JPH031685B2 - - Google Patents

Info

Publication number
JPH031685B2
JPH031685B2 JP58139021A JP13902183A JPH031685B2 JP H031685 B2 JPH031685 B2 JP H031685B2 JP 58139021 A JP58139021 A JP 58139021A JP 13902183 A JP13902183 A JP 13902183A JP H031685 B2 JPH031685 B2 JP H031685B2
Authority
JP
Japan
Prior art keywords
speed
drive
wheel
drive wheel
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58139021A
Other languages
Japanese (ja)
Other versions
JPS6031615A (en
Inventor
Juji Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58139021A priority Critical patent/JPS6031615A/en
Publication of JPS6031615A publication Critical patent/JPS6031615A/en
Publication of JPH031685B2 publication Critical patent/JPH031685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Steering Controls (AREA)

Description

【発明の詳細な説明】 本発明は無人搬送車の制御方法に関し、特に左
右の駆動輪を各々独立に駆動制御して走行する無
人搬送車に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling an automatic guided vehicle, and particularly to an automatic guided vehicle that travels by independently controlling left and right drive wheels.

左右の駆動輪の駆動速度を各々独立に制御する
ことにより直進、旋回等を行なう方式(以下パワ
ー・ホイールド・ステアリング方式、略して
PWS方式という)の無人搬送車では、規定の走
行経路からの左右への変位を検出する検出手段、
例えば光学的センサ、磁気的センサなどが、実際
の走行経路が規定の経路から左右いずれかに変位
したことを検知したときに、走行経路を修正する
ために行なう旋回の内側となる駆動輪、例えば実
際の走行経路が規定の経路より左へずれた時には
右旋回を行なうために右側の駆動輪の駆動速度を
減速する。そして規定の経路に復帰する時に旋回
の内側の駆動輪を加速して規定経路上での定常走
行に復帰するという制御が行なわれる。
A method for driving straight ahead, turning, etc. by controlling the drive speed of the left and right drive wheels independently (hereinafter referred to as power wheeled steering method, abbreviated as power wheeled steering method)
In automatic guided vehicles (PWS system), detection means detects left and right displacement from the specified travel route,
For example, when an optical sensor, a magnetic sensor, etc. detects that the actual traveling route has shifted to the left or right from the prescribed route, the drive wheel that is on the inside of the turn made to correct the traveling route, for example. When the actual travel route deviates to the left from the prescribed route, the drive speed of the right drive wheel is reduced in order to make a right turn. Then, when returning to the prescribed route, control is performed to accelerate the drive wheel on the inside of the turn and return to steady running on the prescribed route.

しかしながら、上記の検出手段としてオン,オ
フ出力のセンサを用いた場合、例えば走行路上に
設置した反射テープをフオトトランジスタ等のセ
ンサで光学的に検知する場合には、前記のオン,
オフ出力のセンサを2個1対として用いれば実際
の走行経路が規定の経路上であるか、または左右
いずれにずれているかが検出可能ではあるが、こ
のような2個1対のセンサで上記の制御方法によ
り走行した場合には、走行速度を速くすると操舵
の遅れが影響して規定経路への復帰が不可能にな
り、実用的な速度で走行出来ないという問題があ
つた。そのため、オン,オフ出力のセンサを用い
る場合、従来はセンサを数個以上用いて走行方向
に対して左右に一列に並べて使用しなければなら
なかつた。
However, when a sensor with on/off output is used as the above-mentioned detection means, for example, when a reflective tape installed on a running road is optically detected with a sensor such as a phototransistor, the on/off output
If a pair of off-output sensors is used, it is possible to detect whether the actual driving route is on the specified route or whether it is off to the left or right. When traveling using the control method described above, there was a problem in that when the traveling speed was increased, it became impossible to return to the specified route due to the effect of steering delay, and the vehicle could not travel at a practical speed. Therefore, when using on/off output sensors, conventionally it has been necessary to use several or more sensors and arrange them in a row from side to side with respect to the running direction.

