力
される。現在位置演算装置9は与えられ九入力データC
1+1  )及びCI、−J、)a      b よシ上記(8) 、 (4) 、 (5) 、 (6)
 、 (7)式の演算を行い、求めたXrl+t  a
 1n+s s ’netを新たなXn mYn、θ。
The addition circuit 7 and the subtraction circuit 8 are circuits for calculating la+lb, and the results are inputted to the current position calculation device 9'\C. The current position calculation device 9 is given nine input data C
1+1) and CI, -J,) a b Yoshi (8), (4), (5), (6)
, Xrl+t a obtained by calculating equation (7)
1n+s s 'net to new Xn mYn, θ.

として演算を繰シ返すことにより、搬送車の走行中の現
在位置を逐次求める。現在位置演算装@9は演算開始点
からの搬送車の相対位置変化を順次加算することにより
現在位置を求めるので、無人搬送車の運転開始時におけ
る初期条件、すなわち運転開始時の搬送車の絶対位置座
標(XosFo)及び姿勢角θ。を入力しなくてはなら
ない。この入力手段が絶対位置検知装置11である。こ
の装置には種々のものがあシ、その−例が公開特許公報
昭60−175118号に示されているが、走行ルート
上に設けた被検知体を検出するセンサと、検出情報によ
り搬送車の絶対位置を求める演算回路により構成される
ものが一般的である。そこで本システムでもこの方式の
ものを採用する。
By repeating the calculation as follows, the current position of the guided vehicle while it is traveling is determined one by one. The current position calculation device @9 calculates the current position by sequentially adding the relative position changes of the guided vehicle from the calculation start point, so the initial conditions at the start of operation of the automatic guided vehicle, that is, the absolute position of the guided vehicle at the start of operation, are Position coordinates (XosFo) and attitude angle θ. must be entered. This input means is the absolute position detection device 11. There are various types of this device, an example of which is shown in Japanese Patent Publication No. 60-175118. It is generally constructed from an arithmetic circuit that calculates the absolute position of the . Therefore, this system is also adopted in this system.

この方式を更に詳しく説明する。第4図に示すようにそ
の座標位置が既知である走行ルー)RT上の定点に二等
辺三角形の被検知マーカ12を設置し、これを搬送車1
0上に設けた上記左右一対のセンサ13m、11bで検
知することにより、搬送車10の被検知マーカ12通過
時における絶対位置座標及び姿勢角を求めることができ
る。すなわち、いずれか1つのセンサ13gが被検知マ
ーカ12t−検知してから他方isbが検知するまでだ
搬送車10が走行した距離11 と、センサ間距離lf
とKよシ姿勢角を、またこれとセンサ13m。
This method will be explained in more detail. As shown in FIG. 4, an isosceles triangular detection marker 12 is installed at a fixed point on the traveling route (RT) whose coordinate position is known, and this is placed on the transport vehicle 1.
By detecting with the pair of left and right sensors 13m and 11b provided on the vehicle 10, the absolute position coordinates and attitude angle of the conveyance vehicle 10 when it passes the detected marker 12 can be determined. That is, the distance 11 traveled by the guided vehicle 10 from when one of the sensors 13g detects the detected marker 12t to when the other isb detects the marker 12t, and the inter-sensor distance lf.
And K and attitude angle, and this and sensor 13m.

13bQ:)被検知マーカ12検知距@l5−1+とに
より絶対位置座標を求めることができる。
13bQ:) The absolute position coordinates can be obtained from the detection distance of the detected marker 12 @l5-1+.

一方、絶対位置検知装置1ノは、走行中に現在位置演算
装置9によって求めた現在位置を修正する為にも使用さ
れる。現在位置演算装置9は、演算を繰り返すに従って
走行車輪のたわみや走行床面の凹凸などく起因する累積
誤差を生じ、演算で求めた搬送車の現在位置と実際の位
置とに誤差を生じてくる。このため、たとえば第5図に
示すような走行ルート18上の何点かに被検知マーカ1
2を設置し、マーカ通過時には絶対位置検知装置11に
よって演算で求めた搬送車の現在位置を修正し、誤差の
累積を防いでいる。
On the other hand, the absolute position detection device 1 is also used to correct the current position determined by the current position calculation device 9 while the vehicle is running. As the current position calculation device 9 repeats the calculation, an accumulated error occurs due to deflection of the running wheels, unevenness of the running floor, etc., and an error occurs between the current position of the guided vehicle calculated by the calculation and the actual position. . For this reason, for example, the detected marker 1 is placed at several points on the traveling route 18 as shown in FIG.
2 is installed, and when passing the marker, the absolute position detection device 11 corrects the current position of the guided vehicle calculated by calculation, thereby preventing the accumulation of errors.

