JPS60224761A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS60224761A
JPS60224761A JP59081393A JP8139384A JPS60224761A JP S60224761 A JPS60224761 A JP S60224761A JP 59081393 A JP59081393 A JP 59081393A JP 8139384 A JP8139384 A JP 8139384A JP S60224761 A JPS60224761 A JP S60224761A
Authority
JP
Japan
Prior art keywords
magnets
rare earth
alloy
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081393A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimoda
達也 下田
Ryuichi Ozaki
隆一 尾崎
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59081393A priority Critical patent/JPS60224761A/en
Publication of JPS60224761A publication Critical patent/JPS60224761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a highly efficient Ce-Nd-Pr-Fe-W-B permanent magnet alloy with low cost by specifying the atomic ratio of a rare earth element to the other element, and said respective ratios in a rare earth element group and the other element group. CONSTITUTION:In the Ce-Nd-Pr-Fe-W-B alloy, the atomic ratio of the rare earth element R to the other element M is denoted as (z) (z=atomic number of M/atomic number of R), the atomic ratio in the element R as R=Ce1-a-bNdaPrb, the atomic ratio in the element M is expressed as M=Fe1-x-yWxBy. In this case, the respective values are regulated to 0.05<=a<=0.8, 0.05<=b<=0.5, 0.03<=x<=0.3, 0.001<=y<=0.15, 3.5<=z<=9.0. By the alloy compsn., highly efficient plastic bond magnet and sintered magnet can be presented even by using inexpensive rare earth compound.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、セリウム(Co )−ジジム(Dl)−鉄(
Fe )−タングステ/(W〕−ポロ/(B)からなる
あるいは鎖糸を主体とした低コストで高性能な永久磁石
合金に関する。ただし、ジジム、はN d −P r合
金の通称である。
Detailed Description of the Invention [Technical Field] The present invention relates to cerium (Co)-didymium (Dl)-iron (
The present invention relates to a low-cost, high-performance permanent magnetic alloy consisting of (Fe)-tungste/(W]-poro/(B) or chain thread as a main component. However, didymium is a common name for Nd-Pr alloy.

従来実用化されている磁石の主なものを、化学組成と製
造法にもとすいて分類すると第1表のようになる。
Table 1 shows the main types of magnets that have been put to practical use, classified according to their chemical composition and manufacturing method.

第1表 表中○印は生産されているもの、x印は生産されていな
いものを示している。日本市場においては焼結アルニコ
を除く他の5種類の磁石が生産されている。このssi
類の磁石は、日本市場において出荷金額および生産重量
で99%以上(1985年)占めており、磁石といえば
これらのどれかであると言える。磁石の種類がこのよう
に多いのは、各々のものがそれぞれ長所短所を持ってお
り、種々の応用から要求される仕様によりそれぞれ使い
わけられているからである。これらの磁石の長所短所を
挙げてみる。まず焼結フェライ)ff1石であるが、こ
の磁石は他のものに比べて単価が最も安いことから、現
在多IK使用されている(於日本、1985年の推定で
59.000 t o n )。単価は等方性でα5〜
1円/2、異方性で2〜5円/′/であり、性能はエネ
ルギー積(BH)maxで示すと、等方性でIMGOe
程度、異方性で15〜4.0MGOe程度である。この
ように焼結フェライト磁石は性能は低いがそれにも増し
て単価にメリットがある。
In Table 1, the ○ marks indicate those that are produced, and the x marks indicate those that are not produced. In the Japanese market, five types of magnets other than sintered alnico are produced. This ssi
These types of magnets account for more than 99% (1985) of the Japanese market in terms of shipment value and production weight, and when it comes to magnets, it can be said to be one of these. The reason why there are so many types of magnets is that each type has its own advantages and disadvantages, and is used depending on the specifications required for various applications. Let's list the advantages and disadvantages of these magnets. First of all, it is a sintered ferrite) FF1 stone, but this magnet is currently used in many IKs because it has the lowest unit price compared to other magnets (59,000 tons in Japan, estimated in 1985). . The unit price is isotropic and α5~
1 yen/2, and 2 to 5 yen/'/ for anisotropic, and the performance is IMGOe for isotropic when expressed in energy product (BH) max.
The degree of anisotropy is about 15 to 4.0 MGOe. In this way, although sintered ferrite magnets have low performance, they have an even greater advantage in unit price.

