JPH057458B2 - - Google Patents

Info

Publication number
JPH057458B2
JPH057458B2 JP62046275A JP4627587A JPH057458B2 JP H057458 B2 JPH057458 B2 JP H057458B2 JP 62046275 A JP62046275 A JP 62046275A JP 4627587 A JP4627587 A JP 4627587A JP H057458 B2 JPH057458 B2 JP H057458B2
Authority
JP
Japan
Prior art keywords
less
grain size
corrosion
chlorides
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62046275A
Other languages
Japanese (ja)
Other versions
JPS63213643A (en
Inventor
Hisao Fujikawa
Nobuyuki Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4627587A priority Critical patent/JPS63213643A/en
Publication of JPS63213643A publication Critical patent/JPS63213643A/en
Publication of JPH057458B2 publication Critical patent/JPH057458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 自動車の排気系に使用される鋼には、従来より
高温腐食性の優れていることが求められている
が、最近では更に、路上に融雪のための塩化物が
散布されることから、塩化物が付着した状態での
耐高温腐食性を確保することが重要になつてき
た。 本発明は、このような塩化物共存の乾式腐食環
境下において優れた耐高温腐食性を示すオーステ
ナイトステンレス鋼に関するものである。 〔従来の技術〕 金属材料の耐高温腐食性を考える場合、コスト
とのバランスが重要である。特に、自動車の排気
系等、大量生産による低コスト化が問われる材料
にあつては、コストに対する要求は厳しい。 コストと耐高温腐食性との両立を図つた金属材
料としては、CrとNiとを含有したオーステナイ
トステンレス鋼がよく知られている。 自動車の排気系等、耐高温腐食性の要求される
用途に対しても、このオーステナイトステンレス
鋼をベースとした材料を使用する場合が多い。 例えば、特公昭57−16187号公報および特公昭
58−42264号公報に記載されたオーステナイトス
テンレス鋼は、S量の規制により優れた耐高温腐
食性を与えられたものである。 〔発明が解決しようとする問題点〕 ところが、このような従来鋼は、確かに耐高温
腐食性には優れるが、塩化物が付着する等、塩化
物共存の乾式腐食環境下での耐高温腐食性までは
考慮されていない。 自動車の排気系にあつては、最近は路上に多量
の融雪剤が散布されることから、塩化物共存の乾
式腐食環境下での耐高温腐食性を考慮することが
重要になつてきている。 また、自動車の排気系ばかりでなく、廃棄物焼
却炉、廃熱利用設備、厨房用の材料においても、
塩化物共存の乾式腐食環境下での耐高温腐食性を
確保することは重要である。 本発明は、合金成分の添加量を極力抑え、経済
性を悪化させることなく塩化物共存の乾式腐食環
境下での耐高温腐食性を高めたオーステナイトス
テンレス鋼を提供するものである。 〔問題点を解決するための手段〕 塩化物共存の乾式腐食環境下での高温腐食は、
腐食減肉速度も大きいが、粒界侵食が著しく大き
いことが特徴である。したがつて、腐食減肉速度
を低下させるだけでは、塩化物共存の乾式腐食環
境下での耐高温腐食性を高めることにならず、粒
界侵食との兼ね合いで総合的に腐食を抑えること
が重要となる。 すなわち、腐食減肉とは全面腐食現象であり、
粒界侵食とは合金表面から内部へ向つて粒界のみ
が侵食される現象である。塩化物共存の乾式腐食
環境下では塩化物が合金表面の酸化物と反応して
複酸化物を形成し、その際、遊離するClは粒界を
通して合金中に侵入して金属反応し、金属が酸化
される。そのとき形成される金属塩化物は一般に
蒸発しやすく、蒸発して再び酸化反応を起し、そ
れによつて粒界が選択的に侵食されていく。以上