このようにして現在位置を求め、この求めた現在位置の
情報は位置偏差演算装置14に与える。
In this manner, the current position is determined, and information on the determined current position is provided to the position deviation calculation device 14.

位置偏差演算装置14はこれと走行ルートデータ15と
により、定められた走行ルートからの偏差eを求める。
The position deviation calculation device 14 uses this and the travel route data 15 to determine the deviation e from the determined travel route.

そして、この偏差eを走行用電動機制御装置16に与え
る。これを受けて走行用tS機$−II御装置i!16
は偏差eVc対応する走行方向修正をするべく、2つの
走行用電動機11ts、Irbを回転数差制御する。こ
れによって搬送車の位置座標が定められた走行ルート上
に一致するように方向修正されて走行することになる。
Then, this deviation e is given to the driving electric motor control device 16. In response to this, the running tS machine $-II control device i! 16
In order to correct the running direction corresponding to the deviation eVc, the two running electric motors 11ts and Irb are controlled by the rotational speed difference. As a result, the direction of the transport vehicle is corrected so that the position coordinates of the transport vehicle match the determined travel route, and the transport vehicle travels.

以上述べた様に本発明による自立航法式無人搬送車はそ
の誘導制御装置は、レートジャイロで代表される様な搬
送車の姿勢角を検出する為の装置を必要とせず、走行駆
動ユニツ)K取シ付けられたエンコーダによって検出し
た距離パルスによ〕搬送車の現在位置を演算するもので
あシ、そのため、簡易で安価な誘導制御装置を提供でき
る。またエンコーダによる走行駆動車輪の回転数検知は
、走行用電動機の回転教訓mKも使用され、他の誘導方
式(電磁式、光学式)の無人搬送車にも装着されている
。よって本発明における誘導制御装置は、他の誘導方式
の無人搬送車に対して新たな検出装置を付加せずに併用
することも可能となる。
As described above, the self-navigating automatic guided vehicle according to the present invention does not require a device for detecting the attitude angle of the guided vehicle such as a rate gyro, and its guidance control device does not require a device for detecting the attitude angle of the guided vehicle, such as a rate gyro. The current position of the transport vehicle is calculated based on the distance pulse detected by the encoder attached to the vehicle, and therefore a simple and inexpensive guidance control device can be provided. Furthermore, the encoder is used to detect the rotational speed of the traveling drive wheels using the rotational motor mK of the traveling electric motor, and is also installed in automatic guided vehicles using other guidance methods (electromagnetic type, optical type). Therefore, the guidance control device of the present invention can be used in combination with automatic guided vehicles of other guidance methods without adding a new detection device.

