JPS62221707A - Gyro-guide type unmanned carrier - Google Patents

Gyro-guide type unmanned carrier

Info

Publication number
JPS62221707A
JPS62221707A JP61065140A JP6514086A JPS62221707A JP S62221707 A JPS62221707 A JP S62221707A JP 61065140 A JP61065140 A JP 61065140A JP 6514086 A JP6514086 A JP 6514086A JP S62221707 A JPS62221707 A JP S62221707A
Authority
JP
Japan
Prior art keywords
vehicle
distance
carrier
wheel
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065140A
Other languages
Japanese (ja)
Inventor
Yuichi Sugimoto
祐一 杉本
Yoshifumi Anai
穴井 喜文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61065140A priority Critical patent/JPS62221707A/en
Publication of JPS62221707A publication Critical patent/JPS62221707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To minimize the arithmetic error for the position of an unmanned carrier despite a large steering angle and to improve the stopping accuracy, by calculating the real shift amount between the center position of the carrier and the rotational center of a wheel of the carrier based on the information on the rotational frequency of an optional one or plural ones of wheels of the carrier as well as the wheel steering angles. CONSTITUTION:A rotary sensor 3 counts the distance pulses of the wheels diagonal with each other to obtain a distance traveled for a unit time. Then a steering angle rotary sensor 41 obtains an angle between a wheel and the carrier body. A traveled distance correcting part 42 calculates the average traveled distance per unit time of each of both sensors 3 and 41 to define a distance traveled per unit time. This obtained distance is set at DELTAl approximately equal to the shifted distance at the center part of the carrier. As a result, no error is produced with calculation of the carrier position despite a large steering angle and therefore the stopping accuracy is improved for the carrier.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ジャイロを用いて車両の方位角を検知しつつ
これと車輪の回転数とから車の位置を算出し、定められ
たルー1−を自動走行するジャイロ誘導式無人搬送車に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention uses a gyro to detect the azimuth of the vehicle and calculates the position of the vehicle from this and the rotation speed of the wheels. The present invention relates to a gyro-guided automatic guided vehicle that automatically travels along a predetermined route.

(従来の技術) 工場内の荷物搬送に使用される無軌道車としては走行ル
ートに沿って路面に誘導線を布設し、この誘導線に通電
されている交番電流により車上側のコイルに電11誘導
出力を発生させて誘導する電磁誘導方式や、路面に光学
反射テープを貼って、車上よりこれを検知しつつ走行さ
せる光学反射テープ誘導式のものがあるが、これらは工
場内のレイアウト変更や工程順路の変更に伴って走行路
を変更する場合に上述のような誘導線や光学反射テープ
等の地上側誘導ラインの再配置が必要であると云う欠点
がある。そこで、上記変更の際にも対応を容易とすべく
、近年においては走行路変更の簡単なジャイロ誘導式搬
送車が広く利用されるようになって来た。
(Prior technology) Trackless vehicles used for transporting goods within factories have a guide wire laid on the road surface along the travel route, and an alternating current applied to the guide wire causes a coil on the top of the vehicle to receive an electric current of 11 induction wires. There is an electromagnetic induction method that generates an output and guides the vehicle, and an optical reflective tape guidance method that uses optical reflective tape on the road surface and detects this from the vehicle while driving. There is a drawback in that when changing the running route due to a change in the process route, it is necessary to rearrange the above-mentioned guide lines and ground-side guide lines such as optical reflective tape. Therefore, in order to easily cope with the above-mentioned changes, in recent years, gyro-guided guided vehicles that can easily change travel routes have come into wide use.

