JPH0576529B2 - - Google Patents

Info

Publication number
JPH0576529B2
JPH0576529B2 JP59073996A JP7399684A JPH0576529B2 JP H0576529 B2 JPH0576529 B2 JP H0576529B2 JP 59073996 A JP59073996 A JP 59073996A JP 7399684 A JP7399684 A JP 7399684A JP H0576529 B2 JPH0576529 B2 JP H0576529B2
Authority
JP
Japan
Prior art keywords
rare earth
didymium
alloy
cobalt
cobalt magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073996A
Other languages
Japanese (ja)
Other versions
JPS60218443A (en
Inventor
Koji Akioka
Tatsuya Shimoda
Ryuichi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59073996A priority Critical patent/JPS60218443A/en
Publication of JPS60218443A publication Critical patent/JPS60218443A/en
Publication of JPH0576529B2 publication Critical patent/JPH0576529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、Smを用いる2−17系希土類コバル
ト磁石において、Smをジジム(Nd、Prの合金)
で置換した高性能かつ省Sm、低コストの希土類
コバルト磁石に係わる。 〔従来技術〕 従来、希土類コバルト磁石にはSmが主体とな
つて用いられてきた。ところがSmは希土類の原
鉱石であるバストネサイトには1%以下、モナザ
イトには約3%しか含まれない元素である。その
ため、1−5系ではSmの置換として、低コスト
化のためにCeやミツシユメタル、高性能化のた
めにはPrなどの置換例がある。ところが2−17
系では1−5系に比して、保磁力iHcを得にくい
ため研究例も少なく、高性能化のためにPr、Y
による置換を行つた例として、Ken Ohashi:
EFFECTS OF PRASEODYMIUM
SUBSTITUTION ON PRECIPITATION
HARDENED RARE EARTH MAGNET:
5th R−Co WORKSHOP P493〜501:1981)
がある程度である。そしてこの文献によれば、
Smを20at%以上置換すると、焼結性が低下し密
度が上がらず、また保磁力iHcも急激に減少する
ので、置換量は20at%程度が限界とされていた。 〔目的〕 本発明の目的は、Sm置換型2−17系希土類コ
バルト磁石において、従来行なわれていた、Y、
Pr等の単体希土類より、分離精製が低コストな
ジジムを用いて置換を行なうことにより、高性
能・省Sm・低コストの希土類コバルト磁石を得
ることにある。 〔概要〕 本発明による第1の態様に係る希土類コバルト
磁石は、組成式Sm1-xDxTMz(ただし、式中、D
はジジムであるPrとNdとの合金、TMはコバル
トを主体とする遷移金属、Zは希土類元素とTM
の比であつて8.5以下の値を示す)で表わされる、
いわゆる2−17系希土類コバルト磁石であつて、
Dを必須成分として含み、X値がX≦0.7であり、
かつ、樹脂結合法によつて成形されてなることを
特徴とするものである。 さらに第2の態様に係る希土類コバルト磁石
は、組成式Sm1-xDxTMz(ただし、式中、Dはジ
ジムであるPrとNdとの合金、TMはコバルトを
主体とする遷移金属、Zは希土類元素とTMの比
であつて8.5以下の値を示す)で表わされる、い
わゆる2−17系希土類コバルト磁石であつて、D
を必須成分として含み、X値がX≦0.5であり、
かつ、焼結法によつて成形されてなることを特徴
とするものである。 Pr、NdはR2Co17化合物(Rは希土類)の飽和
磁化4πIsがSmより高い。また希土類鉱石中の含
有量もSmより数倍〜数10倍も高く、資源的に見
ても非常に有利な元素である。希土類鉱石として
よく用いられるバストネサイトの場合、L、Ce、
Pr、Ndで約99%程度を占める。この4元素を精
製したのが、いわゆるミツシユメタルである。こ
のうちLaはR2Co17化合物を形成せず、Ceは飽和
磁化、キユーリ点ともSmより低く、両者とも高
性能化のためにSmを大きく置換するには適さな
い。またLa、Ce、Pr、Ndの混合物のうち、La
とCeは分離がしやすく、NdとPrは分離が困難で
ある。これまでSm置換元素として、Prがよく用
いられてきたが、Ndとの分離が困難であること
や、Prそのものの需要が少なかつたために、資
源的に少ないSmよりも高コストになることが多
かつた。またNdは、Nd2Co17が常温での一軸異
方性を持たないため、Sm置換元素としてはほと
んど注目されていなかつた。しかし本発明者ら
は、Smの置換元素としてジジム(LaとCeを分離
したNdとPrの合金)を用いれば、前記した大橋
氏の文献のように焼結性が低下することもなく、
熱処理条件の工夫によつてSmを約50at%まで置
換する高性能磁石が可能であることを発見した。
また本発明に使用するジジムは、分離コストの高
いNdとPrの分離工程を含まないので、低コスト
になることも大きな特徴である。 〔実施例〕 以下、本発明について実施例に基づき詳細に説
明する。 実施例 1 一般式でSm1-xDx(Co0.681Cu0.075Fe0.22Zr0.0248.
1