の理由から、塩化物共存の乾式腐食環境下では粒
界侵食の占める割合が大となる。 本発明者らは斯かる観点から、塩化物共存の乾
式腐食環境下でのステンレス鋼の高温腐食状況を
詳細に調査検討した結果、次の知見を得るに至つ
た。 第1に、Crは従来より高温腐食に対して例外
なく有効な元素とされているが、塩化物共存の乾
式腐食環境下での有効性を調査した結果は、予想
に反し腐食減肉、粒界侵食のいずれに対しても有
害で、全体として高温腐食を著しく促進する有害
元素であることが判明した。その理由は、先に述
べた遊離したClが鋼中のCrと結合し、Cr塩化物
として蒸発して粒界侵食を生じ、Crの減少した
表層部は耐酸化性が低下し、酸化が進行するため
と考えられる。 第1図はNi25〜30%を含有しCr量を変化させ
た種々のステンレス鋼に対し、飽和NaCl溶液浸
漬−730℃、2h加熱を10サイクル繰り返したとき
の腐食状況をCr量との関係で示したものである。
なお、後述するC量、結晶粒度およびSi、Mo量
の影響を排除するため、C0.02〜0.03%、結晶粒
度番号は6.5、Si0.5〜0.7%、Mo0.1〜0.2%として
ある。同図に見られるようにCr量が増加するに
したがつて腐食減肉が顕著となり、また粒界腐食
も著しくなることから、全侵食量が急激に増加し
ている。 第2に、Cの影響を調査したところ、Cは腐食
減肉に対しては有効であるが、粒界侵食に対して
は著しく有害であり、全体的には高温腐食を増長
する元素であることが判明した。その理由は、高
温に加熱されることにより粒界にCr炭化物を析
出する。この炭化物とClとの反応によりCr炭化
物が分解することよつて粒界侵食が著しく進行し
ていくためと考えられる。 第2図は18Cr−10Niのステンレス鋼でC量を
変化させたものに対し、飽和NaCl溶液浸漬−650
℃加熱を10サイクル繰り返したとの腐食状況をC
量との関係で示したものである。結晶粒度番号は
6.5、Siは0.4〜0.6%、Moは0.1〜0.3%とした。同
図にみられるように、C量の増加にともなつて腐
食減肉は減少するが、全侵食量は増加する。これ
は、C量の増加が粒界侵食を著しく増長している
からに他ならない。 第3に、結晶が細粒化されると腐食減量を増大
させるが、粒界侵食は大巾に抑制され、全体とし
ては高温腐食を抑制する。その理由は、細粒にす
ることによつて粒界道を多く、かつ長くすること
によつて内部への進行を抑制することとなるため
と考えられる。 第3図はC0.02〜0.03%の18Cr−10Niステンレ
ス鋼で結晶粒度を種々変化させた試料に対し、飽
和NaCl溶液浸漬−650℃加熱を10サイクル繰り返
したときの腐食状況を結晶粒度との関係で示した
ものである。結晶粒度はJISG0551の規定による
粒度番号で、本明細書における結晶の粒度番号は
全てこの値のことである。Siは0.5〜0.7%、Mo
は0.1〜0.3%とした。同図に見られるように、結
晶粒度が小、すなわち粒度番号が大になると、そ
の程度に応じて腐食減肉は顕著になるが、粒界侵
食は大巾に抑制され、結果的には全侵食量は抑制
される。 第4に、Si、Moはステンレス鋼の代表的成分
元素であるが、いずれも腐食減肉、粒界侵食の双
方を抑えるのに有効である。その理由は、表面ス
ケール下部に、主としてSiからなる酸化スケール
(SiO2)を形成し、FeないしCrの酸化スケール以
上にClの内部への侵食を抑制するためと、Si酸化
物によつて鋼表面の酸素分圧を著しく低下させ、
Feの酸化を防ぐため腐食減肉にも有効となるた
めと考えられる。 第4図は塩化物共存の乾式腐食環境下での高温
腐食に与えるSi、Moの影響を調査したものであ
る。調査の対象となつた鋼は、Siの影響度調査に
ついてはC0.02〜0.03%の17Cr−25Niステンレス
鋼で粒度番号は6.5であり、Moの影響度調査につ
いてはC0.02〜0.03%の20Cr−30Niステンレス鋼
で粒度番号は7.0である。試験は飽和NaCl溶液浸
漬−750℃加熱を10サイクル繰り返すものとした。
同図から明らかなように、Si量、Mo量が増大す
るにしたがつて腐食減肉および粒界侵食が抑制さ
れ、全侵食量を効果的に減少させる。ただし、
MoはSiに比して高価であるので、極力Siに依存
することが望まれる。 第5に、塩化物共存の乾式腐食環境下での耐高
温腐食性に対しMnは有害であり、Nは有効な元
素であることも判明した。 本発明のステンレス鋼は、斯かる知見に基づき
開発されたもので、重量%でC0.03%未満、Cr10