しかしながら本来がセラミック磁石なので硬くて胞く耐
衝撃性に乏しい。そして複雑な形状に加工しにくいとい
う欠点を有している。この欠点を補う目的で作られてい
るのがグラスチックボンド形フェライト磁石である。通
常フェライトボンド磁石と呼ばれるこの磁石は、靭性と
加工性に富んでいるので割れ欠けに強く複雑形状の磁石
も簡単にできる。等方性の磁石は、(B H) m a
 x == 0.5〜1MGOaで単価が約α6円/?
であり、異方性の磁石は、(BH)max=1.5程度
で単価は約2−8円/Vである。異方性のものの単価が
焼結フェライトと比べ同等以上でありしかも性能が低い
のは、バインダー材料として高価なエンジニアグラスチ
ックをVo1%で40〜50%も含んでいるからである
。けれどもフェライトボンド磁石はこのような単価が高
く性能が低いという欠点にもかかわらず、異方性のもの
は需要が急増している。この理由は前述の長所が効いて
いることに他ならない。
However, since they are originally ceramic magnets, they are hard, porous, and have poor impact resistance. It also has the disadvantage of being difficult to process into complex shapes. Glass bonded ferrite magnets are made to compensate for this drawback. These magnets, commonly called ferrite bonded magnets, have high toughness and workability, making them resistant to cracking and chipping, making it easy to create magnets with complex shapes. An isotropic magnet is (B H) m a
x == 0.5~1MGOa, unit price is about α6 yen/?
The anisotropic magnet has (BH)max=about 1.5 and the unit price is about 2-8 yen/V. The reason why the unit price of the anisotropic material is equal to or higher than that of sintered ferrite and its performance is lower is that it contains 40 to 50% of expensive engineered glass as a binder material at Vo1%. However, despite the disadvantages of high unit price and low performance of ferrite bond magnets, demand for anisotropic magnets is rapidly increasing. The reason for this is that the above-mentioned advantages are effective.

次にけアルニコ磁石であるが希土類磁石が出現する以前
には高磁束密変を得ようとするならばこの磁石しかなか
ったので、生産額もフェライト磁石を凌ぐ程大きかった
。しかし、本来持っている程磁力iHcの小ささ、コバ
ルト価格の不安定さ、加工のしすらさそして希土類磁石
の出現等が原因となり、1979年頃からその需賛は低
下し続け、遂に1985年には生産額で希土類磁石に抜
かれてしまった。今後もこの傾向は続くであろう。最後
に希土類磁石であるが、1970年頃から試験的に製造
され始め、1976年あたりより工業的な意味での生産
が開始烙れた。1976年の日本の生産破は若干5to
nであるが以後急激に伸び1985年にVi29 D 
t o n生産されたものと推定されている。希土類磁
石がこのように伸びた理由としては何と言っても、その
エネルギー積がそれまでの磁石より玉料的に高い(焼結
で16〜50MGOp)ことが市場のニーズとう抜く一
致したことが挙げられる。しかし単価は他の磁石に比較
して桁違いに高く、40〜50円/2である。また焼結
希土類磁石は非常に胞いという欠点を有しており割れ欠
けが起りやすく使いにくい。この胞弱性を克服したもの
罠プラスチックボンド杉希土類磁石がある。圧粉成形で
製造されるものは、(BH)max=10〜18MGO
a を有しておりこの範囲では焼結磁石に対して優位を
保っている。また最近になって射出成形、押出し成形と
℃・つた技術が本磁石に採用されるようになり増々使い
やすい磁石としてその応用範囲を拡大している。しかし
バインダーを混入させるのでどうしても磁気性能には限
度があり単価も焼結に比べて現実には低下していないの
でコストパフォーマンスはあまり向上しない。
Next is alnico magnets, but before the advent of rare earth magnets, this was the only magnet available to obtain high magnetic flux density, and its production value was so large that it surpassed that of ferrite magnets. However, due to factors such as the small magnetic force iHc, the instability of cobalt prices, the ease of processing, and the emergence of rare earth magnets, demand continued to decline from around 1979, and finally in 1985. has been surpassed by rare earth magnets in terms of production value. This trend is likely to continue in the future. Finally, rare earth magnets began to be manufactured on a trial basis around 1970, and industrial production began around 1976. Production in Japan in 1976 was only 5to.
n, but after that it rapidly increased and in 1985 Vi29 D
It is estimated that ton was produced. The reason why rare earth magnets have grown so much is that their energy product is significantly higher than that of previous magnets (16 to 50 MGOp when sintered), which perfectly matches market needs. It will be done. However, the unit price is an order of magnitude higher than other magnets, at 40 to 50 yen/2. Furthermore, sintered rare earth magnets have the disadvantage of being very porosity and are prone to cracking and chipping, making them difficult to use. Trap plastic bonded cedar rare earth magnets overcome this weakness. For those manufactured by compaction, (BH)max=10-18MGO
a, and in this range it maintains an advantage over sintered magnets. In recent years, injection molding, extrusion molding, and ℃/cold technology have been applied to this magnet, making it easier to use and expanding its range of applications. However, since a binder is mixed in, the magnetic performance is inevitably limited, and the unit price is not actually lower than that of sintering, so the cost performance does not improve much.