本発明は上記のようなオン,オフ出力のセンサ
を2個1対として用いたPWS方式の無人搬送車
の規定経路への追従性を向上させることを目的と
し、走行経路修正時の左右の駆動輪の駆動速度に (1) 経路修正のための旋回の内側となる駆動輪の
減速を一定値までに制限する。
The purpose of the present invention is to improve the followability of a PWS type automatic guided vehicle using a pair of on/off output sensors as described above to a prescribed route, and to improve the ability of a PWS type automatic guided vehicle to follow a prescribed route. Regarding wheel drive speed: (1) Limit the deceleration of the drive wheel on the inside of a turn for route correction to a certain value.

(2) 旋回により規定経路上に復帰したことを検出
した時に、旋回内側の駆動輪を加速すると同時
に外側の駆動輪を減速することにより速やかに
直進状態に戻した後、両輪を加速して定常走行
に戻る。
(2) When it is detected that the drive wheel on the inside of the turn has returned to the specified path, the drive wheel on the inside of the turn is accelerated and at the same time the drive wheel on the outside is decelerated to quickly return to a straight line, and then both wheels are accelerated to maintain a steady state. Back to running.

という制御を行なうことを特徴とする。It is characterized by the following control.

以下、本発明を実施例を示す図面に基づいて説
明する。第1図はPWS方式による無人搬送車を
示す様式図であり、車体1の中央左右に駆動輪
2,3、前後にキヤスタ4,4,4,4を持つ六
輪車の例を示している。検知手段として、図中矢
印で示した車体の進行方向前部の下面にあるオ
ン,オフ出力のセンサ5,6によつて走行路上に
設置された、規定の走行経路を示す標識体(以下
ガイドレーンと言う)7を検知して走行する。車
体1がガイドレーン7に対して左右へずれた時の
センサ5,6の出力SL,SRの変化を第2図に示
す。同図で横軸はセンサ5,6の取付部における
車体1のガイドレーン7に対する左右への変位、
縦軸はセンサ5,6の出力電圧SL,SRである。こ
のようにセンサ5,6の出力SL,SRのオン,オフ
の組合せにより、車体1がガイドレーン7上にあ
るか、および左右いずれへ変位しているかを検知
して、左右の駆動輪2,3の駆動速度を制御す
る。
Hereinafter, the present invention will be explained based on drawings showing embodiments. FIG. 1 is a style diagram showing an automatic guided vehicle using the PWS system, and shows an example of a six-wheeled vehicle having driving wheels 2 and 3 on the left and right sides of the center of the vehicle body 1 and casters 4, 4, 4, 4 on the front and rear. The detection means is a sign (hereinafter referred to as a guide) installed on the driving road that indicates a specified driving route by sensors 5 and 6 with on/off output located on the lower surface of the front part of the vehicle in the direction of travel indicated by the arrow in the figure. It detects lane (referred to as lane) 7 and runs. FIG. 2 shows changes in the outputs S L and S R of the sensors 5 and 6 when the vehicle body 1 shifts to the left and right with respect to the guide lane 7. In the figure, the horizontal axis represents the left and right displacement of the vehicle body 1 with respect to the guide lane 7 at the mounting portion of the sensors 5 and 6;
The vertical axes are the output voltages S L and S R of the sensors 5 and 6. In this way, by the combination of ON and OFF of the outputs S L and S R of the sensors 5 and 6, it is detected whether the vehicle body 1 is on the guide lane 7 and whether it is displaced to the left or right, and the left and right drive wheels are Controls the drive speed of 2 and 3.