第4図にこのジャイロ誘導式搬送車の構成を示す。第4
図において、1はジャイロ部であり、これは機械式ジャ
イロ又はガスレートジャイロなどで知られるものを使用
して、無軌道車の水平方向の回転を検出して、車の偏位
角(姿勢角)θを検出し出力するものである。2は無軌
道車の車輪であり、3はこの車輪2に連動して所定回転
角毎に距離パルスを出力する回転センサである。4は無
軌道車存在位置演算回路(以下、単に演算回路と称する
)であり、前記ジ11イロ部1からの偏位角(姿勢角)
θと、前記回転センサ3からの距離パルスにより求める
単位時間走行した距離Δ1とから、単位時間内のX軸移
動距離ΔX−△J!、CO3θ。
FIG. 4 shows the configuration of this gyro-guided transport vehicle. Fourth
In the figure, 1 is a gyro unit, which uses a mechanical gyro or a gas rate gyro to detect the horizontal rotation of the trackless vehicle and determine the vehicle's deflection angle (attitude angle). It detects and outputs θ. Reference numeral 2 is a wheel of the trackless vehicle, and reference numeral 3 is a rotation sensor that outputs a distance pulse at every predetermined rotation angle in conjunction with the wheel 2. Reference numeral 4 denotes a trackless vehicle existence position calculation circuit (hereinafter simply referred to as calculation circuit), which calculates the deviation angle (attitude angle) from the above-mentioned position 11.
From θ and the distance Δ1 traveled per unit time determined by the distance pulse from the rotation sensor 3, the X-axis movement distance within the unit time ΔX−ΔJ! , CO3θ.

Y軸移動距離ΔY=Δ、1.sinθとを演算して、ス
タート点からこれらΔX、ΔYを加算、減算することで
無軌道車の現在位置X、Yおよび変位角θを求めること
ができるようになっている。
Y-axis movement distance ΔY=Δ, 1. By calculating sin θ and adding and subtracting these ΔX and ΔY from the starting point, the current position X, Y and displacement angle θ of the trackless vehicle can be determined.

5は走行制御回路であり、前記演算回路4で求めた現在
位置X、Yおよび偏位角θをもとにして、予め定められ
たルーhにのるように、単位時間ごとに無軌道車の走行
用上−夕に速度指令、操舵指令を与えるものである。
Reference numeral 5 denotes a running control circuit, which controls the trackless vehicle every unit time based on the current position It gives speed commands and steering commands to both the upper and lower sides of the vehicle.

この様な構成のものにij3いて、無軌道車が直進して
いる状態では、ジャイロ部1の出力すなわち角度は変化
しないが、僅かでも左右に振れると、角速度が生じ角度
は変化づる。このジャイロ部1からの角度信号は偏位角
として演算回路4に入力される。そして演算回路4にお
いて、単位時間内のX軸移動距離△X、単位時間内のY
軸移動距離△Yを演算し、この距離ΔX、ΔYを加算、
減算して無軌道車の現在位置X、Yおよび偏位角θを演
算し、これらは中位時間ごとに走行制御回路5に出力さ
れ、走行制御回路5の中に持っている走行マツプ上の位
置と比較し、走行路にのるように走行用モータが操舵制
御、速度制御され無軌道車は走行する。
With such a structure ij3, when the trackless vehicle is traveling straight, the output of the gyro unit 1, that is, the angle, does not change, but if it swings even slightly to the left or right, an angular velocity is generated and the angle changes. This angle signal from the gyro unit 1 is input to the calculation circuit 4 as a deviation angle. Then, in the arithmetic circuit 4, the X-axis movement distance △X within unit time, Y within unit time
Calculate the axis movement distance △Y, add this distance ΔX and ΔY,
The trackless vehicle's current position In comparison, the trackless vehicle travels by controlling the steering and speed of the travel motor so that it stays on the road.

この様にして、通常はジャイロ部1でのデータにより制
御されるので、誘導用の連続した電磁誘導電線又は光学
反射テープなどの被検知体を何等布設する必要がなく、
複雑な走行路にも対応可能な無人搬送車となる。
In this way, it is normally controlled by data from the gyro unit 1, so there is no need to install any sensing object such as a continuous electromagnetic induction wire or optical reflective tape for guidance.
The vehicle will be an automated guided vehicle that can handle even complex routes.