磁石のコストパフォーマンスを評価するのに従来は、(
BH)maw(MGOe) を単価(円/2)で割り算
した指標が便宜的に使用されていたが、実際に磁石を使
用する時に重要なのは重量当りでけなく体積あたりのエ
ネルギー積であるから、コストパフォーマンスの指標も
体積あたり圧すべきである。従って密変をρとすると、
指標IDはID:=(BH)max/(ρ4単価)とす
るのがよいであろう。この指標にもとすいて前述した5
4@の磁石のコストパフォーマンスヲ計算した(−@2
表a、b)。
Conventionally, to evaluate the cost performance of magnets, (
BH) maw (MGOe) divided by the unit price (yen/2) was used as an index for convenience, but when actually using a magnet, what is important is the energy product not only per weight but also per volume. The cost performance indicator should also be pressure per volume. Therefore, if the dense variation is ρ, then
It is best to set the index ID to ID:=(BH)max/(ρ4 unit price). This indicator also includes the five factors mentioned above.
I calculated the cost performance of 4@ magnets (-@2
Tables a, b).

第2表(−) 第2表(b) この表から分るように、コストパフオー−r7ス(D高
い磁石は性能が低く、逆に性能の高い磁石はコストパフ
ォーマンスが低いという現象がでている。
Table 2 (-) Table 2 (b) As can be seen from this table, magnets with high cost performance (D) have low performance, and conversely, magnets with high performance have low cost performance. There is.

従って、従来の磁石においては性能が市場の要求に合致
する程度に高くしかもコストパフォーマンス罠すぐれた
磁石は存在しないという問題点があった。
Therefore, in the conventional magnets, there has been a problem that there is no magnet whose performance is high enough to meet market requirements and whose cost performance is excellent.

〔目的〕〔the purpose〕

本発明はこのような問題点を解決するもので、その目的
とするところは、性能が高くしかも・低コストの磁石を
提供することにある。
The present invention is intended to solve these problems, and its purpose is to provide a magnet with high performance and low cost.

〔概要〕〔overview〕

本発明による永久磁石合金は、セリウムージジム、鉄、
タングステン、ボロンを主成分とした合金である。広い
意味では希土類磁石の範ちゅうに入るが、従来のナマリ
ウムーコバルトを主体とした磁石とけ成分を全く異にす
る。
The permanent magnet alloy according to the present invention comprises cerium didymium, iron,
It is an alloy whose main components are tungsten and boron. In a broad sense, it falls under the category of rare earth magnets, but the magnet composition is completely different from conventional magnets, which are mainly composed of Namarium and Cobalt.

希土類元素は一般に15種類が混合粘土として産出する
。個々の元素を取り出すKは混合粘土を分離精製しなけ
ればならない。また特定の元素のみが多く使用されると
他の元素が余ってしまい都合が悪い。従って希土類元素
の値段は単に資源の豊富さ、需要量ばかりでなく、精練
においての抽出順序その難易さ、そして他の元素とのバ
ランス性によって定まる。結果としてSmは約6万円/
す、ミツ7ユメタルは3千円/Kt強いというように決
まる(いずれも1985年現在)。Ca−Dl(ジジム
; N d −P r合金)け、モナザイトおよびバス
トネサイト鉱の混合希土中にそれぞれ約75チおよび7
0%も含まれており、精錬プロセスの最初の方で抽出烙
れるので精錬工数はかからず、また近年の重希土類(S
mからLuK至る元素)の伸びとごツノユメタル需要f
域からむしろ余剰が生ずる傾向にあり、バランス性の心
配はない。従って多i[(吏用されるよう罠なればごツ
7ユメタルに近い価格で手に入るよう罠なるであろう。
Generally, 15 types of rare earth elements are produced as mixed clay. To extract individual elements, the mixed clay must be separated and purified. Moreover, if only a specific element is used in large quantities, other elements will be left over, which is inconvenient. Therefore, the price of rare earth elements is determined not only by the abundance of resources and the amount in demand, but also by the order in which they are extracted, how difficult they are, and their balance with other elements. As a result, Sm is approximately 60,000 yen/
Mitsu 7 Yumetal is determined to be 3,000 yen/Kt stronger (both as of 1985). Ca-Dl (didymium; Nd-Pr alloy) contains about 75% and 7% in mixed rare earths of monazite and bastnaesite, respectively.
Since it is extracted and heated at the beginning of the refining process, no refining man-hours are required, and in recent years heavy rare earth (S)
Elements from m to LuK) growth and demand for metals f
There is a tendency for a surplus to arise from the area, so there is no need to worry about balance. Therefore, if it were to be used as a trap, it would be a trap so that it could be obtained at a price close to that of the metal.

