JPH0576723A - Method for reducing greenhouse-effect gas - Google Patents

Method for reducing greenhouse-effect gas

Info

Publication number
JPH0576723A
JPH0576723A JP3273261A JP27326191A JPH0576723A JP H0576723 A JPH0576723 A JP H0576723A JP 3273261 A JP3273261 A JP 3273261A JP 27326191 A JP27326191 A JP 27326191A JP H0576723 A JPH0576723 A JP H0576723A
Authority
JP
Japan
Prior art keywords
gas
reaction
greenhouse
discharge
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3273261A
Other languages
Japanese (ja)
Inventor
Jun Emi
準 江見
Yoshio Otani
吉生 大谷
Moichi Horiie
茂一 堀家
Kunio Mori
邦夫 森
Masahiro Kobayashi
正宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP3273261A priority Critical patent/JPH0576723A/en
Publication of JPH0576723A publication Critical patent/JPH0576723A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To efficiently reduce, separate and remove the greenhouseeffect gas, especially carbon dioxide. CONSTITUTION:The greenhouse-effect gas is allowed to react with the gas or aerosol highly reactive to the greenhouse-effect gas to liquefy or solidify a part of the greenhouse-effect gas. The carbon dioxide is converted to urea by the reaction 2NH3+CO2 NH2CO2NH4. This conversion reaction is promoted by exciting the gaseous reactant in the discharge field such as a corona discharge, spark discharge, glow discharge, arc discharge, etc. The schematic diagram of a gas reactor 10 utilizing the discharge field is shown in the figure, an electrode rod 12 is arranged in the axial direction of a cylindrical reaction tube 11, and a coil 13 is wound on the tube 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガス等の温室効果
ガスを削減する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing greenhouse gases such as carbon dioxide.

【0002】[0002]

【従来技術とその問題点】地球温暖化は各種の地球環境
問題の中でも、最も深刻な影響を人類社会や生態系に与
えると懸念されており、我が国においても、地球温暖化
の原因となる炭酸ガス、フロンおよびメタン等の温室効
果ガスの排出量を削減することが計画されている。温室
効果ガスの中で最も多量に排出される炭酸ガスなどの排
ガスを削減、除去する方法として、従来から、物理およ
び化学的吸収法、吸着法、膜分離法、蒸留法などが知ら
れている。
[Prior art and its problems] It is feared that global warming will have the most serious impact on human society and ecosystem among various global environmental problems. In Japan, carbon dioxide that causes global warming It is planned to reduce emissions of greenhouse gases such as gas, freon and methane. Conventionally, physical and chemical absorption methods, adsorption methods, membrane separation methods, distillation methods, etc. are known as methods for reducing and removing exhaust gases such as carbon dioxide gas, which is the most exhausted of greenhouse gases. ..

【0003】また、前記排ガス中には微粒子が含まれる
ことが多く、例えば、室内汚染ガス中には喫煙により生
じるアルデヒド類、オレフィン系炭化水素類などの固体
または液状の微粒子が含有されている。この種の微粒子
は、従来、各種のフィルターを用いた濾過分離法により
分離除去されている。
Further, the exhaust gas often contains fine particles. For example, indoor polluting gas contains solid or liquid fine particles such as aldehydes and olefinic hydrocarbons produced by smoking. Fine particles of this type are conventionally separated and removed by a filtration separation method using various filters.

【0004】しかしながら、温室効果ガス、特に炭酸ガ
スを効率的に分離除去して、その排出量を低減する技術
は未だ確立されていない。
However, a technique for efficiently separating and removing greenhouse gases, particularly carbon dioxide, to reduce the emission amount thereof has not yet been established.

【0005】[0005]

【発明の目的】本発明は前記課題を解決しようとするも
のであり、その目的は、火力発電所、工場その他の産業
施設等からの排出ガス、あるいは、ヒーター、ガス機器
等から排出される炭酸ガス、一酸化炭素、NOX などの
室内環境汚染ガスをエアロゾル化して、温室効果ガスを
削減することにある。また、本発明は前記温室効果ガス
を低減し、分離除去することを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and an object thereof is to emit exhaust gas from thermal power plants, factories and other industrial facilities, or carbon dioxide emitted from heaters, gas appliances and the like. gas, carbon monoxide, indoor environmental pollution gas such as NO X by aerosolization is to reduce greenhouse gases. Moreover, this invention aims at reducing the said greenhouse effect gas, and separating and removing.