(発明が解決しようとする問題点) ところでこの無人搬送車が第5図の様な曲線部を走行す
る場合、その各車輪31.32,33゜34の操舵角は
図の様に、直行方向から大きな角度を持つ。この時、車
輪31の回転に応じて回転センサーから入力するパルス
は、矢印方向36へ動いた距離分のパルスである。この
値を、前述の式ΔX−Δjjcosθ、ΔY−△/si
nθで演算すると、車体の旋回の為の走行弁(図の矢印
37に対応する)分までが、車体の向いている方向へ進
んだ分のパルス(図の矢印38に対応する)に含まれて
しまう。また、別の点から見ると、車輪310回転パル
スは、車輪31の車体の部分が動いた量となり、この距
離は走行制御に使用する車体中心位置の移動量より大き
くなる。この結果、大きなカーブ等で車輪の操舵角が小
さい時にはよいが、車輪の操舵角が大きくなったとき上
記の誤差が大きくなり、停止精度に影響するという問題
点があった。
(Problem to be solved by the invention) By the way, when this automatic guided vehicle travels on a curved section as shown in Fig. 5, the steering angle of each wheel 31, 32, 33° 34 is in the perpendicular direction as shown in the figure. with a large angle from At this time, the pulses input from the rotation sensor in response to the rotation of the wheel 31 are pulses corresponding to the distance traveled in the direction of the arrow 36. This value is calculated using the above formula ΔX−Δjjcosθ, ΔY−Δ/si
When calculated using nθ, the pulse for the travel valve (corresponding to arrow 37 in the diagram) for turning the vehicle body is included in the pulse for traveling in the direction the vehicle body is facing (corresponding to arrow 38 in the diagram). I end up. From another point of view, the wheel 310 rotation pulse is the amount by which the vehicle body portion of the wheel 31 moves, and this distance is greater than the amount of movement of the vehicle body center position used for travel control. As a result, this is good when the steering angle of the wheels is small, such as when making a large curve, but when the steering angle of the wheels becomes large, the above-mentioned error becomes large, and there is a problem in that it affects stopping accuracy.

そこでこの発明は半径の小さい曲線部等の走行で操舵角
が大きくなった時にも車両存在位置の演算誤差を小さく
し、停止精唯の向上を図ることのできるようにしたジャ
イロ誘導式無軌道搬送車を提供するとを目的とする。
Therefore, this invention is a gyro-guided trackless guided vehicle that can reduce the calculation error of the vehicle position even when the steering angle becomes large when traveling on a curved section with a small radius, and can improve stopping accuracy. The purpose is to provide.

[発明の構成] (問題点を解決するための手段〉 上記目的を達成するために本発明は、車両の走行方位角
を検出するために車体にジャイロを取付け、また、車輪
の回転数を計数する回転センサを設けてこの回転センサ
の計測値より車両の移動量情報を得、この移動量情報と
上記走行方位角情報とにより現在の車両位置を存在位置
演算回路にて求めるとともに、予め設定されたコースに
従って車両を走行させるべく、求めた現在の車両位置情
報をもとに走行用と車輪の操舵角制御を行う操舶用の各
モータを制御する走行制御装置とにより構成されたジャ
イロ誘導式の無人搬送車において、曲線路走行時に各車
輪の操舵角と実回転中心からの車体移動量を求めるべく
、任意の1つまたは複数の車輪の回転数とその車輪の操
舵角の情報を得、これら情報から車両の回転中心と車輪
までの回転走行半径を求め、車両中心位置の回転中心に
対する実移動量を算出して前記車両の移動量情報とする
補正手段を設けて構成する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a gyro attached to the vehicle body to detect the running azimuth of the vehicle, and a gyro for counting the number of rotations of the wheels. A rotation sensor is provided to obtain the movement amount information of the vehicle from the measured value of this rotation sensor, and the current vehicle position is determined by the existing position calculation circuit based on this movement amount information and the above-mentioned traveling azimuth information. In order to make the vehicle travel along the determined course, a gyro-guided travel control device that controls each motor for travel and steering, which controls the steering angle of the wheels, based on the current vehicle position information obtained. In an automated guided vehicle, in order to determine the steering angle of each wheel and the amount of vehicle body movement from the actual rotation center when traveling on a curved road, information on the rotation speed of one or more arbitrary wheels and the steering angle of that wheel is obtained, and these The present invention is constructed by providing a correction means for obtaining the rotation radius from the rotation center of the vehicle to the wheels from the information, calculating the actual movement amount of the vehicle center position with respect to the rotation center, and using it as the movement amount information of the vehicle.