〜20%、Ni10〜30%、Mn2%以下、Si2%超6%
以下を含有し、残部Feおよび不可避的不純物か
らなり、更に結晶粒度が粒度番号6以上の細粒で
且つ(1)式で示される全侵食量が500以下であるこ
とを基本構成要件とするものである。 24.4Cr+2.8Ni+6.7Mn −48.8Si(−56.9Mo−148.0Nb) …(1) そして更に、必要に応じて下記した3種類の成
分系(1)〜(3)の1種または2種以上が選択的に加え
られる。 (1) Mo0.5〜5%およびN0.02〜0.4%のいずれか
1種または2種。 (2) Ti、Nb、ZrおよびTaのいずれか1種また
は2種以上の合計0.1〜1%。 (3) Ca、Mg、Al、Yおよび希土類元素のいずれ
か1種または2種以上の合計0.001〜0.1%。 以下、本発明のステンレス鋼における成分組
成、結晶粒度および全侵食指数の限定理由を述べ
る。 Γ成分組成 C:第2図に示す如く、塩化物共存の乾式腐食
環境下で粒界侵食を著しく増大させ、耐高温
腐食性を低下させるので、0.03%未満とす
る。C量が低いほど耐高温腐食性を向上させ
るので、下限は規定しない。 Si:第4図に示す如く、塩化物共存の乾式腐食
環境下での高温腐食抑制効果が大きく、2%
超の含有とする。ただし、加工性確保、溶接
性確保の点から6%を上限とする。 Mn:塩化物共存の乾式腐食環境下で耐高温腐
食性を低下させるので、2%を上限とする。
しかし、この元素は一方では製鋼上、加工性
確保の上で不可欠のものであり、最少でも
0.2%程度含有されるのが通例である。 Cr:第1図に示す如く、塩化物共存の乾式腐
食環境下で高温腐食性を著しく低下させるの
で、20%以下に限定する。しかし、この元素
は一方で塩化物を共存しない通常の排ガス中
での耐高温酸化性を確保する上で重要な元素
であり、10%以上の添加を必要とする。 Ni:塩化物共存の乾式腐食環境下での耐高温
腐食性に大きな影響を与えないので、もつぱ
らオーステナイト組織確保の点から10%以上
の添加とする。ただし、添加量の増大はコス
ト向上につながるので、30%以下とする。 Mo、N:いずれも塩化物共存の乾式腐食環境
下での耐高温腐食性に有効な元素であり、必
要に応じて添加される。添加量は、Moにつ
いては確実な添加効果を得るために0.5%以
上を必要とするが、高価元素であるために5
%を上限とする。Nについては、特に添加し
なくても0.02%程度は含有されるので、添加
する場は0.02%以上の含有となる。ただし、
固溶度の限界である0.4%を上限として加工
性を確保する。 Ti、Nb、Zr、Ta:いずれも塩化物共存の乾
式腐食環境下での耐高温腐食性を高めるのに
有効な元素であり、添加量の合計が0.1%以
上で明確な添加効果が得られる。ただし、添
加量が多くなると加工性を低下させるので、
合計で1%以下に抑える。 Ca、Mg、Al、Y、希土類元素:これらは鋼の
清浄度を高めるのに有効である。鋼の清浄度
を高めると、鋼中のSiなどの有益元素ととも
にCrなどの有害元素の拡散を促進する。有
害元素の拡散により腐食減肉は若干顕著とな
るが、前面腐食傾向が大となり、粒界侵食に
対してはSi等による抑制を容易ならしめ、全
体としては有益元素として作用する。 添加する場合は、合計量が0.001%以上で
添加効果が得られるが、0.1%を超えると加
工性、溶接性が悪化するので、0.001〜0.1%
の範囲とする。 不可避的不純物:例えばP、Sは溶接性等の面
から少ない方が好ましいが、いずれも0.03%
以下であれば通常の目的に使用可能であるの
で、特に規定しない。 Γ結晶粒度 第3図に示したように、結晶粒度が小さくなる
と、腐食減肉は顕著となるが、塩化物共存の乾式
腐食環境下において特徴的な腐食形態である粒界
侵食は大巾に抑制され、結果的には全侵食を抑え
ることになる。全侵食が効果的に抑制されるのは
結晶粒度が粒度番号6以上の細粒領域である。結
晶粒度が小さくなるほど、全侵食が抑制されるの
で、粒度番号に上限は設けない。しかし、結晶の
細粒化は一方で、常温の強度を増す方向になり、
加工がしにくくなるため、作業性の面から実際的
には粒度番号を10以下に制限することが望まれ
る。 結晶粒度を粒度番号6以上に調整する手段とし
ては、冷間加工度および溶体化温度、時間の調整
があり、この調整により所定の結晶粒度を容易に
得ることができる。なお、従来の耐高温腐食性の
みを考慮したステンレス鋼では、結晶粒度は主に
高温延性および加工性の観点から、4〜5程度に