尚、本発明は上記し且つ図面に示す実施例に限定するこ
となく、その要旨を変更しない範囲内で適宜変形して実
施し得るものであシ、例えば第6図に示すように走行駆
動車輪1m、2bの内方にこれらと接地点が一直線に並
ぶように回転自在な遊輪20m、20bを配した構成と
するとともにこの遊輪:lO*、JObVcそれぞれエ
ンコーダ4m、4bを設けるようKすると走行駆動車輪
2m、2bと床面22とのすべりの影響を受けずに搬送
車の走行に対応した距離パルスを得ることができ、よシ
高精度に誘導制御ができるようになる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with appropriate modifications within the scope of the gist thereof.For example, as shown in FIG. The construction is such that freely rotatable idlers 20m and 20b are arranged inside the idlers 1m and 2b so that these and the grounding points are aligned in a straight line, and encoders 4m and 4b are provided for the idlers: lO* and JObVc, respectively. It is possible to obtain a distance pulse corresponding to the traveling of the transport vehicle without being affected by the slippage between the wheels 2m, 2b and the floor surface 22, and it becomes possible to perform guidance control with high precision.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、ジャイロを用いず
に姿勢角を検知して自立航法による高精度な誘導制御を
可能にし、しかも、安価に誘導制御を実施できる無人搬
送車を提供することができる。
As detailed above, according to the present invention, it is possible to provide an automatic guided vehicle that detects the attitude angle without using a gyro, enables highly accurate guidance control by self-contained navigation, and can perform guidance control at low cost. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる誘導制御装置の構成例を示すブ
ロック図、第2図は2軸独立駆動方式の無人搬送車の下
部平面図、第3図は本発明装置に用いる現在位置演算方
法を説明するための図、第4因は被検知マーカ検出によ
る姿勢角検出の一例を示す図、第5図は走行ルートの一
例を示す図、第6図は無人搬送車の車輪構成の他の例を
示す正面図である。 1・・・車体、1m、2b・・・走行駆動車輪、JJI
。 3b・・・走行風mユニット、4a、4b・・・エンコ
ーダ、5!1.〜5d・・・自在式従動車輪、6m、σ
b・・・カウンタ回路、1・・・加算回路、8・・・減
算回路、9・・・現在位置演算装置、10・・・搬送車
、1ノ・・・絶対位置検知装置、12・・・被検知マー
カ、IJIm。 13b・・・センサ、14・・・位置偏差演算装置、1
5・・・走行ルートデータ、16・・・電動機制御装置
、17m、17b・・・走行用電動機、18.RT・・
・走行ルート。 出歇人代理人弁理士 鈴 圧式 彦 第10 12 第20
Fig. 1 is a block diagram showing a configuration example of the guidance control device used in the present invention, Fig. 2 is a bottom plan view of an automatic guided vehicle with two-axis independent drive system, and Fig. 3 is a current position calculation method used in the device of the present invention. The fourth factor is a diagram showing an example of attitude angle detection by detecting a detected marker, FIG. 5 is a diagram showing an example of a travel route, and FIG. It is a front view showing an example. 1...Vehicle body, 1m, 2b...Traveling drive wheel, JJI
. 3b... Traveling wind m unit, 4a, 4b... Encoder, 5!1. ~5d...Swivel driven wheel, 6m, σ
b...Counter circuit, 1...Addition circuit, 8...Subtraction circuit, 9...Current position calculation device, 10...Transportation vehicle, 1...Absolute position detection device, 12...・Detected marker, IJIm. 13b...Sensor, 14...Position deviation calculation device, 1
5... Traveling route data, 16... Electric motor control device, 17m, 17b... Traveling electric motor, 18. RT...
・Driving route. Rented Patent Attorney Rin Ushiki Hiko 10th 12th 20th

Claims (2)