(DはD1:Pr25wt%、Nd75wt%、D2:Pr75wt
%、Nd25wt%の2種類のジジムを使用)なる合
金を低周波溶解炉で溶解し、合金インゴツトを作
成した。このインゴツトを粉砕し、1150〜1200℃
の種々の温度範囲で1時間の焼結を行ない、続い
て850℃×8時間の時効処理を行ない、特性比較
を行つた。なお比較例としてSm1-xPrx(Co0.681
Cu0.075Fe0.22Zr0.0248.1とSm1-xNdx(Co0.681Cu0.07
5

Fe0.22Zr0.0248.1とSm(Co0.681Cu0.075Fe0.22Zr0.02
4
8.
を用いた。 以下に特性結果を示す。
[Technical field] The present invention relates to a 2-17 rare earth cobalt magnet using Sm, in which Sm is replaced with didymium (an alloy of Nd and Pr).
It is related to high-performance, Sm-saving, and low-cost rare earth cobalt magnets. [Prior Art] Conventionally, rare earth cobalt magnets have mainly been made of Sm. However, Sm is an element that is contained in less than 1% of bastnasite, which is a rare earth ore, and only about 3% of monazite. Therefore, in the 1-5 series, examples of substitution for Sm include Ce and Mitsushimetal for cost reduction, and Pr for high performance. However, 2-17
Compared to the 1-5 system, it is difficult to obtain a coercive force iHc, so there are few research examples, and in order to improve performance, Pr, Y
As an example of replacing by Ken Ohashi:
EFFECTS OF PRASEODYMIUM
SUBSTITUTION ON PRECIPITATION
HARDENED RARE EARTH MAGNET:
5th R-Co WORKSHOP P493~501:1981)
To some extent. And according to this literature,
If more than 20 at% of Sm is substituted, the sinterability will decrease, the density will not increase, and the coercive force iHc will also decrease rapidly, so the substitution amount was considered to be limited to about 20 at%. [Objective] The object of the present invention is to eliminate Y,
The objective is to obtain a high-performance, Sm-saving, and low-cost rare earth cobalt magnet by replacing elemental rare earth elements such as Pr with didymium, which is less expensive to separate and purify. [Summary] The rare earth cobalt magnet according to the first aspect of the present invention has a composition formula Sm 1-x D x TM z (wherein, D
is an alloy of didymium Pr and Nd, TM is a transition metal mainly composed of cobalt, Z is a rare earth element and TM
is the ratio of 8.5 or less),
It is a so-called 2-17 rare earth cobalt magnet,
Contains D as an essential component, the X value is X≦0.7,
Moreover, it is characterized in that it is molded by a resin bonding method. Furthermore, the rare earth cobalt magnet according to the second embodiment has a composition formula Sm 1-x D x TM z (wherein, D is an alloy of Pr and Nd, which is didymium, and TM is a transition metal mainly composed of cobalt. It is a so-called 2-17 rare earth cobalt magnet, where Z is the ratio of rare earth element to TM and shows a value of 8.5 or less.
contains as an essential component, the X value is X≦0.5,
Moreover, it is characterized in that it is formed by a sintering method. In Pr and Nd, the saturation magnetization 4πIs of R 2 Co 17 compounds (R is a rare earth element) is higher than that of Sm. Moreover, the content in rare earth ores is several to several ten times higher than Sm, making it a very advantageous element from a resource standpoint. In the case of bastnaesite, which is often used as a rare earth ore, L, Ce,
Pr and Nd account for approximately 99%. The refined product of these four elements is called Mitsushi Metal. Of these, La does not form an R 2 Co 17 compound, and Ce has a saturation magnetization and a Kyuri point lower than Sm, and both are not suitable for large substitutions for Sm in order to improve performance. Also, among the mixtures of La, Ce, Pr, and Nd, La
and Ce are easy to separate, while Nd and Pr are difficult to separate. Until now, Pr has often been used as an element to replace Sm, but because it is difficult to separate from Nd and there is little demand for Pr itself, it has become more expensive than Sm, which is a scarce resource. It was a lot. Furthermore, Nd has received little attention as an Sm replacement element because Nd 2 Co 17 does not have uniaxial anisotropy at room temperature. However, the present inventors found that by using didymium (an alloy of Nd and Pr in which La and Ce are separated) as a replacement element for Sm, the sinterability does not deteriorate as in the above-mentioned Ohashi literature.
We discovered that by changing the heat treatment conditions, it is possible to create a high-performance magnet that can replace up to about 50 at% of Sm.
Another major feature of the didymium used in the present invention is that it is low-cost because it does not involve a step of separating Nd and Pr, which requires high separation costs. [Examples] Hereinafter, the present invention will be described in detail based on Examples. Example 1 General formula: Sm 1-x D x (Co 0.681 Cu 0.075 Fe 0.22 Zr 0.024 ) 8.
1