調整されている。 Γ全侵食量 塩化物共存の乾式腐食環境下での耐高温腐食
性については、前述したように、全侵食量は腐
食減肉量と粒界侵食量との和で表わされ、しか
も腐食減肉と粒界侵食とに種々の因子が複雑に
関係している。したがつて個々の因子、例えば
C量やCr量を見直すだけでは、満足の行く全
侵食量を得ることが困難である。 本発明者らは、全侵食量に与える各種成分の
影響を多重回帰分析した結果、全侵食量が前記
(1)式で表わせることを知見した。 (1)式はC量が0.03%以下の鋼に飽和NaCl溶
液浸漬−750℃加熱を10サイクル繰り返したと
きの全侵食量を表わしており、目標とする耐高
温腐食性をSUS304鋼の1.5倍とした場合、(1)式
で表わされる全侵食量は500以下であることが
必要となる。 なお、(1)式において、NbはTi、Nb、Zr、
TaをNbで代表させたもので、この元素グルー
プの総含有量を表わすものである。 〔実施例〕 第1表に組成を示す供試鋼各17Kgを真空溶解に
より溶製し、熱間圧延、冷間圧延により厚み4.9
mmの鋼板とした後、溶体化処理し、しかる後、各
鋼板より幅20×長さ30×厚み3(mm)の試験片を
採取した。そして、各試験片に対し塩化物共存下
での高温腐食性を評価するため、飽和NaCl溶液
5分浸漬−650〜750℃2h加熱保持−5分空冷を
10サイクル繰り返し、その後で全腐食量を調査し
た。全腐食量は腐食減肉量を調査した後、断面ミ
クロ観察から粒界侵食の最大の深さを測定し、両
者を加算することにより求めた。結果は第1表に
示されるとおりである。なお、結晶粒度は、熱処
理温度および時間により調整した。 第1表において、供試鋼No.1〜20は本発明鋼、
No.21〜24は従来鋼である。従来鋼と比べて本発明
鋼は、塩化物共存の乾式腐食環境下での耐高温腐
食性に著しく優れていることが分かる。
[Industrial Application Fields] Steel used in automobile exhaust systems has traditionally been required to have excellent high-temperature corrosion resistance, but recently chlorides have also been sprayed on roads to melt snow. Therefore, it has become important to ensure high-temperature corrosion resistance in the presence of chlorides. The present invention relates to an austenitic stainless steel that exhibits excellent high-temperature corrosion resistance in such a dry corrosion environment in which chlorides coexist. [Prior Art] When considering high temperature corrosion resistance of metal materials, balance with cost is important. Particularly, when it comes to materials such as automobile exhaust systems, which require cost reduction through mass production, cost requirements are strict. Austenitic stainless steel containing Cr and Ni is well known as a metal material that achieves both cost and high-temperature corrosion resistance. Materials based on austenitic stainless steel are often used for applications that require high-temperature corrosion resistance, such as automobile exhaust systems. For example, Tokuko Sho 57-16187 and Tokuko Sho No.