【0006】[0006]

【発明の概要】本発明に係る温室効果ガスの削減方法
は、温室効果ガスを、このガスと反応性の高いガスまた
はエアロゾルと反応させて、温室効果ガスの一部を液体
または固体に変換することを特徴とする。更に、前記反
応を反応ガスの励起状態において行うこと、または、前
記温室効果ガスの変換物を、温室効果ガスからフィルタ
ーにより分離することを特徴とする。
SUMMARY OF THE INVENTION The greenhouse gas reduction method according to the present invention reacts a greenhouse gas with a gas or an aerosol having a high reactivity with the gas to convert a part of the greenhouse gas into a liquid or a solid. It is characterized by Furthermore, the reaction is carried out in the excited state of the reaction gas, or the converted greenhouse gas is separated from the greenhouse gas by a filter.

【0007】[0007]

【発明の具体的な説明】本発明において、温室効果ガス
である気体を、固体または液体に変換する方法には、
気体を反応させて、その気体よりも高沸点の物質を生成
させる方法と、気体とその気体との反応性に富むエア
ロゾルを反応させて新たに安定な物質を生成させる方法
とがある。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a method for converting a gas which is a greenhouse effect gas into a solid or a liquid includes:
There are a method of reacting a gas to generate a substance having a boiling point higher than that of the gas, and a method of reacting a gas and an aerosol having high reactivity with the gas to generate a new stable substance.

【0008】例えば、二酸化炭素については、具体的に
次のような反応を利用する。 (1)尿素合成反応 2NH3 +CO2 →NH2 CO2 NH4 NH2 CO2 NH4 →CO(NH2)2 +H2 O (2)β−アミノエチルアルコールとの反応 2HOC2 4 NH2 +H2 O+CO2 →(HOC2 4 NH3 )2CO3
For example, for carbon dioxide, the following reactions are specifically utilized. (1) Urea synthesis reaction 2NH 3 + CO 2 → NH 2 CO 2 NH 4 NH 2 CO 2 NH 4 → CO (NH 2 ) 2 + H 2 O (2) Reaction with β-aminoethyl alcohol 2HOC 2 H 4 NH 2 + H 2 O + CO 2 → (HOC 2 H 4 NH 3) 2 CO 3

【0009】 また、前記の方法については、次のよ
うな反応を利用する。 (3)噴霧消石灰水溶液と二酸化炭素との接触反応 Ca(OH)2 +CO2 →CaCO3 +H2 O (4)水ガラスと二酸化炭素との接触反応 H2 O+CO2 +Na2 O・nSiO2 →Na2 CO3 +nSiO2 +H2
[0009] The following reaction is used for the above method. (3) Catalytic reaction of sprayed slaked lime aqueous solution and carbon dioxide Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (4) Catalytic reaction of water glass and carbon dioxide H 2 O + CO 2 + Na 2 O · nSiO 2 → Na 2 CO 3 + nSiO 2 + H 2 O

【0010】上記反応において、反応気体の活性を高め
ることにより常温、常圧に近い状態でも反応を促進する
ことができる。具体的には、前記反応気体をコロナ放
電、火花放電、グロー放電、アーク放電などの自続放
電、レーザー照射または紫外線照射等の方法により、化
学的に不安定な状態まで励起させる方法を挙げることが
できる。特に、自続放電は、レーザーや紫外線がピンポ
イントを反応させるのに対して、後記するような反応器
を採用することにより、反応面積を多くとることができ
る。
In the above reaction, by increasing the activity of the reaction gas, the reaction can be promoted even at room temperature and near normal pressure. Specifically, a method of exciting the reaction gas to a chemically unstable state by a method such as corona discharge, spark discharge, glow discharge, self-sustaining discharge such as arc discharge, laser irradiation or ultraviolet irradiation is given. You can In particular, in the self-sustaining discharge, the reaction area can be increased by adopting a reactor as described later, while the laser and the ultraviolet rays make pinpoint reaction.