本晃明忙よる永久磁石合金の特徴の第一はこのように安
価な希土類メタルを使用したことKあるO 本発明による永久磁石合金の第2の特徴は、従来の希土
類磁石の主成分の一つであるコバルトを用いていないこ
とである。普通、Co−DI−Feだ番すではキューリ
点Teが低くて強磁性体としては使用できないが、ボロ
ンを適を添加すること罠よりTcが上昇し強磁性は安定
する。ボロンは純度の高いものを使用してもよいし、安
価なフェロボロンも使用できる。コバルトの代りに鉄を
使用したことKより資源的な制約条件から解放されると
とも九合金コストも大幅忙引き下げられる。
The first feature of the permanent magnet alloy according to the present invention is that it uses inexpensive rare earth metals.The second feature of the permanent magnet alloy according to the present invention is that it uses one of the main components of conventional rare earth magnets. It does not use cobalt, which is Normally, Co-DI-Fe steel has a low Curie point Te and cannot be used as a ferromagnetic material, but by adding boron, the Tc increases and the ferromagnetism becomes stable. Boron with high purity may be used, and inexpensive ferroboron may also be used. By using iron instead of cobalt, it is freed from resource constraints and the cost of the nine alloys is also significantly reduced.

本発明による永久磁石合金の第5の特徴は、従磁力回上
およびバルク状態でも大きな保磁力が得られるようKす
るためタングステン(W)を加えたことKある。Mn添
加により、保磁力IHeは実用に支障のない大きさまで
向上する。またバルク状態で大きな保磁力が得られるこ
とは、樹脂ボンド磁石への応用にとって特に大切であり
、10μm以上の磁粉も問題なく利用できるので磁石の
信頼性、特性を高めることができる。また、大きな粒度
の磁粉を扱えることはその製造にとってもメリットがあ
る。の一部をT I * Z r HHr + V+N
b 、Taのうち少なくとも一つの元素で1置換すると
このWの効果は強められる。
A fifth feature of the permanent magnet alloy according to the present invention is that tungsten (W) is added to increase the magnetic coercive force and to obtain a large coercive force even in the bulk state. By adding Mn, the coercive force IHe is increased to a level that does not pose a problem for practical use. Furthermore, it is particularly important to obtain a large coercive force in the bulk state for application to resin-bonded magnets, and magnetic particles of 10 μm or more can be used without problems, thereby improving the reliability and characteristics of the magnet. In addition, being able to handle magnetic powder with large particle size is also advantageous for its production. Part of T I * Z r HHr + V+N
When at least one element among b and Ta is substituted with one element, this effect of W is enhanced.

また本発明のCe −D I −F e −W −B合
線のBの一部をAt、Ga、In、St、Ge、P。
Moreover, a part of B of the Ce-DI-Fe-W-B combined line of the present invention is At, Ga, In, St, Ge, or P.

S HB i HS n HP b + Cの少なくと
も一つの元素で置換すると強−性安定効果はさらに高め
られる。希土類元素の一部をLaで置換しても少量では
磁力は低下しない。Laを入れることにより希土類成分
の製造は一層簡単になりさらに合金を低コストにできる
Substitution with at least one element of S HB i HS n HP b + C further enhances the strong stability effect. Even if a portion of the rare earth element is replaced with La, the magnetic force will not decrease even if the amount is small. By adding La, the rare earth component can be manufactured more easily and the cost of the alloy can be lowered.