The austenitic stainless steel described in Japanese Patent No. 58-42264 is given excellent high-temperature corrosion resistance by regulating the amount of S. [Problems to be solved by the invention] However, although such conventional steels do have excellent high-temperature corrosion resistance, they have poor high-temperature corrosion resistance in dry corrosion environments where chlorides coexist, such as when chlorides are attached. Gender is not taken into account. With regard to automobile exhaust systems, it has become important to consider high temperature corrosion resistance in a dry corrosive environment where chlorides coexist, as large amounts of snow melting agents are recently being sprayed on roads. In addition to automobile exhaust systems, we also provide materials for waste incinerators, waste heat utilization equipment, and kitchens.
It is important to ensure high-temperature corrosion resistance in a dry corrosion environment where chlorides coexist. The present invention provides an austenitic stainless steel in which the amount of alloying components added is minimized and the high-temperature corrosion resistance in a dry corrosion environment in which chlorides coexist is improved without deteriorating economic efficiency. [Means to solve the problem] High-temperature corrosion in a dry corrosion environment with chlorides
Although the rate of corrosion thinning is high, it is characterized by extremely high grain boundary erosion. Therefore, simply reducing the rate of corrosion thinning will not improve high-temperature corrosion resistance in a dry corrosion environment where chlorides coexist, and it will not be possible to comprehensively suppress corrosion in conjunction with grain boundary corrosion. becomes important. In other words, corrosion thinning is a general corrosion phenomenon,
Grain boundary erosion is a phenomenon in which only grain boundaries are eroded from the alloy surface toward the inside. In a dry corrosion environment where chlorides coexist, chlorides react with oxides on the alloy surface to form double oxides, and at this time, the liberated Cl penetrates into the alloy through grain boundaries and reacts with the metal, causing the metal to react. Oxidized. The metal chloride formed at this time generally evaporates easily, and once it evaporates, an oxidation reaction occurs again, whereby grain boundaries are selectively eroded. For the above reasons, grain boundary corrosion accounts for a large proportion in a dry corrosion environment where chlorides coexist. From this point of view, the present inventors conducted a detailed study on the high-temperature corrosion of stainless steel in a dry corrosion environment in which chlorides coexist, and as a result, the following findings were obtained. First, although Cr has traditionally been considered to be an element that is universally effective against high-temperature corrosion, the results of investigating its effectiveness in a dry corrosion environment in which chlorides coexist have shown that, contrary to expectations, Cr causes corrosion thinning, grain It was found that it is a harmful element that is harmful to both types of corrosion and significantly promotes high-temperature corrosion as a whole. The reason for this is that the previously mentioned free Cl combines with Cr in the steel and evaporates as Cr chloride, causing grain boundary erosion.The surface layer with reduced Cr has lower oxidation resistance and oxidation progresses. This is thought to be for the purpose of Figure 1 shows the corrosion status of various stainless steels containing 25 to 30% Ni and varying amounts of Cr when immersed in a saturated NaCl solution and heated for 2 hours at -730°C for 10 cycles in relation to the amount of Cr. This is what is shown.
In addition, in order to eliminate the effects of the amount of C, grain size, and amount of Si and Mo, which will be described later, C0.02 to 0.03%, grain size number 6.5, Si 0.5 to 0.7%, and Mo 0.1 to 0.2%. As seen in the figure, as the amount of Cr increases, corrosion thinning becomes more prominent, and intergranular corrosion also becomes more significant, so the total amount of corrosion increases rapidly. Second, when we investigated the effect of C, we found that although C is effective against corrosion thinning, it is extremely harmful to grain boundary erosion, and overall it is an element that increases high-temperature corrosion. It has been found. The reason is that Cr carbide precipitates at grain boundaries when heated to high temperatures. This is thought to be because the Cr carbide decomposes due to the reaction between the carbide and Cl, and grain boundary erosion progresses significantly. Figure 2 shows 18Cr-10Ni stainless steel with varying C content, immersed in saturated NaCl solution -650
C shows the corrosion state after 10 cycles of heating at ℃.