【0011】図1は、放電場を利用したガス反応器の概
要図である。ガス反応器10は円筒状の反応管11の軸
心方向に電極棒12を配設し、反応管11の外周部には
コイル13が巻回され、電極棒12は図示してない高電
圧発生装置に接続されている。高電圧発生装置の電圧を
調節することにより、放電場に自続放電を起こすことが
できる。反応管11は通常の電極材でもよいし、反応管
11の内表面を触媒剤で被覆したものでもよい。更に、
反応管11の材質を温室効果ガスと反応性の高い材料、
即ち、温室効果ガスが二酸化炭素であれば、生石灰やナ
トリウム塩等としてもよい。反応管11の材質をこのよ
うな反応性材料で構成すれば、反応性ガスの貯蔵装置や
供給装置等が不要となり、気体変換システムを簡略化す
ることができる。
FIG. 1 is a schematic diagram of a gas reactor utilizing a discharge field. The gas reactor 10 has an electrode rod 12 arranged in the axial direction of a cylindrical reaction tube 11, a coil 13 is wound around the outer periphery of the reaction tube 11, and the electrode rod 12 generates a high voltage (not shown). It is connected to the device. By adjusting the voltage of the high voltage generator, self-sustaining discharge can be generated in the discharge field. The reaction tube 11 may be a normal electrode material, or the inner surface of the reaction tube 11 may be coated with a catalyst agent. Furthermore,
The material of the reaction tube 11 is a material highly reactive with greenhouse gases,
That is, if the greenhouse effect gas is carbon dioxide, quicklime or sodium salt may be used. If the material of the reaction tube 11 is made of such a reactive material, a storage device or a supply device for the reactive gas becomes unnecessary, and the gas conversion system can be simplified.

【0012】図2は、放電場を利用した別のガス反応器
の概要図である。ガス反応器20内には、間隔をあけて
電極ネット21、21が配置され、その間に反応性材料
からなる球体22が充填されている。球体22は高誘電
体の表面を反応性材料または触媒剤で被覆したものでも
よい。電極ネット21、21間の放電により、気体変換
反応は球体22の表面付近で促進される。
FIG. 2 is a schematic view of another gas reactor using a discharge field. Electrode nets 21, 21 are arranged at intervals in the gas reactor 20, and spheres 22 made of a reactive material are filled between them. The sphere 22 may be a high dielectric material whose surface is coated with a reactive material or a catalyst. Due to the discharge between the electrode nets 21, 21, the gas conversion reaction is promoted near the surface of the sphere 22.

【0013】また、気体変換反応システムを構成する上
で必要があれば、反応ガスを反応器に供給する前に、乾
燥機および/またはガス混合器に通してもよい。反応後
のガスから固体または液状の生成微粒子を分離するに
は、適宜の分離器を用いることができる。分離器とし
て、電気集塵機、HEPAフィルター、インパクター等
を例示することができる。
If necessary in constructing the gas conversion reaction system, the reaction gas may be passed through a dryer and / or a gas mixer before being supplied to the reactor. An appropriate separator can be used to separate solid or liquid fine particles produced from the gas after the reaction. Examples of the separator include an electric dust collector, a HEPA filter, and an impactor.

【0014】[0014]

【実施例】実施例1 二酸化炭素とアンモニアガスを原料とし、図1に示すガ
ス反応器を用いて、ガス変換反応を行った。反応容器1
0内の反応温度は20℃、反応圧力は1Kgf/cm2、放電
圧は5.0KVとした。二酸化炭素とアンモニアガスは
1:2の理論比で供給し、滞留時間は1分であった。変
換反応の結果を表1に示す。なお、生成したエアロゾル
中の粒子径を粒度分布計で測定した結果、殆ど0.01
μm以下であった。
Example 1 A gas conversion reaction was carried out using carbon dioxide and ammonia gas as raw materials and using the gas reactor shown in FIG. Reaction vessel 1
The reaction temperature in 0 was 20 ° C., the reaction pressure was 1 Kgf / cm 2 , and the discharge voltage was 5.0 KV. Carbon dioxide and ammonia gas were supplied at a theoretical ratio of 1: 2, and the residence time was 1 minute. The results of the conversion reaction are shown in Table 1. In addition, as a result of measuring the particle size in the generated aerosol with a particle size distribution analyzer, almost 0.01
It was less than μm.

【0015】実施例2、3 実施例1において、原料二酸化炭素の濃度を代えて反応
を行った。変換反応の結果を表1に示す。
In Examples 2 and 3 , the reaction was carried out by changing the concentration of the raw material carbon dioxide. The results of the conversion reaction are shown in Table 1.