(作 用) このような構成において、任意の1つまたは複数の車輪
の回転数とその車輪の操舵角を検出し、これらをもとに
補正手段にて車両の回転中心と車輪までの回転走行半径
を求め、車両中心位置の回転中心に対する実移動量を算
出して前記車両の移動量情報を得る。そして、この得た
移動量情報を存在位置演算回路に与える。これにより存
在位置演算回路はこの移動量情報と上記走行方位角情報
とにより現在の車両位置を求める。そして、走行制御装
置では予め設定されたコースに従って車両を走行させる
べく、存在位置演算回路が求めた現在の車両位置情報を
もとに走行用と車輪の操舵角制御を行う操舵用の各モー
タを制御する。この結果、曲線路走行時に各車輪の操舵
角と実回転中心からの車体移動量を常に正しく求めるこ
とができ、急カーブでの位置精度を保持できて、停止位
置精度の飛躍的な向上を図ることができるようになる。
(Function) In such a configuration, the rotation speed of one or more arbitrary wheels and the steering angle of the wheels are detected, and based on these, the correction means adjusts the rotational distance between the center of rotation of the vehicle and the wheels. The radius is determined, and the actual amount of movement of the vehicle center position relative to the rotation center is calculated to obtain information on the amount of movement of the vehicle. Then, the obtained movement amount information is given to the existence position calculation circuit. Thereby, the existing position calculation circuit calculates the current vehicle position based on this movement amount information and the traveling azimuth information. In order to make the vehicle travel along a preset course, the travel control device operates each motor for travel and steering, which controls the steering angle of the wheels, based on the current vehicle position information obtained by the existing position calculation circuit. Control. As a result, when driving on curved roads, the steering angle of each wheel and the amount of vehicle body movement from the actual center of rotation can always be accurately determined, maintaining positional accuracy on sharp curves, and dramatically improving stopping position accuracy. Be able to do things.

(実施例) 以下、本発明の実施例について説明する。第1図は本発
明の実施例を示すジャイロ誘導式無人搬送車の構成を示
すブロック図であり、操舵角検知用回転センサー41と
、走行距離補正部42を新たに設けた点のみが前記第4
図の場合と異る。
(Example) Examples of the present invention will be described below. FIG. 1 is a block diagram showing the configuration of a gyro-guided automatic guided vehicle according to an embodiment of the present invention. 4
This is different from the case shown in the figure.

走行距離補正部42は、回転センサ3によって、第5図
の対角をなす車輪、例えば31と33の車輪の距離パル
スをバ1数して単位時間走行した距離ΔJ131とΔJ
l:!2を求める。
The travel distance correction unit 42 uses the rotation sensor 3 to calculate the distances ΔJ131 and ΔJ traveled in a unit time by multiplying the distance pulses of the diagonal wheels in FIG.
l:! Find 2.

また、操舵角用回転センサ41によって、上記の車輪の
車体に対する角度α31とα33を求める。
Furthermore, angles α31 and α33 of the wheels relative to the vehicle body are determined by the steering angle rotation sensor 41.

この値を利用して、存在位置演算回路4で単位時間の移
動距離△X=△J4 cosθ。
Using this value, the existence position calculation circuit 4 calculates the moving distance per unit time ΔX=ΔJ4 cosθ.