次に組成域の限定の理由を述べる。希土類元素中におけ
る元素の原子比R=C’e 1− a −b N d 
aPrbゲ示す係数a、bけ、Ce−DI合金を工業的
に安価に製造できる組成範1ffiK取っである。また
M= F e 1 x−yWx B yとしたときのR
とMの比2(Z=M/R)は保磁力を5koe以上出す
ためには4.0〜90の間になくてはならない。M中の
W量Xは、l101以上での効果が出始め、α2を越え
ると飽和磁束密度の低下が著しいという理由で決められ
た。yは同様にボロンの効果が出始めるのはα001以
上であり、0.15を越えると保磁力、飽和磁化が急激
に低下するという理由忙より範囲が定まる。
Next, the reason for limiting the composition range will be described. Atomic ratio of elements in rare earth elements R=C'e 1- a -b N d
The coefficients a and b shown by aPrb are in the composition range 1ffiK, which allows Ce-DI alloy to be produced industrially at low cost. Also, when M=F e 1 x−yWx By y, R
The ratio 2 (Z=M/R) of M and M must be between 4.0 and 90 in order to produce a coercive force of 5 koe or more. The amount of W in M, X, was determined on the basis that the effect begins to appear above l101, and the saturation magnetic flux density decreases significantly when it exceeds α2. Similarly, the range of y is determined by the fact that the effect of boron starts to appear at α001 or higher, and when it exceeds 0.15, the coercive force and saturation magnetization decrease rapidly.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

実施例1゜ CeO,4NdO,4Pr0.2(Fe0.1lWO,
1Bal)Zの組成式で2を4.0から0.5刻みで9
0まで取った11種類の合金(組成式は原子化)を、低
周波誘導炉を用いて液層した。Bは前もってFeと母合
金を作製し、溶解しやすいようにした。各合金は、アル
ゴン雰囲気中で1100〜1200Cの間の最適温度で
均質化処理を4時間行った後、室温までクエンチされた
。その後820Cで6時間続いて650℃で4時間等温
熱処理を行った後室温まで1.5C/ m l nの冷
却速度で除冷した。合金は次罠10〜20μmの平均粒
度に粉砕され、5wt%のエポキシ樹脂と混練された。
Example 1゜CeO, 4NdO, 4Pr0.2 (Fe0.1lWO,
1Bal) In the composition formula of Z, 2 is 9 in 0.5 increments from 4.0.
11 types of alloys (compositional formulas are atomized) were made into liquid layers using a low frequency induction furnace. B was made into a master alloy with Fe in advance to make it easier to melt. Each alloy was homogenized for 4 hours at an optimal temperature between 1100 and 1200 C in an argon atmosphere and then quenched to room temperature. Thereafter, it was subjected to isothermal heat treatment at 820 C for 6 hours and at 650 C for 4 hours, and then gradually cooled to room temperature at a cooling rate of 1.5 C/ml. The alloy was ground to an average particle size of 10-20 μm and mixed with 5 wt% epoxy resin.

混線された磁性粉は15koeの磁場中で加圧成形され
、エポキシ樹脂をキュアーさせて磁石にした。得られた
磁石の磁気特性を2の値に従って第1図に示した。2が
4.0から90の間で実用上に支障のない程度の保磁力
iHcと高い残留磁束密度Br、エネルギーill (
B H) m a xが得られていることが分る。
The mixed magnetic powder was pressure molded in a 15 koe magnetic field, and the epoxy resin was cured to form a magnet. The magnetic properties of the obtained magnets are shown in FIG. 1 according to the values of 2. 2 is between 4.0 and 90, the coercive force iHc is of a level that does not cause any practical problems, the residual magnetic flux density Br is high, and the energy ill (
It can be seen that BH) max is obtained.

実施例2゜ 第5表に示した組成の合金を用いて実施例1と同様な方
法を用いて磁石を作製した。得られた磁石の磁気性能を
第4表に示す。
Example 2 A magnet was produced in the same manner as in Example 1 using an alloy having the composition shown in Table 5. The magnetic performance of the obtained magnet is shown in Table 4.

第3表 第4表 各組成にわたり、(BH)marが7以上の特性が得ら
れており中にはS m2 C、It系の最高性能と同等
のものが得られている。このような磁石が低コストでで
きることは意義深い。
Table 3 Table 4 For each composition, properties of (BH)mar of 7 or more were obtained, and in some cases, properties equivalent to the highest performance of S m2 C and It systems were obtained. It is significant that such magnets can be made at low cost.