【特許請求の範囲】[Claims] (1)車体中央部にそれぞれ左右独立に駆動される一対
の駆動車輪を有し、これら左右駆動車輪の回転数に対応
したパルスをそれぞれ左車輪用、右車輪用の回転数検出
器により発生させてこれより距離情報を得、左右駆動車
輪の回転数差制御を行って方向制御するようにした無人
搬送車において、所定アップリング期間毎に求めた両回
転数検出器出力の和及び差の情報を得る計算手段と、走
行ルートの路面所定位置に配されるマーカと、少なくと
も無人搬送車の走行方向が走行ルートに一致するとき上
記マーカを同時に検出するよう無人搬送車に設けられた
右一対のセンサと、上記計算手段の両出力情報をもとに
現在の座標位置と姿勢角を演算し、且つ、上記一対のセ
ンサの出力をもとにこれらの演算値の修正を行う現在位
置演算手段と、予め設定された走行ルートのデータを基
準に上記現在位置演算手段の求めた座標位置と姿勢角情
報を比較し、位置偏差情報を得る位置偏差演算手段と、
この位置偏差情報に対応して該偏差を抑制する方向に上
記左右の駆動車輪駆動用電動機の回転数を制御する電動
機制御手段とを具備したことを特徴とする無人搬送車。
(1) There is a pair of drive wheels in the center of the vehicle body that are driven independently on the left and right, and pulses corresponding to the rotation speed of these left and right drive wheels are generated by rotation speed detectors for the left wheel and right wheel, respectively. In an automatic guided vehicle that obtains distance information from this and performs direction control by controlling the rotation speed difference between left and right drive wheels, information on the sum and difference of the outputs of both rotation speed detectors obtained every predetermined uplink period. a marker placed at a predetermined position on the road surface of the travel route; and a right pair of markers provided on the automatic guided vehicle so as to simultaneously detect the markers at least when the traveling direction of the automatic guided vehicle coincides with the travel route. Current position calculation means that calculates the current coordinate position and attitude angle based on the output information of both the sensor and the calculation means, and corrects these calculated values based on the outputs of the pair of sensors. , positional deviation calculating means for obtaining positional deviation information by comparing the coordinate position and attitude angle information determined by the current position calculating means based on preset travel route data;
An automatic guided vehicle characterized by comprising: electric motor control means for controlling the rotational speed of the left and right drive wheel driving electric motors in a direction to suppress the deviation in accordance with the positional deviation information.
(2)左右の駆動車輪の接地点を結ぶ線上に左右一対の
遊輪を設け、この遊輪軸に回転数検出器をそれぞれ設け
ることを特徴とする特許請求の範囲第1項記載の無人搬
送車。
(2) The automatic guided vehicle according to claim 1, characterized in that a pair of left and right idlers is provided on a line connecting the grounding points of the left and right drive wheels, and a rotation speed detector is provided on each of the idler wheel shafts.
JP62154530A 1987-06-23 1987-06-23 Unmanned carrying vehicle Pending JPS63318608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154530A JPS63318608A (en) 1987-06-23 1987-06-23 Unmanned carrying vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154530A JPS63318608A (en) 1987-06-23 1987-06-23 Unmanned carrying vehicle

Publications (1)

Publication Number Publication Date
JPS63318608A true JPS63318608A (en) 1988-12-27

Family

ID=15586271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154530A Pending JPS63318608A (en) 1987-06-23 1987-06-23 Unmanned carrying vehicle

Country Status (1)

Country Link
JP (1) JPS63318608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175506A (en) * 1989-12-04 1991-07-30 Nippon Yusoki Co Ltd Running control method for unattended carriage
JP2002341939A (en) * 2001-05-17 2002-11-29 Tohoku Electric Power Co Inc Automatic travel system for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175506A (en) * 1989-12-04 1991-07-30 Nippon Yusoki Co Ltd Running control method for unattended carriage
JP2002341939A (en) * 2001-05-17 2002-11-29 Tohoku Electric Power Co Inc Automatic travel system for vehicle
JP4575620B2 (en) * 2001-05-17 2010-11-04 東北電力株式会社 Automatic vehicle transfer system

Similar Documents

Publication Publication Date Title
JP2572968B2 (en) How to guide autonomous vehicles
JPH09319430A (en) Navigation steering control system for automatic guided vehicle
JPH0646364B2 (en) How to guide an autonomous vehicle
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JP2007219960A (en) Position deviation detection device
JPH075922A (en) Steering control method for unmanned work vehicle
JP2000172337A (en) Autonomous mobile robot
JPH04113218A (en) Relative bearing detection system
JPH0827652B2 (en) Guidance method for unmanned mobile machines by point tracking method
JPS63318608A (en) Unmanned carrying vehicle
JP2001209429A (en) Device for correcting position and direction of unmanned conveying vehicle
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2000132229A (en) Travel controlling method for movable body
JP2934770B2 (en) Method and apparatus for measuring wheel diameter of mobile robot
JPH10222225A (en) Unmanned travel body and its travel method
JPH08202449A (en) Automatic operation controller for carring truck
JPS59119417A (en) Self-running truck control device
JP2983527B1 (en) Vehicle measuring device
TWI708129B (en) Cooperative system and controlling method for autonomous guided vehicle
JP3447480B2 (en) Position measurement method and device
JPS62221707A (en) Gyro-guide type unmanned carrier
JP3846828B2 (en) Steering angle control device for moving body
JPS63245508A (en) Guide controller for unattended carriage
JP2000112524A (en) Method and device for controlling traveling of gantry crane
JPS60175118A (en) Device for correcting posture of unmanned carrying car