【0016】比較例1、2、3 実施例1〜3において、放電を行わなかった他は同一の
条件で比較実験を行った。しかし、いずれの濃度におい
ても二酸化炭素の変換反応は起こらなかった。
Comparative Examples 1, 2, 3 In Examples 1 to 3, comparative experiments were conducted under the same conditions except that the discharge was not performed. However, no conversion reaction of carbon dioxide occurred at any concentration.

【0017】参考例1、2、3 二酸化炭素とアンモニアガスを原料とし、図1と同様の
ガス反応器を用いて、ガス変換反応を行った。放電は行
わず、反応温度を190℃、反応圧力を175Kgf /cm2
とした。二酸化炭素とアンモニアガスは1:2の理論比
で供給し、滞留時間は1分であった。変換反応の結果を
表1に示す。
Reference Examples 1, 2 and 3 Using carbon dioxide and ammonia gas as raw materials, a gas conversion reaction was carried out using the same gas reactor as in FIG. No discharge was performed, reaction temperature was 190 ° C, reaction pressure was 175 Kgf / cm 2
And Carbon dioxide and ammonia gas were supplied at a theoretical ratio of 1: 2, and the residence time was 1 minute. The results of the conversion reaction are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明の方法によれば、温室効果ガス、
特に炭酸ガスを効率的に削減することができる。また、
気体の励起状態で変換反応を行うことにより、常温、常
圧に近い状態でも反応を促進することが可能となる。更
に、変換物をフィルターに通すことにより、確実に分離
除去することができるという優れた効果を有する。
According to the method of the present invention, a greenhouse gas,
In particular, carbon dioxide gas can be efficiently reduced. Also,
By carrying out the conversion reaction in the excited state of gas, it becomes possible to promote the reaction even in a state close to normal temperature and pressure. Furthermore, by passing the converted product through a filter, there is an excellent effect that it can be reliably separated and removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電場を利用したガス反応器の概要図である。FIG. 1 is a schematic diagram of a gas reactor using a discharge field.

【図2】放電場を利用した別のガス反応器の概要図であ
る。
FIG. 2 is a schematic view of another gas reactor using a discharge field.

【符号の説明】[Explanation of symbols]

10、20 ガス反応器 11 反応管 12 電極棒 13 コイル 21 電極ネット 22 球体 10, 20 Gas reactor 11 Reaction tube 12 Electrode rod 13 Coil 21 Electrode net 22 Sphere

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 邦夫 東京都新宿区津久戸町2番1号 株式会社 熊谷組東京本社内 (72)発明者 小林 正宏 東京都新宿区津久戸町2番1号 株式会社 熊谷組東京本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Mori No. 1 Tsukutocho, Shinjuku-ku, Tokyo Kumagai Gumi Tokyo Head Office Co., Ltd. (72) Masahiro Kobayashi No. 2 Tsukudo-cho, Shinjuku-ku, Tokyo Kumagai Gumi Tokyo Head Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 温室効果ガスを、このガスと反応性の高
いガスまたはエアロゾルと反応させて、温室効果ガスの
一部を液体または固体に変換することを特徴とする温室
効果ガスの削減方法。
1. A method for reducing a greenhouse effect gas, which comprises reacting a greenhouse effect gas with a gas or an aerosol highly reactive with the gas to convert a part of the greenhouse effect gas into a liquid or a solid.
【請求項2】 前記反応を反応ガスの励起状態において
行う請求項1記載の温室効果ガスの削減方法。
2. The greenhouse gas reduction method according to claim 1, wherein the reaction is performed in an excited state of the reaction gas.
【請求項3】 前記温室効果ガスの変換物を、温室効果
ガスからフィルターにより分離する請求項1記載の温室
効果ガスの削減方法。
3. The greenhouse gas reduction method according to claim 1, wherein the converted greenhouse gas is separated from the greenhouse gas by a filter.
JP3273261A 1991-09-25 1991-09-25 Method for reducing greenhouse-effect gas Withdrawn JPH0576723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273261A JPH0576723A (en) 1991-09-25 1991-09-25 Method for reducing greenhouse-effect gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273261A JPH0576723A (en) 1991-09-25 1991-09-25 Method for reducing greenhouse-effect gas