実施例2 の−耶をTI 、Zr、Hf 、V、Nb、Taで置換
した合金を実施例1の方法で溶解した。ただしM=Fe
αax−wWαIA w B O,0B (Aは上記の
6元素)としてWを0から[102刻みでQ、20まで
11種類とり、R:Cea4NdO,5PralとしR
とMの比2は6.0とした。磁石製造法は実施例1と同
様なる方法で行った。第2図icAがZrの場合の結果
を示した。ただし均質化後の熱処理は、Zr添加により
lHeけ向上するので高エネルギー積を得るために、i
Heけ適度に抑えてヒステリシスの角形性同上を狙って
最適な条件を採用した。Zr添加しないものよりある程
度添71Bした方がよい結果が得られていることが分る
。上記6元素の添加によりどれ位添加前に比べて性能が
向上したかを第5表に示す。
An alloy in which - of Example 2 was replaced with TI, Zr, Hf, V, Nb, and Ta was melted by the method of Example 1. However, M=Fe
αax-wWαIA w B O, 0B (A is the above six elements), take 11 types of W from 0 to [Q, 20 in 102 increments, R: Cea4NdO, 5Pral and R
The ratio 2 of M and M was set to 6.0. The magnet manufacturing method was the same as in Example 1. Figure 2 shows the results when icA is Zr. However, in the heat treatment after homogenization, since the addition of Zr improves lHe, in order to obtain a high energy product, i
Optimal conditions were adopted with the aim of suppressing the helium to an appropriate level and achieving the same squareness of hysteresis. It can be seen that better results were obtained when 71B was added to some extent than when Zr was not added. Table 5 shows how much the performance was improved by adding the above six elements compared to before addition.

第5表 実施例4゜ Bの一部を、A tlG & + I n HS l 
、G o 、P + S I HBi、Sr+、Pb 
で置換した合金を実施例1の方法で溶解した。ただしM
=lF60.75Wal BcLli−uQu(Qa上
記の10元素)、R:Ce O,4N d as Pr
1llそしてZ=6.5 (RM as )とし、Uを
0.01から0.01刻みでQlまで10種類とった。
Table 5 Example 4 A part of B is A tlG & + I n HS l
, G o , P + S I HBi, Sr+, Pb
The alloy substituted with was melted by the method of Example 1. However, M
=lF60.75Wal BcLli-uQu (Qa above 10 elements), R: Ce O, 4N d as Pr
1ll and Z=6.5 (RM as ), and 10 types of U were taken from 0.01 to Ql in increments of 0.01.

磁石製造は実施例1と、同様な方法で行った。各置換元
素で得られた磁石で(BH)max210MGOe以上
のものの中からその合金のキューリ一点が添加前に比べ
て最高に向上した合金のキューリ一点の向上分を谷元素
ごとに示すると第6表のようになる。
Magnet production was performed in the same manner as in Example 1. Among the magnets obtained with each substitution element (BH) max 210 MGOe or higher, Table 6 shows the improvement in Curi point of the alloy with the highest improvement in Curi point compared to before addition for each valley element. become that way.

第6表 実施例5゜ 希土類元素の一部をLaで置換した合金を実施例1と同
Sな方法で磁石にした。ただし組成としてはR:Ca 
α45− c Ndα45 p rαI L a c 
(C=lQ2゜α08.[115,0,25)、M”:
Fe(L82WαI B 0.08そしてZ=6.5 
(RMILS )の4種類を対象にした。得られた磁気
特性を第5図に示す。Laを加えると、微量のときには
ヒステリシスの角形性が若干向上することが示されてい
る。角形性の評価8−値は、4πI−H減磁曲線上で4
yJ=[l、9XByになる磁場Hの絶対値をHkとす
ると、S Q ” Hk / l Heで与えられる。
Table 6 Example 5 An alloy in which a part of the rare earth element was replaced with La was made into a magnet using the same method as in Example 1. However, the composition is R:Ca
α45-c Ndα45 p rαI L a c
(C=lQ2゜α08.[115,0,25), M”:
Fe(L82WαI B 0.08 and Z=6.5
(RMILS). The obtained magnetic properties are shown in FIG. It has been shown that when La is added in a small amount, the squareness of hysteresis is slightly improved. Squareness evaluation 8-value is 4 on the 4πI-H demagnetization curve.
Letting Hk be the absolute value of the magnetic field H that makes yJ=[l, 9XBy, it is given by S Q '' Hk / l He.