ここでまず、前記した従来の制御方法をとつた
場合について説明する。第3図a,bは従来の制
御方法で車体1がガイドレーン7に対して左に変
位したときの左右の駆動輪2,3の速度変化を示
す図で、同図aはセンサ5,6が検出したガイド
レーン7からの車体1の左右への変位の例を示
し、横軸は時間、縦軸はセンサ5,6が検出した
左右への変位である。同図bはそのときの左右の
駆動輪2,3の駆動速度VL,VRを示しており、
横軸は同じく時間、縦軸は駆動速度VL,VRであ
る。左右の駆動動輪2,3を共に定常速度VO
駆動して走行中、時刻t1でセンサ5,6が、ガイ
ドレーン7から左へ変位したことを検出すると右
側の駆動輪3の駆動速度VRを減速率−α1で減速
する。時刻t2でセンサ5,6がガイドレーン7上
に復帰したことを検出すると駆動輪3の駆動速度
VRを加速率α2で加速して、時刻t3において定常速
度VOでの走行に復帰する。
First, a case will be described in which the conventional control method described above is used. Figures 3a and 3b are diagrams showing speed changes of the left and right drive wheels 2 and 3 when the vehicle body 1 is displaced to the left with respect to the guide lane 7 using the conventional control method; An example of left and right displacement of the vehicle body 1 from the guide lane 7 detected by the sensor is shown, the horizontal axis is time, and the vertical axis is the left and right displacement detected by the sensors 5 and 6. Figure b shows the drive speeds V L and V R of the left and right drive wheels 2 and 3 at that time,
Similarly, the horizontal axis is time, and the vertical axis is driving speeds V L and VR . While driving with both the left and right drive wheels 2 and 3 driven at a steady speed V O , at time t 1 , when the sensors 5 and 6 detect that the drive wheel 3 is displaced to the left from the guide lane 7, the drive speed of the right drive wheel 3 is changed. V R is decelerated by deceleration rate −α 1 . When the sensors 5 and 6 detect that the vehicle has returned to the guide lane 7 at time t2 , the drive speed of the drive wheel 3 changes.
VR is accelerated at an acceleration rate α 2 and returns to running at the steady speed VO at time t 3 .

このような制御方法をとつたときの車体1の動
きをシミユレーシヨンによつて求めた例を第4図
に示す。同図は左右の駆動輪2,3の間隔を400
mm、車体1の中心からセンサ5と6の中央までの
距離を300mmとし、定常速度VOを50m/分、減速
率−α1を−833mm/S2、加速率α2を833mm/S2とし
た場合について、車体1が定常速度VOで走行中
ガイドレーン7に対して0.1rod傾いている状態か
らの車体1の中心点の走行軌跡を表わしている。
横軸は走行距離(単位:mm)、縦軸は車体1の中
心点の左右への変位(単異:mm)である。ガイド
レーン7上に復帰したことを検知してから車体1
が直進状態になるまで、すなわち第3図の時刻t2
からt3までが長いため、直進状態に戻るのが遅
れ、左右への振動が減衰せず逆に大きくなつてし
まい走行不可能となることがある。走行可能にす
るためには例えば定常速度VOを20m/分(時速
1.2Km)程度まで低下させねばならず、実用的で
ない。
FIG. 4 shows an example of the movement of the vehicle body 1 obtained by simulation when such a control method is used. In the figure, the distance between left and right drive wheels 2 and 3 is 400.
mm, the distance from the center of vehicle body 1 to the center of sensors 5 and 6 is 300 mm, steady speed V O is 50 m/min, deceleration rate -α 1 is -833 mm/S 2 , acceleration rate α 2 is 833 mm/S 2 In this case, the traveling locus of the center point of the vehicle body 1 from a state where the vehicle body 1 is traveling at a steady speed V O and inclined by 0.1 rod with respect to the guide lane 7 is shown.
The horizontal axis is the traveling distance (unit: mm), and the vertical axis is the left and right displacement of the center point of the vehicle body 1 (unit: mm). After detecting that it has returned to guide lane 7, the vehicle body 1
until it goes straight, that is, at time t 2 in Figure 3.
Since the time from t3 to t3 is long, there is a delay in returning to the straight-ahead state, and vibrations to the left and right are not attenuated and instead increase, making it impossible to drive. In order to be able to travel, for example, the steady speed V O must be reduced to 20 m/min (per hour).
1.2 km), which is not practical.