Publications (1)

Publication Number Publication Date
JPH0576723A true JPH0576723A (en) 1993-03-30

Family

ID=17525367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273261A Withdrawn JPH0576723A (en) 1991-09-25 1991-09-25 Method for reducing greenhouse-effect gas

Country Status (1)

Country Link
JP (1) JPH0576723A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290238A (en) * 1985-09-23 1987-04-24 旭化成株式会社 Antistatic sheet-shaped article
JP2007222867A (en) * 2006-01-20 2007-09-06 Erubu:Kk Carbon dioxide gas purifying material, carbon dioxide gas purifying fiber and carbon dioxide gas purifying cloth, and carbon dioxide gas purifying apparatus
WO2013028568A1 (en) * 2011-08-19 2013-02-28 Hychar Energy, Llc Electronegative-ion-aided method and apparatus for synthesis of ethanol and organic compounds
JP2013519513A (en) * 2010-02-19 2013-05-30 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Solvent treatment method
CN103796751A (en) * 2011-08-19 2014-05-14 海加能源有限公司 Electronegative-ion-aided method and apparatus for synthesis of ethanol and organic compounds
CN113244768A (en) * 2021-04-27 2021-08-13 薛保生 Light oxygen exhaust-gas treatment equipment for industrial waste gas purification

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290238A (en) * 1985-09-23 1987-04-24 旭化成株式会社 Antistatic sheet-shaped article
JP2007222867A (en) * 2006-01-20 2007-09-06 Erubu:Kk Carbon dioxide gas purifying material, carbon dioxide gas purifying fiber and carbon dioxide gas purifying cloth, and carbon dioxide gas purifying apparatus
JP4746569B2 (en) * 2006-01-20 2011-08-10 株式会社エルブ Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device
JP2013519513A (en) * 2010-02-19 2013-05-30 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Solvent treatment method
WO2013028568A1 (en) * 2011-08-19 2013-02-28 Hychar Energy, Llc Electronegative-ion-aided method and apparatus for synthesis of ethanol and organic compounds
CN103796751A (en) * 2011-08-19 2014-05-14 海加能源有限公司 Electronegative-ion-aided method and apparatus for synthesis of ethanol and organic compounds
CN102993053A (en) * 2011-09-28 2013-03-27 海加能源有限公司 Electronegative plasma assisted carbon dioxide emission reduction processing method and device thereof
CN113244768A (en) * 2021-04-27 2021-08-13 薛保生 Light oxygen exhaust-gas treatment equipment for industrial waste gas purification

Similar Documents

Publication Publication Date Title
Gholami et al. Technologies for the nitrogen oxides reduction from flue gas: A review
AU693966B2 (en) Regeneration of catalyst/absorber
KR100723082B1 (en) Process for the removal of nitrogen oxides from gas streams
Jogan et al. The effect of residence time on the CO/sub 2/reduction from combustion flue gases by an AC ferroelectric packed bed reactor
US3887683A (en) Method for removing nitrogen oxides from waste gases
EP0793995B1 (en) Method of treating gases containing organohalogen compounds
US6852200B2 (en) Non-thermal plasma reactor gas treatment system
US4026992A (en) Method for removing nitrogen oxides from combustion exhaust gases
EP0408772B1 (en) Exhaust gas cleaning method
Pourmohammadbagher et al. Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber
WO2000043102A2 (en) Process and reactor for plasma assisted gas processing
JPH0616818B2 (en) Exhaust gas purification method and device
JPH0576723A (en) Method for reducing greenhouse-effect gas
CN109433006A (en) A kind of flue gas treating process process and its equipment configurations
JPH03106419A (en) Treatment process for gas containing fluorocarbon and catalyst for decomposing fluorocarbon
US4116881A (en) Gas-purifying composition and method of producing it
JPH06165909A (en) Method for decreasing green house effect gas and device for the same
JP2001113134A (en) Method for cleaning waste gas containing nox
US4025603A (en) Methods of purifying gas containing nitrogen oxide, and compositions used therefor
JP2003112010A (en) Deodorization apparatus
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
DE4336768A1 (en) Sulphur and nitrogen conversion from oxide to elemental form
JPS6025531A (en) Dry purification of exhaust gas
US5935539A (en) Reactive composition and method for the purification of a nitric oxide containing gas
JP3327099B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203