実施例6゜ 実施例5と同組成の合金を実施例1と同様な方法で溶解
して、焼結法により磁石を作製した。焼結温度は120
0〜1300Cの間の最適条件(収縮が最も大きい条件
)で行い、焼結後は室温まで2〜6時間除冷をした。そ
して再度温度を上昇させ、850〜400Cまで多段時
効を行った。得られた磁石の磁気性能を第4図に示す。
Example 6 An alloy having the same composition as in Example 5 was melted in the same manner as in Example 1, and a magnet was produced by a sintering method. Sintering temperature is 120
Sintering was carried out under optimal conditions between 0 and 1300C (conditions that cause the largest contraction), and after sintering, it was slowly cooled to room temperature for 2 to 6 hours. Then, the temperature was raised again and multistage aging was performed from 850 to 400C. The magnetic performance of the obtained magnet is shown in FIG.

図に示すように本組成のような安価な材料を用いてもa
m Co系と同等の磁石が得られることが分る。
As shown in the figure, even if an inexpensive material such as this composition is used, a
It can be seen that a magnet equivalent to the mCo-based magnet can be obtained.

〔効果〕〔effect〕

以上述べたように本発明によれ51 、安価な希土類化
合物Ce−DIを用いても高性能なグラスチックボンド
磁石および焼結磁石が発現でき、従来の磁石にない高コ
ストパフォーマンスが達成できるという効果を有する。
As described above, according to the present invention51, high performance glass bonded magnets and sintered magnets can be produced even by using the inexpensive rare earth compound Ce-DI, and high cost performance not found in conventional magnets can be achieved. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、(e(1,4Ndα4 P r O,2(F
 e O,8W O,IBO,+)2組成において、希
土類と他元素との比2を変化させた時のプラスチックボ
ンド磁石の磁気特性を示す。 第2図は、Ce0.4NdO,5prO,I (Feα
82−wWo、IZrwBαoa ) 6.0組成にお
いて2「のtWを変化させた時のプラスチック磁石のエ
ネルギー積を示す。 第3図け、Coα4s−cNdα4B P r o、+
 L a c (Feo、52WO,IBαos ) 
asの組成においてLaのgcを変化させた時のグラス
チックボンド磁石の角形性およびエネルギー積の変化を
示す。 第4図は、Ceα4s−cNd O,45P r o、
+ Lac(FeO,82W at B cog ) 
46の組成の合金を焼結した磁石のエネルギー積をLa
の量Cの変化の区数として示す。 5G789 2 イ直 −− 第1図 o、o+ o、oタ o、09 D−130,170,
2+W値啼 第2図 0.00 0.05 0.10 0,15 0.20 
0.250イJ − 第3図 o、oo o、05 0.10 0.15 0.20 
0.2ジCイ1 → 第4図
Figure 1 shows (e(1,4Ndα4 P r O,2(F
Fig. 2 shows the magnetic properties of a plastic bonded magnet when the ratio 2 of rare earth to other elements is changed in the e O, 8W O, IBO, +)2 composition. Figure 2 shows Ce0.4NdO,5prO,I (Feα
82-wWo, IZrwBαoa) 6.0 composition and shows the energy product of a plastic magnet when changing tW of 2''. Figure 3: Coα4s-cNdα4B P r o, +
L a c (Feo, 52WO, IBαos)
Figure 2 shows changes in the squareness and energy product of a glass bonded magnet when the gc of La is changed in the as composition. Figure 4 shows Ceα4s-cNdO,45P r o,
+ Lac(FeO, 82W at B cog)
The energy product of a magnet made by sintering an alloy with a composition of 46 is La
It is shown as the number of sections of change in the amount C. 5G789 2 Straight -- Figure 1 o, o+ o, ota o, 09 D-130, 170,
2+W value Figure 2 0.00 0.05 0.10 0,15 0.20
0.250 iJ - Figure 3 o, oo o, 05 0.10 0.15 0.20
0.2jiCi1 → Figure 4

Claims (1)