ΔY=ΔJ!、sinθを求める為の八1.すなわち、
車体前方向への距離パルス(第5図の矢印38に対応す
る)を求める必要がある。このとき、車体横方向への距
離パルス(第5図の矢印37に対応する)は、車輪31
と車両33で反対方向となる為に互いに打ち消し合って
、ΔX、ΔYの演算には無関係となる。
ΔY=ΔJ! , 81. to find sin θ. That is,
It is necessary to determine the distance pulse in the forward direction of the vehicle (corresponding to arrow 38 in FIG. 5). At this time, the distance pulse in the lateral direction of the vehicle body (corresponding to arrow 37 in FIG. 5) is
and the vehicle 33 are in opposite directions, so they cancel each other out and are irrelevant to the calculations of ΔX and ΔY.

ここで、上記Δ1を求める為に、前記Δ131゜△13
3.α31.α33を走行距離補正部42においで、 なる演算を行って、対角を成す車輪31と33の距離パ
ルスをそれぞれ車輪の車体との成す角を加味した補正を
行うことによって得た車輪31゜33の各々の八1を求
め、次にこれらの平均値をとって内外輪の平均値となる
Δ1色を求め、これを存在位置演算回路4に与える。そ
して、該存在位置演算回路では、従来のもののかわりに
平均値となるこのΔ1を使って、単位時間のX軸移動距
離。
Here, in order to find the above Δ1, the above Δ131°△13
3. α31. The mileage correction unit 42 calculates α33 as shown below, and corrects the distance pulses of the diagonal wheels 31 and 33 by taking into account the angles the wheels make with the vehicle body. Then, the average value of these values is taken to determine the Δ1 color which is the average value of the inner and outer rings, and this is given to the existence position calculation circuit 4. Then, in the existence position calculation circuit, this average value Δ1 is used instead of the conventional one to calculate the X-axis movement distance per unit time.

Y軸移動距離を求め、無人搬送車の現在位置を走行制御
回路5に出力する構成とする。
The configuration is such that the Y-axis movement distance is determined and the current position of the automatic guided vehicle is output to the travel control circuit 5.

このように走行距離補正部42を設けて対角を成す車輪
の各々の単位時間当りの走行距離を角度補正したかたち
で求め、更にこれら求めた双方の単位時間当りの走行距
離の平均をとって単位時間当りの走行距離どし、これよ
り車の中心部の移動距離にほぼ等しい△1とすることが
できるようにしたので、操舵角が大きい場合の存在位置
演算も誤差がなくなり、停止精度を向上させる事ができ
るようになる。
In this way, the mileage correction section 42 is provided to calculate the mileage per unit time of each of the diagonal wheels in an angularly corrected form, and then average the distances traveled per unit time for both of these calculated wheels. Since the distance traveled per unit time can be set to △1, which is approximately equal to the distance traveled by the center of the car, there is no error in calculating the position when the steering angle is large, and the stopping accuracy can be improved. You will be able to improve it.

また、操舵角用回転センサー41は、走行制御回路5で
使用する操舵角用むンサを使う事が可能である。本例で
は、4輪操舵で2つの車輪から回転パルスを得る場合の
例であるが、1つ又は4輪等から回転パルスを得る場合
も同様である。
Furthermore, the steering angle rotation sensor 41 can be a steering angle sensor used in the travel control circuit 5. In this example, rotation pulses are obtained from two wheels in four-wheel steering, but the same applies to the case where rotation pulses are obtained from one or four wheels.

第2図は本発明の変形例を示すブロック図である。ここ
では操舵角用回転センサ41に代って、ジャイロ部1か
らの方位角を走行距離補正部42へ入力するようにした
ことが前記第1図の場合と異る。
FIG. 2 is a block diagram showing a modification of the present invention. The difference from the case shown in FIG. 1 is that the azimuth angle from the gyro section 1 is inputted to the travel distance correction section 42 instead of the rotation sensor 41 for steering angle.