(D is D1 : Pr25wt%, Nd75wt%, D2 : Pr75wt%
An alloy ingot was prepared by melting an alloy using two types of didymium (Nd25wt% and Nd25wt%) in a low frequency melting furnace. This ingot is crushed and heated to 1150-1200℃.
Sintering was performed for 1 hour at various temperature ranges, followed by aging treatment at 850°C for 8 hours, and the characteristics were compared. As a comparative example, Sm 1-x Pr x (Co 0.681
Cu 0.075 Fe 0.22 Zr 0.024 ) 8.1 and Sm 1-x Nd x (Co 0.681 Cu 0.07
Five

Fe 0.22 Zr 0.024 ) 8.1 and Sm (Co 0.681 Cu 0.075 Fe 0.22 Zr 0.02
4
) 8.
1 was used. Characteristic results are shown below.

【表】【table】

【表】 第1表に示すように、Pr置換のみでは焼結性
が悪く、密度が上がつていない。ところがNdを
含むジジムで置換を行なうと、焼結性が改善され
Br、(BH)maxが大きく改善されている。また
焼結温度を適切な温度に変更することによつて約
50at%のジジム置換が可能となり、Smのみしか
用いない磁石に比して低コスト化が可能となつ
た。 実施例 2 一般式でSm1-xDx(Co0.620Cu0.060Fe0.30Ti0.0207.
(DはD1:Ce10wt%、Pr20wt%、Nd70wt%、
D2:Ce20wt%、Pr15wt%、Nd65wt%、D3
Ce30wt%、Pr12wt%、Nd58wt%の3種類のCe
入りジジムを使用)なる、合金を低周波溶解炉で
溶解し、合金インゴツトを作成した。このインゴ
ツトを1170〜1070℃の種々の温度範囲で24時間の
溶体化処理を行ない、続いて830℃×18時間の時
効処理を行ない、これを粉砕し、樹脂結合法によ
り異方性磁石を作成し、特性比較を行つた。なお
比較例は、Sm(Co0.624Cu0.060Fe0.30Ti0.0207.5で溶
体化処理は1160℃×24時間、時効処理は830℃×
18時間であつた。 以下に特性結果を示す。
[Table] As shown in Table 1, the sinterability is poor and the density is not increased by Pr substitution alone. However, when substitution was made with didymium containing Nd, the sinterability was improved.
Br and (BH)max are greatly improved. Also, by changing the sintering temperature to an appropriate temperature, approximately
It has become possible to substitute 50 at% didymium, making it possible to reduce costs compared to magnets that only use Sm. Example 2 The general formula is Sm 1-x D x (Co 0.620 Cu 0.060 Fe 0.30 Ti 0.020 ) 7.
5 (D is D1 : Ce10wt%, Pr20wt%, Nd70wt%,
D2 : Ce20wt%, Pr15wt%, Nd65wt%, D3 :
Three types of Ce: Ce30wt%, Pr12wt%, Nd58wt%
The alloy was melted in a low-frequency melting furnace to create an alloy ingot. This ingot was subjected to solution treatment for 24 hours at various temperatures from 1170 to 1070℃, followed by aging treatment at 830℃ for 18 hours, and crushed to create an anisotropic magnet using a resin bonding method. and compared the characteristics. In addition, the comparative example is Sm (Co 0.624 Cu 0.060 Fe 0.30 Ti 0.020 ) 7.5 , solution treatment at 1160℃ x 24 hours, and aging treatment at 830℃ x
It was hot for 18 hours. Characteristic results are shown below.