It is shown in relation to quantity. The grain size number is
6.5, Si was 0.4 to 0.6%, and Mo was 0.1 to 0.3%. As seen in the figure, as the amount of C increases, corrosion thinning decreases, but the total amount of corrosion increases. This is simply because an increase in the amount of C significantly increases grain boundary erosion. Thirdly, when the crystal grains are refined, corrosion loss increases, but grain boundary erosion is largely suppressed, and high-temperature corrosion is suppressed as a whole. The reason for this is thought to be that by making the grains finer, the number of grain boundary paths becomes larger and longer, thereby suppressing the progress into the interior. Figure 3 shows the corrosion status of 18Cr-10Ni stainless steel containing 0.02 to 0.03% C and varying the grain size after 10 cycles of immersion in saturated NaCl solution and heating at -650°C. This is shown in the relationship. The crystal grain size is a grain size number defined by JIS G0551, and all crystal grain size numbers in this specification refer to this value. Si 0.5-0.7%, Mo
was set at 0.1 to 0.3%. As seen in the figure, as the grain size becomes smaller, that is, the grain size number becomes larger, corrosion thinning becomes more pronounced depending on the degree, but grain boundary corrosion is largely suppressed, and as a result, the total The amount of erosion will be suppressed. Fourth, Si and Mo are typical constituent elements of stainless steel, and both are effective in suppressing both corrosion thinning and grain boundary erosion. The reason for this is that an oxide scale (SiO 2 ) mainly composed of Si is formed below the surface scale, and this suppresses the corrosion of Cl into the interior more than the oxide scale of Fe or Cr. Significantly lowers the oxygen partial pressure on the surface,
This is thought to be because it prevents Fe oxidation and is also effective against corrosion and thinning. Figure 4 shows an investigation of the effects of Si and Mo on high-temperature corrosion in a dry corrosion environment in which chlorides coexist. The steel that was investigated was 17Cr-25Ni stainless steel with a grain size number of 6.5 with a C content of 0.02 to 0.03% for the Si influence investigation, and a C0.02 to 0.03% steel for the Mo influence investigation. It is 20Cr-30Ni stainless steel and the grain size number is 7.0. The test consisted of 10 cycles of immersion in a saturated NaCl solution and heating at -750°C.
As is clear from the figure, as the Si content and Mo content increase, corrosion thinning and grain boundary erosion are suppressed, effectively reducing the total amount of corrosion. however,
Since Mo is more expensive than Si, it is desirable to rely on Si as much as possible. Fifth, it was also found that Mn is harmful to high-temperature corrosion resistance in a dry corrosion environment in which chlorides coexist, and N is an effective element. The stainless steel of the present invention was developed based on this knowledge, and has a weight percentage of less than 0.03% C and 10% Cr.
~20%, Ni10~30%, Mn2% or less, Si over2%6%
Contains the following, with the balance consisting of Fe and unavoidable impurities, and the basic structural requirements are that the crystal grain size is fine with grain size number 6 or more, and the total erosion amount shown by formula (1) is 500 or less. It is. 24.4Cr + 2.8Ni + 6.7Mn -48.8Si (-56.9Mo - 148.0Nb) ...(1) Furthermore, if necessary, one or more of the following three component systems (1) to (3) may be used. Added selectively. (1) Any one or two of Mo0.5-5% and N0.02-0.4%. (2) A total of 0.1 to 1% of any one or more of Ti, Nb, Zr, and Ta. (3) A total of 0.001 to 0.1% of one or more of Ca, Mg, Al, Y, and rare earth elements. The reasons for limiting the composition, grain size, and total erosion index of the stainless steel of the present invention will be described below. Γ component composition C: As shown in FIG. 2, in a dry corrosion environment in which chloride coexists, grain boundary corrosion increases significantly and high temperature corrosion resistance decreases, so it should be less than 0.03%. Since the lower the amount of C, the higher the high temperature corrosion resistance is, no lower limit is specified. Si: As shown in Figure 4, it has a large high-temperature corrosion inhibiting effect in a dry corrosion environment with chlorides, and has a 2%
It is assumed that the content of However, from the viewpoint of ensuring workability and weldability, the upper limit is set at 6%. Mn: Mn decreases high temperature corrosion resistance in a dry corrosion environment where chlorides coexist, so the upper limit is set at 2%.