次に本発明による制御方法をとつた場合につい
て説明する。第5図a,bは本発明の制御方法で
車体1がガイドレーン7に対して左へ変位したと
きの左右の駆動輪2,3の速度変化を示す図であ
る。同図a,bはそれぞれ第3図a,bに対し、
横軸は時間、縦軸はaではセンサが検出した左右
への変位、bでは駆動速度VL,VRである。時刻
t1でセンサ5,6がガイドレーン7から左へ変位
したことを検出すると図中11で示す第1段階と
して、左側の駆動輪2の駆動速度VLを定常速度
VOのまま維持しながら、右側の駆動輪3の駆動
速度VRを減速率−α1で減速する。時刻t2でVR
あらかじめ定められた速度V1にまで減速される
と、引き続き図中12で示す第2段階として左側
の駆動輪2の駆動速度VLをVOに、また右側の駆
動輪3の駆動速度VRをV1にそれぞれ維持する。
時刻t3でセンサ5,6がガイドレーン7上に復帰
したことを検出すると図中13で示す第3段階と
して右側の駆動輪3の駆動速度VRを加速率α2
加速すると同時に左側の駆動輪2の駆動速度VL
を減速率−α3で減速する。時刻t4で左右の駆動輪
2,3の駆動速度VL,VRが等しくなり、車体1
が直進状態になつたら図中14で示す第4段階と
して左右の駆動輪2,3の駆動速度VL,VRを同
時に加速率α4で加速して、時刻t3において定常速
度VOでの走行に復帰する。
Next, a case will be described in which the control method according to the present invention is used. FIGS. 5a and 5b are diagrams showing speed changes of the left and right drive wheels 2 and 3 when the vehicle body 1 is displaced to the left with respect to the guide lane 7 using the control method of the present invention. Figures a and b correspond to Figure 3 a and b, respectively.
The horizontal axis is time, the vertical axis a is the left and right displacement detected by the sensor, and b is the drive speed V L , VR . time
When the sensors 5 and 6 detect the displacement to the left from the guide lane 7 at t 1 , in the first step shown by 11 in the figure, the drive speed V L of the left drive wheel 2 is changed to the steady speed.
While maintaining V O , the drive speed V R of the right drive wheel 3 is decelerated at a deceleration rate -α 1 . When V R is decelerated to a predetermined speed V 1 at time t 2 , the drive speed V L of the left drive wheel 2 is reduced to V O , and the drive speed of the right drive wheel 2 is reduced to V O in the second stage shown at 12 in the figure. The driving speed V R of the wheels 3 is maintained at V 1 respectively.
At time t3 , when the sensors 5 and 6 detect that the vehicle has returned to the guide lane 7, the drive speed V R of the right drive wheel 3 is accelerated at an acceleration rate α2, and at the same time, the drive speed V R of the right drive wheel 3 is accelerated at an acceleration rate α2 . Drive speed V L of drive wheel 2
is decelerated by a deceleration rate of −α 3 . At time t4 , the drive speeds V L and V R of the left and right drive wheels 2 and 3 become equal, and the vehicle body 1
When the vehicle is running straight, in the fourth step shown by 14 in the figure, the drive speeds V L and V R of the left and right drive wheels 2 and 3 are simultaneously accelerated at an acceleration rate α 4 , and at time t 3 the drive speeds V L and V R are accelerated to a steady speed V O at time t 3 . Return to running.