〔効果〕〔effect〕

以上、述べたように本発明によれば、焼結法、
樹脂結合法といつた製造方法にかかわらず、高性
能かつ省Sm・低コストの希土類コバルト磁石の
製造が可能であるという効果を有する。
As described above, according to the present invention, the sintering method,
Regardless of the manufacturing method used, such as the resin bonding method, the present invention has the effect that it is possible to manufacture high-performance, Sm-saving, and low-cost rare earth cobalt magnets.

Claims (1)

【特許請求の範囲】 1 組成式Sm1-xDxTMz(ただし、式中、Dはジ
ジムであるPrとNdとの合金、TMはコバルトを
主体とする遷移金属、Zは希土類元素とTMの比
であつて8.5以下の値を示す)で表わされる、い
わゆる2−17系希土類コバルト磁石であつて、D
を必須成分として含み、X値がX≦0.7であり、
かつ、樹脂結合法によつて成形されてなることを
特徴とする、希土類コバルト磁石。 2 組成式Sm1-xDxTMz(ただし、式中、Dはジ
ジムであるPrとNdとの合金、TMはコバルトを
主体とする遷移金属、Zは希土類元素とTMの比
であつて8.5以下の値を示す)で表わされる、い
わゆる2−17系希土類コバルト磁石であつて、D
を必須成分として含み、X値がX≦0.5であり、
かつ、焼結法によつて成形されてなることを特徴
とする、希土類コバルト磁石。
[Claims] 1 Composition formula Sm 1-x D x TM z (wherein, D is an alloy of Pr and Nd, which is didymium, TM is a transition metal mainly composed of cobalt, and Z is a rare earth element) It is a so-called 2-17 rare earth cobalt magnet expressed by
contains as an essential component, the X value is X≦0.7,
A rare earth cobalt magnet characterized by being formed by a resin bonding method. 2 Composition formula Sm 1-x D x TM z (In the formula, D is an alloy of Pr and Nd, which is didymium, TM is a transition metal mainly composed of cobalt, and Z is the ratio of rare earth elements to TM. It is a so-called 2-17 rare earth cobalt magnet expressed by D
contains as an essential component, the X value is X≦0.5,
A rare earth cobalt magnet characterized by being formed by a sintering method.
JP59073996A 1984-04-13 1984-04-13 Rare earth element-cobalt magnet Granted JPS60218443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073996A JPS60218443A (en) 1984-04-13 1984-04-13 Rare earth element-cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073996A JPS60218443A (en) 1984-04-13 1984-04-13 Rare earth element-cobalt magnet

Publications (2)

Publication Number Publication Date
JPS60218443A JPS60218443A (en) 1985-11-01
JPH0576529B2 true JPH0576529B2 (en) 1993-10-22

Family

ID=13534244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073996A Granted JPS60218443A (en) 1984-04-13 1984-04-13 Rare earth element-cobalt magnet

Country Status (1)

Country Link
JP (1) JPS60218443A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227055A (en) * 1986-03-28 1987-10-06 Hitachi Metals Ltd Rare earth-cobalt magnet material
JPS62243731A (en) * 1986-04-15 1987-10-24 Tohoku Metal Ind Ltd Permanent magnet alloy and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973999A (en) * 1982-10-20 1984-04-26 株式会社進精金属製作所 Portable simple drawing tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973999A (en) * 1982-10-20 1984-04-26 株式会社進精金属製作所 Portable simple drawing tool

Also Published As

Publication number Publication date
JPS60218443A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
JP3715573B2 (en) Magnet material and manufacturing method thereof
USRE31317E (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPS61195954A (en) Permanent magnet alloy
JPS6127457B2 (en)
JPH0576529B2 (en)
JPS6031208A (en) Permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS59177346A (en) Alloy of rare earth metal for magnet material
JPS639733B2 (en)
JPS60224761A (en) Permanent magnet alloy
JPH0621307B2 (en) Resin-bonded rare earth cobalt magnet
JPS60224757A (en) Permanent magnet alloy
JPH0152469B2 (en)
JPS62281403A (en) Permanent magnet
JPH0620818A (en) Rare earth cobalt magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JPS6052555A (en) Permanent magnet material and its production
KR930002559B1 (en) Permanent magnet and making method thereof
JP2992808B2 (en) permanent magnet
JPH0477066B2 (en)
JPS648455B2 (en)
JPS63213904A (en) Rare earth cobalt magnet
JPS6326187B2 (en)
JPH01298703A (en) Rare earth permanent magnet
JPH06295808A (en) Sintered rare earth magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term