走行距離補正部42では、単位時間当りのΔ1を求める
時に、操舵角αを検知する代りに、車体の方位角が単位
時間に何度変化したかを演算して、この結果により、前
記Δ1を求める。
When calculating Δ1 per unit time, the mileage correction unit 42 calculates how many times the azimuth angle of the vehicle body changes per unit time, instead of detecting the steering angle α, and uses this result to calculate the Δ1. demand.

第3図により、この演算部の動作を説明する。The operation of this arithmetic unit will be explained with reference to FIG.

車の前後輪軸間距離をW、52.53を距離パルス、単
位時間に変化した方位角をΔθ、54゜55を前方方向
距離成分、56.57を横方向距離成分とすると、単位
時間に車両が△θだけ方位角が変位した際、車輪31.
33のそれぞれ内心方向、外心方向への移動距離である
56.57はこの 八〇なる変位のために使用されるこ
とからこのことにより、今、車輪31.33の単位時間
当りの走行距離52.53をΔJ131゜八133とす
ると が成立するので、この(2)式の演算を行うことにより
、前記第1図に示J構成の場合とほぼ等価のΔ1補正を
行うことができ、前述と同様の効果を持つジャイロ誘導
式無人搬送車が得られる。
If the distance between the front and rear wheels of the car is W, 52.53 is the distance pulse, the azimuth that changes per unit time is Δθ, 54°55 is the forward distance component, and 56.57 is the lateral distance component, then the vehicle per unit time is When the azimuth angle is displaced by Δθ, the wheel 31.
Since 56.57, which is the moving distance of wheel 33 in the inner and outer center directions, is used for this displacement of 80, the distance traveled per unit time of wheel 31.33 is now 52. .53 is ΔJ131°8133. Therefore, by calculating this equation (2), it is possible to perform a Δ1 correction that is almost equivalent to the case of the J configuration shown in FIG. A gyro-guided automated guided vehicle with similar effects can be obtained.

[発明の効果] 以上、詳述したように本発明によれば急なカーブを走行
しても常に正確な現在位置を得ることができ、従って停
止位置が正確であるなど優れた特徴を有するジャイロ誘
導式無人搬送車を提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, the gyro has excellent features such as being able to always obtain an accurate current position even when driving on a sharp curve, and therefore having an accurate stopping position. A guided automatic guided vehicle can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部構成図、第2図は
変形例を示すブロック図、第3図は第2図の原理的な説
明のための図、第4図、第5図は従来例を説明するため
の図である。 1・・・レートジャイロ部、2,31.32,33゜3
4・・・車輪、3・・・回転センサ、4・・・存在位置
演算回路、5・・・走行制御回路、41・・・操舵角用
回転センサ、42・・・走行距離補正部。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a modified example, FIG. 3 is a diagram for explaining the principle of FIG. 2, and FIGS. FIG. 5 is a diagram for explaining a conventional example. 1... Rate gyro section, 2, 31.32, 33°3
4...Wheel, 3...Rotation sensor, 4...Existence position calculation circuit, 5...Traveling control circuit, 41...Rotation sensor for steering angle, 42...Distance correction unit. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 車両の走行方位角を検出するために車体にジャイロを取
付け、また、車輪の回転数を計数する回転センサを設け
てこの回転センサの計測値より車両の移動量情報を得、
この移動量情報と上記走行方位角情報とにより現在の車
両位置を存在位置演算回路にて求めるとともに、予め設
定されたコースに従って車両を走行させるべく、求めた
現在の車両位置情報をもとに走行用と車輪の操舵角制御
を行う操舵用の各モータを制御する走行制御装置とによ
り構成されたジャイロ誘導式の無人搬送車において、曲
線路走行時に各車輪の操舵角と実回転中心からの車体移
動量を求めるべく、任意の1つまたは複数の車輪の回転
数とその車輪の操舵角の情報を得、これら情報から車両
の回転中心と車輪までの回転走行半径を求め、車両中心
位置の回転中心に対する実移動量を算出して前記車両の
移動量情報とする補正手段を設けたことを特徴とするジ
ャイロ誘導式無人搬送車。
A gyro is attached to the vehicle body to detect the running azimuth of the vehicle, and a rotation sensor is installed to count the number of rotations of the wheels, and information on the amount of movement of the vehicle is obtained from the measurement value of this rotation sensor.
The current position of the vehicle is determined by the vehicle location calculation circuit based on this movement amount information and the above-mentioned travel azimuth information, and the vehicle is driven based on the determined current vehicle position information in order to run the vehicle according to a preset course. In a gyro-guided automated guided vehicle, which is composed of a steering wheel and a travel control device that controls each steering motor that controls the steering angle of the wheels, the steering angle of each wheel and the vehicle body from the actual center of rotation are determined when traveling on a curved road. In order to calculate the amount of movement, information on the rotation speed of one or more arbitrary wheels and the steering angle of that wheel is obtained, and from this information, the rotation center of the vehicle and the rotation radius from the wheel are determined, and the rotation of the vehicle center position is calculated. A gyro-guided automatic guided vehicle, characterized in that a correction means is provided for calculating an actual amount of movement with respect to the center and using it as movement amount information of the vehicle.
JP61065140A 1986-03-24 1986-03-24 Gyro-guide type unmanned carrier Pending JPS62221707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065140A JPS62221707A (en) 1986-03-24 1986-03-24 Gyro-guide type unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065140A JPS62221707A (en) 1986-03-24 1986-03-24 Gyro-guide type unmanned carrier