第5図の第1段階実行中すなわち右側の駆動輪
3の駆動速度VRがV1にまで減速されないうちに
センサ5,6がガイドレーン7上に復帰したこと
を検出した場合には、第6図a,bに示すように
ただちに右側の駆動輪3の駆動速度VRを加速率
α2で加速し、同時に左側の駆動輪2の駆動速度
VLを減速率−α3で減速する第3段階に移行すれ
ばよい。また、第5図の第3段階または第4段階
実行中すなわちガイドレーン7上に復帰した後ま
だ定常速度VOでの走行に戻らないうちにセンサ
5,6が再びガイドレーン7から左右いずれかに
変位したことを検出した場合、例えばガイドレー
ン7の左側に変位した後一旦ガイドレーン7上に
復帰し、直後に時刻t3で新たに右に変位した場合
には、第7図a,bおよび第8図a,bに示すよ
うに、新たたな旋回の内側となる駆動輪つまり左
側の駆動輪2の駆動速度VLを減速率−α1または
−α3もしくは別に設定した値でV1まで減速し、
同時に外側となる駆動輪つまり右側の駆動輪3の
駆動速度VRを加速率α2もしくは別に設定した値
で定常速度VOまで加速した後、時刻t1で左右の駆
動輪2,3の駆動速度VL,VRをそれぞれ維持す
る第2段階に移行すればよい。上記第6図ないし
第8図においても第5図と同様に横軸は時間、縦
軸はaではセンサが検出した左右への変位、bで
は駆動速度VL,VRを表わす。
If the sensors 5 and 6 detect that the drive speed V R of the right drive wheel 3 has returned to the guide lane 7 during the execution of the first stage in FIG. As shown in Figure 6 a and b, the drive speed V R of the right drive wheel 3 is immediately accelerated at an acceleration rate α 2 , and at the same time the drive speed of the left drive wheel 2 is increased.
It is sufficient to proceed to the third stage in which V L is decelerated at a deceleration rate of −α 3 . Furthermore, during the execution of the third or fourth stage in FIG. For example, if a displacement is detected to the left of the guide lane 7, then the position is temporarily returned to the guide lane 7, and immediately after that, at time t3 , a new displacement is detected to the right. Then, as shown in Fig. 8a and b, the drive speed V L of the drive wheel on the inside of the new turn, that is, the left drive wheel 2, is set to V at a deceleration rate of -α 1 or -α 3 or a separately set value. slow down to 1 ,
At the same time, after accelerating the drive speed V R of the outer drive wheel, that is, the right drive wheel 3, to the steady speed V O at an acceleration rate α 2 or a separately set value, the left and right drive wheels 2 and 3 are driven at time t 1 . It is sufficient to proceed to the second stage in which the velocities V L and V R are maintained respectively. Similarly to FIG. 5, in FIGS. 6 to 8, the horizontal axis represents time, and the vertical axis represents the horizontal displacement detected by the sensor at a and the driving speeds V L and V R at b.

なお、上記した本発明の制御方法において、第
1段階における減速率−α1と第3段階の加速率α2
は、絶対値を等しく設定するのが実用上便利であ
る。また第3段階において速やかに直進状態に戻
すために、加速率α2と減速率−α3の絶対値を等し
く設定することが望ましい。一方、第4段階では
車体1は直進状態に戻つているため加速率α4は第
3段階における加速率α2ほど大きくする必要はな
く、加速率α2より小さな値に設定したほうが車体
1の加速が滑らかになる。
In addition, in the control method of the present invention described above, the deceleration rate −α 1 in the first stage and the acceleration rate α 2 in the third stage
It is practically convenient to set the absolute values to be equal. Further, in order to quickly return the vehicle to the straight-ahead state in the third stage, it is desirable to set the absolute values of the acceleration rate α 2 and the deceleration rate −α 3 to be equal. On the other hand, in the fourth stage, the vehicle body 1 has returned to the straight-ahead state, so the acceleration rate α 4 does not need to be as large as the acceleration rate α 2 in the third stage, and it is better to set it to a smaller value than the acceleration rate α 2 . Acceleration becomes smoother.

速度V1の値については走行路の曲線部の半径
などを基に決定する。左右の駆動輪の間隔をTr
とすれば駆動速度VL,VRに差があるときの車体
1の中心点の旋回半径Rは R=|Tr/2・VL+VR/VL−VR|ただしVL≠VR で求められるので、車体1の最小旋回半径Roを
走行路の曲線部の半径rよりも小さい値に決定
し、上式を変形した。
The value of the speed V 1 is determined based on the radius of the curved portion of the travel path, etc. The distance between the left and right drive wheels is Tr
Then, the turning radius R of the center point of the vehicle body 1 when there is a difference between the driving speeds V L and V R is R = |Tr/2・V L +V R /V L −V R | However, V L ≠ V R Therefore, the minimum turning radius Ro of the vehicle body 1 was determined to be smaller than the radius r of the curved portion of the traveling path, and the above equation was modified.

VR=R−Tr/2/R+Tr/2・VL においてVR=V1,VL=VO,R=ROとして V1=RO−Tr/2/RO+Tr/2・VO から速度V1を求めて設定すればよい、またV1
設定値は常に一定である必要はなく、走行路の直
線部と曲線部、あるいは低速走行区間等について
それぞれ設定値を変更しても差し支えない。
V R = R - Tr / 2 / R + Tr / 2 · V L , V R = V 1 , V L = V O , R = R O , V 1 = R O - Tr / 2 / R O + Tr / 2 · V All you have to do is find the speed V 1 from O and set it. Also, the set value of V 1 does not always have to be constant, but you can change the set value for straight sections and curved sections of the road, or for low-speed sections, etc. There is no problem.