【特許請求の範囲】 (j) Ca−N d−P r−F e −W−B系合
金において、希土類元素Rと他の元素Mとの原子比を2
(2=Mの原子数/Rの原子数)とし、Rの中での原子
比をR=Ce1−a−bNdaPrbとしまたMの中の
原子比をM=Fe1−x−yWxByで表した時、係数
alb+!+y+”が次の値の範囲、すなわち0.05
≦a≦α8 α05≦b≦α5 α01≦X≦0.5 0、001≦y≦α15 3.5≦2≦90 であることを特徴とする永久磁石合金。 (2)Wの一部を、TI、Zr、Hf、V、Nb、Ta
の少なくとも一つの元素で置換したことを特徴とする特
#!F請求の範囲第1項記載の永久磁石合金。 (5)Bの一部を、At、Ga、In+81.Ga、P
IS、Bi、Sn+Pb、Cの少なくとも一つの元素で
置換したことを特徴とする特許請求の範囲第1項記載の
永久磁石合金。 (4)希土類元素の一部をLmで置換したことを特徴と
する特許請求の範囲第1項記載の永久磁石合金。
[Claims] (j) In the Ca-N d-P r-F e -W-B alloy, the atomic ratio of the rare earth element R and other elements M is 2.
When (2=number of atoms in M/number of atoms in R), the atomic ratio in R is R=Ce1-a-bNdaPrb, and the atomic ratio in M is expressed as M=Fe1-x-yWxBy , coefficient alb+! +y+” is in the following value range, i.e. 0.05
A permanent magnetic alloy characterized in that: ≦a≦α8 α05≦b≦α5 α01≦X≦0.5 0,001≦y≦α15 3.5≦2≦90. (2) Part of W is TI, Zr, Hf, V, Nb, Ta
Special # characterized by being replaced with at least one element of! F. A permanent magnet alloy according to claim 1. (5) Part of B is At, Ga, In+81. Ga, P
The permanent magnet alloy according to claim 1, characterized in that the permanent magnet alloy is substituted with at least one element of IS, Bi, Sn+Pb, and C. (4) The permanent magnet alloy according to claim 1, wherein a part of the rare earth element is replaced with Lm.
JP59081393A 1984-04-23 1984-04-23 Permanent magnet alloy Pending JPS60224761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081393A JPS60224761A (en) 1984-04-23 1984-04-23 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081393A JPS60224761A (en) 1984-04-23 1984-04-23 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS60224761A true JPS60224761A (en) 1985-11-09

Family

ID=13745054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081393A Pending JPS60224761A (en) 1984-04-23 1984-04-23 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60224761A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765848A (en) * 1984-12-31 1988-08-23 Kaneo Mohri Permanent magnent and method for producing same
JPS647503A (en) * 1986-07-23 1989-01-11 Hitachi Metals Ltd Permanent magnet with high thermal stability
US4836868A (en) * 1986-04-15 1989-06-06 Tdk Corporation Permanent magnet and method of producing same
US4935075A (en) * 1986-06-12 1990-06-19 Kabushiki Kaisha Toshiba Permanent magnet
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765848A (en) * 1984-12-31 1988-08-23 Kaneo Mohri Permanent magnent and method for producing same
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
US4836868A (en) * 1986-04-15 1989-06-06 Tdk Corporation Permanent magnet and method of producing same
US4935075A (en) * 1986-06-12 1990-06-19 Kabushiki Kaisha Toshiba Permanent magnet
JPS647503A (en) * 1986-07-23 1989-01-11 Hitachi Metals Ltd Permanent magnet with high thermal stability
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders

Similar Documents

Publication Publication Date Title
Ma et al. Recent development in bonded NdFeB magnets
JPH0232761B2 (en)
JPH0316761B2 (en)
JPH0569907B2 (en)
JPS60224761A (en) Permanent magnet alloy
JPS60224756A (en) Permanent magnet alloy
JPS60224757A (en) Permanent magnet alloy
JPS59132105A (en) Permanent magnet
JPS6223959A (en) High-efficiency permanent magnet material
JPS60218455A (en) Permanent magnetic alloy
JPS6031208A (en) Permanent magnet
JPS60224755A (en) Permanent magnet alloy
Panchanathan Magnequench magnets status overview
JPS62101004A (en) Rare earth-iron group permanent magnet
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JPS62281403A (en) Permanent magnet
JPH0569908B2 (en)
JPH0152469B2 (en)
JPS6052555A (en) Permanent magnet material and its production
JPS60218454A (en) Permanent magnetic alloy
JPH0620818A (en) Rare earth cobalt magnet
JP2925840B2 (en) Fe-BR bonded magnet
JPH0621307B2 (en) Resin-bonded rare earth cobalt magnet
JPS601808A (en) Permanent magnet
JP2746111B2 (en) Alloy for permanent magnet