Publications (1)

Publication Number Publication Date
JPS62221707A true JPS62221707A (en) 1987-09-29

Family

ID=13278282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065140A Pending JPS62221707A (en) 1986-03-24 1986-03-24 Gyro-guide type unmanned carrier

Country Status (1)

Country Link
JP (1) JPS62221707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219907A (en) * 1988-02-26 1989-09-01 Kawasaki Heavy Ind Ltd Automatic running control system
JPH02158460A (en) * 1988-12-09 1990-06-18 Mitsui Miike Mach Co Ltd Conveyance vehicle
JP2007038818A (en) * 2005-08-02 2007-02-15 Ricoh Co Ltd Automatic transporting vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219907A (en) * 1988-02-26 1989-09-01 Kawasaki Heavy Ind Ltd Automatic running control system
JPH02158460A (en) * 1988-12-09 1990-06-18 Mitsui Miike Mach Co Ltd Conveyance vehicle
JP2007038818A (en) * 2005-08-02 2007-02-15 Ricoh Co Ltd Automatic transporting vehicle

Similar Documents

Publication Publication Date Title
JP2572968B2 (en) How to guide autonomous vehicles
CN108592906A (en) AGV complex navigation methods based on Quick Response Code and inertial sensor
JPH0646364B2 (en) How to guide an autonomous vehicle
JP2007219960A (en) Position deviation detection device
JPH075922A (en) Steering control method for unmanned work vehicle
JPH0827652B2 (en) Guidance method for unmanned mobile machines by point tracking method
JPS62221707A (en) Gyro-guide type unmanned carrier
JP2010262461A (en) Mobile object
JPH1195837A (en) Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction
JPH10105234A (en) Unmanned carriage
JPH07281747A (en) Traveling controller for automated guided vehicle
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2934770B2 (en) Method and apparatus for measuring wheel diameter of mobile robot
JPH08202449A (en) Automatic operation controller for carring truck
JPH05333928A (en) Back traveling control method for unmanned carrier
JPH03189805A (en) Method and device for automatic steering vehicle
JP3846828B2 (en) Steering angle control device for moving body
JP3727429B2 (en) Method for calculating positional relationship with respect to travel route of vehicle
JP2676831B2 (en) Automatic guided vehicle position detection device
JP2983527B1 (en) Vehicle measuring device
JP3447480B2 (en) Position measurement method and device
JPS63245508A (en) Guide controller for unattended carriage
JP6921168B2 (en) How to run in a platoon based on wheel pulse signals
WO2023054213A1 (en) Control method and control system
WO2023054212A1 (en) Control method and control system