また、上記の説明において主に車体1がガイド
レーン7に対し左へ変位した場合について説明し
たが、右に変位した場合にも加速あるいは減速す
る駆動輪が左右入れ換わるだけで全く同様であ
る。さらに第1図において矢印で示した車体1の
走行方向は車体1の前方とは限らず、後進時、あ
るいは車体1の方向を変えずに車体1に対し横方
向あるいは斜め方向へ走行する場合でも、検知手
段が走行方向についてガイドレーン7からの左右
への変位の有無および変位方向を検出出来れば適
用可能である。従つてガイドレーン7は走行路上
面に設置された標識体とは限定されず、走行路の
上方に設定された標識体あるいは空中を伝搬する
光線等であつても差し支えない。またセンサ5,
6の取付位置も車体1の下面に限定されるもので
はない。また車体1は第1図に示すような六輪車
に限らずキヤスタ4の数が増減した車であつても
適用可能である。
Further, in the above description, the case where the vehicle body 1 is displaced to the left with respect to the guide lane 7 has been mainly explained, but the same is true when the vehicle body 1 is displaced to the right, only that the driving wheels that accelerate or decelerate are swapped left and right. Furthermore, the traveling direction of the vehicle body 1 indicated by the arrow in FIG. This is applicable as long as the detection means can detect the presence or absence and direction of displacement from the guide lane 7 to the left and right in the running direction. Therefore, the guide lane 7 is not limited to a sign placed on the road surface, but may be a sign placed above the road or a light beam propagating through the air. Also, sensor 5,
The mounting position of 6 is not limited to the lower surface of the vehicle body 1 either. Further, the vehicle body 1 is not limited to a six-wheeled vehicle as shown in FIG. 1, but can also be applied to a vehicle in which the number of casters 4 is increased or decreased.

第5図ないし第8図に示した本発明による制御
方法での車体1の動きをシミユレーシヨンによつ
て求めた例を第9図に示す。同図は第4図と同じ
く車体1が定常速度VOで走行中ガイドレーン7
に対して0.1rad傾いている状態からの車体1の中
心点の走行軌跡を表わしており、横軸は走行距離
(単位:m)縦軸は車体1の中心点の左右への変
位(単位:mm)である。第9図では第4図の場合
と同じく左右の駆動輪2,3の間隔を400mm、車
体1の中心からセンサ5と6の中央までの距離を
300mm、定常速度VOを50m/分としている。ま
た、車体1の最小旋回半径ROを800mmとして速度
V1を30m/分とした。加速率および減速率−α1
α2,−α3,α4はそれぞれ−833mm/S,833mm/S,
−833mm/S,417mm/Sとしたものである。本発
明による制御方法では、ガイドレーン7上に復帰
した後車体1が速やかに直進状態に戻るために、
同等の条件で従来の制御方法をとつた第4図と比
較して明らかにガイドレーン7への追従性が向上
しており、その効果は顕著である。ガイドレーン
7に対する車体1の傾きがより大きくなつても走
行可能であり、例えば0.5rad傾いている状態から
でも約2mの走行で左右への振動は減衰し、ほと
んど無くなつてしまう。
FIG. 9 shows an example of the movement of the vehicle body 1 determined by simulation using the control method according to the present invention shown in FIGS. 5 to 8. The same figure as in Figure 4 shows the guide lane 7 while the vehicle body 1 is running at a steady speed VO .
It shows the traveling trajectory of the center point of the vehicle body 1 from a state where it is tilted 0.1 rad against mm). In Figure 9, the distance between the left and right drive wheels 2 and 3 is 400 mm, and the distance from the center of the vehicle body 1 to the center of sensors 5 and 6 is the same as in Figure 4.
300mm, and the steady speed V O is 50m/min. In addition, the minimum turning radius R O of vehicle body 1 is 800 mm, and the speed is
V 1 was set to 30 m/min. Acceleration rate and deceleration rate −α 1 ,
α 2 , −α 3 , α 4 are −833 mm/S, 833 mm/S, respectively,
-833mm/S, 417mm/S. In the control method according to the present invention, in order for the vehicle body 1 to quickly return to the straight-ahead state after returning to the guide lane 7,
Compared to FIG. 4 where the conventional control method was used under the same conditions, the ability to follow the guide lane 7 is clearly improved, and the effect is remarkable. Even if the inclination of the vehicle body 1 with respect to the guide lane 7 becomes larger, it is possible to run. For example, even if the vehicle body 1 is inclined by 0.5 rad, the vibrations to the left and right will be attenuated and almost disappear after driving about 2 m.

以上のように本発明による制御方法では時刻t3
においてガイドレーン7上に復帰した時点での左
右の駆動輪の速度差が一定値VO−V1以上になら
ず、さらに直進状態への復帰を低速側の駆動輪を
加速するとともに高速側の駆動輪を減速すること
によつて行なうため、直進状態への復帰が極めて
速やかに行なわれる。従つてオン,オフ出力のセ
ンサを2個1対として用いたPWS方式の無人搬
送車の規定走行路への追従性を大幅に向上させ、
実用的な速度での走行を可能とするものである。
As described above, in the control method according to the present invention, time t 3
When the left and right drive wheels return to guide lane 7, the speed difference between the left and right drive wheels does not exceed a certain value V O −V 1 , and the drive wheels on the low speed side are accelerated and the drive wheels on the high speed side are accelerated to return to the straight-ahead state. Since this is done by decelerating the drive wheels, the return to the straight-ahead state is extremely quick. Therefore, we have significantly improved the ability of PWS-type automated guided vehicles to follow the specified travel route by using a pair of on/off output sensors.
This allows the vehicle to travel at practical speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPWS方式の六輪の無人搬送車を示す
模式図、第2図は規定経路に対し左右へ変位した
ときのセンサの出力を示す説明図、第3図a,b
は従来の制御方法による速度線図を示す説明図、
第4図は第3図の制御方法における車体中心の走
行軌跡を示す説明図、第5図a,bないし第8図
a,bは本発明による制御方法を示す速度線図を
示す説明図、第9図は本発明による車体中心の走
行軌跡を示す説明図である。 1……無人搬送車、2……左側駆動輪、3……
右側駆動輪、4……キヤスタ、5,6……セン
サ、7……ガイドレーン。
Figure 1 is a schematic diagram showing a PWS type six-wheeled automatic guided vehicle, Figure 2 is an explanatory diagram showing the output of the sensor when it is displaced left and right with respect to the specified route, and Figure 3 a, b.
is an explanatory diagram showing a speed diagram according to a conventional control method,
FIG. 4 is an explanatory diagram showing a traveling locus of the center of the vehicle body in the control method of FIG. 3; FIGS. FIG. 9 is an explanatory diagram showing a travel locus centered on the vehicle body according to the present invention. 1...Automated guided vehicle, 2...Left drive wheel, 3...
Right drive wheel, 4...caster, 5, 6...sensor, 7...guide lane.

Claims (1)

【特許請求の範囲】[Claims] 1 規定の走行経路からの左右への変位の有無お
よび変位方向を検出する検出手段を備え、該検出
手段の出力により左右の駆動輪を独立に駆動制御
して走行、操舵を行なう無人搬送車の制御方法に
おいて、前記左右の駆動輪を定常速度で駆動して
走行中に、上記検出手段が実際の走行経路が規定
の経路より左右いずれかに変位したことを検出し
たときに、走行経路の修正のための旋回の内側と
なる第1の駆動輪の駆動速度を第1の減速率であ
らかじめ定められた第1の速度まで減速し、他方
の第2の駆動輪の駆動速度を上記定常速度に維持
する第1段階と、上記第1の駆動輪の駆動速度を
上記第1の速度に、また上記第2の駆動輪の駆動
速度を定常速度に、それぞれ維持する第2段階
と、上記検出手段が規定の経路へ復帰したことを
検出したときに、上記第1の駆動輪の駆動速度を
第2の加速率で加速し、同時に上記第2の駆動輪
の駆動速度の第3の減速率で減速して、第1の駆
動輪と第2の駆動輪の駆動速度を等しくする第3
段階と、上記第1の駆動輪と第2の駆動輪の駆動
速度を同時に第4の加速率で上記定常速度まで加
速する第4段階とを含み、上記検出手段からの検
出出力と現在の制御段階との組合せにより、あら
かじめ決定された制御段階に移行することによつ
て定常速度での走行に復帰することを特徴とする
無人搬送車の制御方法。
1 An automated guided vehicle that is equipped with a detection means for detecting the presence or absence and direction of displacement to the left or right from a prescribed travel route, and that travels and steers by independently controlling the left and right drive wheels based on the output of the detection means. In the control method, when the detecting means detects that the actual traveling route is displaced to the left or right from the prescribed route while the left and right drive wheels are driven at a steady speed, the traveling route is corrected. The drive speed of the first drive wheel on the inside of the turn is decelerated to a predetermined first speed at a first deceleration rate, and the drive speed of the other second drive wheel is reduced to the above-mentioned steady speed. a first stage of maintaining the driving speed of the first driving wheel at the first speed and a second stage of maintaining the driving speed of the second driving wheel at a steady speed; and the detecting means. When it is detected that the drive speed of the first drive wheel has returned to the prescribed path, the drive speed of the first drive wheel is accelerated at a second acceleration rate, and at the same time, the drive speed of the second drive wheel is reduced at a third deceleration rate. A third wheel that reduces speed to equalize the driving speed of the first driving wheel and the second driving wheel.
and a fourth step of simultaneously accelerating the drive speeds of the first drive wheel and the second drive wheel to the steady speed at a fourth acceleration rate, the detection output from the detection means and the current control 1. A control method for an automatic guided vehicle, characterized in that the automatic guided vehicle returns to running at a steady speed by transitioning to a predetermined control step in combination with a control step.
JP58139021A 1983-07-29 1983-07-29 Method for controlling unmanned carrier car Granted JPS6031615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139021A JPS6031615A (en) 1983-07-29 1983-07-29 Method for controlling unmanned carrier car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139021A JPS6031615A (en) 1983-07-29 1983-07-29 Method for controlling unmanned carrier car

Publications (2)

Publication Number Publication Date
JPS6031615A JPS6031615A (en) 1985-02-18
JPH031685B2 true JPH031685B2 (en) 1991-01-11

Family

ID=15235622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139021A Granted JPS6031615A (en) 1983-07-29 1983-07-29 Method for controlling unmanned carrier car

Country Status (1)

Country Link
JP (1) JPS6031615A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118411A (en) * 1985-11-18 1987-05-29 Daifuku Co Ltd Travelling control facilities for moving vehicle
JPS63184111A (en) * 1987-01-27 1988-07-29 Shin Kobe Electric Mach Co Ltd Method for controlling steering of automatic traveling vehicle

Also Published As

Publication number Publication date
JPS6031615A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
JPS63150711A (en) Control method for unmanned vehicle
JP3266747B2 (en) Vehicle guidance and travel control device
JPH1019595A (en) Driving supporting apparatus
JPH031685B2 (en)
US5629850A (en) Vehicle slip detection device
JP3349831B2 (en) Automatic guided vehicle control device
JPH01195511A (en) Speed control circuit for unmanned guide type cart
JPH08161048A (en) Travel wheel steering angle determining method for unmanned carriage
JPS63147206A (en) Unmanned vehicle device
JP2727370B2 (en) Travel control method for self-propelled bogie
JPH0313768Y2 (en)
JPS6247711A (en) Drive controller for unmanned carrier
JPH07248819A (en) Track control method for automatic running vehicle
JP2003330541A (en) Turn control method for unmanned carrier vehicle
JPH10273296A (en) Unmanned forklift
JPS5952310A (en) Control method of unmanned guide truck
JPS60262220A (en) Steering device of unmanned truck
JP2814823B2 (en) Attitude control device of unmanned forklift
JP2555570B2 (en) Unmanned vehicle guidance device
JPS61221804A (en) Drive controller for unmanned carrier
KR920006933B1 (en) Unmanned vehicle control method
JPH0196706A (en) Unmanned carrier
JPS60134914A (en) Laser guide device of unattended car
JPH06250735A (en) Steering speed controller for unmanned carriage
JPH057725B2 (en)