However, on the one hand, this element is essential for steelmaking and ensuring workability, and at a minimum
It is customary to contain about 0.2%. Cr: As shown in Fig. 1, it is limited to 20% or less because it significantly reduces high-temperature corrosivity in a dry corrosion environment in which chlorides coexist. However, this element is an important element in ensuring high-temperature oxidation resistance in normal exhaust gas that does not coexist with chlorides, and requires addition of 10% or more. Ni: Since it does not have a large effect on high temperature corrosion resistance in a dry corrosion environment where chlorides coexist, Ni should be added at a content of 10% or more to ensure a fully austenitic structure. However, since increasing the amount added leads to increased costs, it should be kept at 30% or less. Mo, N: Both are elements effective for high temperature corrosion resistance in a dry corrosion environment where chlorides coexist, and are added as necessary. The addition amount of Mo is required to be 0.5% or more in order to obtain a reliable addition effect, but since it is an expensive element, 5% or more is required.
The upper limit is %. As for N, it is contained at about 0.02% even if it is not specifically added, so when it is added, the content is 0.02% or more. however,
Processability is ensured by setting the upper limit of solid solubility at 0.4%. Ti, Nb, Zr, Ta: All are effective elements for increasing high-temperature corrosion resistance in a dry corrosion environment where chlorides coexist, and a clear addition effect can be obtained when the total amount added is 0.1% or more. . However, as the amount added decreases processability,
Keep the total amount below 1%. Ca, Mg, Al, Y, rare earth elements: These are effective in increasing the cleanliness of steel. Increasing the cleanliness of steel promotes the diffusion of harmful elements such as Cr as well as beneficial elements such as Si in the steel. Although corrosion thinning becomes slightly more pronounced due to the diffusion of harmful elements, the front surface corrosion tendency increases, grain boundary corrosion is easily suppressed by Si, etc., and overall it acts as a beneficial element. When adding, the addition effect can be obtained when the total amount is 0.001% or more, but if it exceeds 0.1%, workability and weldability deteriorate, so 0.001 to 0.1%
The range shall be . Unavoidable impurities: For example, it is preferable to have less P and S in terms of weldability, etc., but each is 0.03%
If it is below, it can be used for normal purposes, so it is not particularly stipulated. Γ Grain size As shown in Figure 3, as the grain size becomes smaller, corrosion thinning becomes more pronounced, but grain boundary erosion, which is a characteristic form of corrosion in a dry corrosion environment with chlorides, is greatly reduced. This will ultimately reduce total erosion. Total erosion is effectively suppressed in the fine grain region where the grain size is 6 or more. Since the smaller the grain size is, the more the total erosion is suppressed, there is no upper limit on the grain size number. However, on the other hand, the grain refinement tends to increase the strength at room temperature,
Since it becomes difficult to process, it is practically desirable to limit the particle size number to 10 or less from the viewpoint of workability. Means for adjusting the grain size to grain size number 6 or higher include adjusting the degree of cold working, solution temperature, and time, and by this adjustment, a predetermined grain size can be easily obtained. In addition, in conventional stainless steels in which only high-temperature corrosion resistance is considered, the grain size is adjusted to about 4 to 5, mainly from the viewpoint of high-temperature ductility and workability. ΓTotal corrosion amount Regarding high-temperature corrosion resistance in a dry corrosion environment in which chlorides coexist, as mentioned above, the total corrosion amount is expressed as the sum of the corrosion thickness reduction amount and the grain boundary erosion amount, and the corrosion reduction Various factors are intricately related to meat and grain boundary erosion. Therefore, it is difficult to obtain a satisfactory total amount of erosion only by reviewing individual factors such as the amount of C and the amount of Cr. As a result of multiple regression analysis of the influence of various components on the total amount of erosion, the present inventors found that the total amount of erosion was
We found that it can be expressed by equation (1). Equation (1) represents the total amount of corrosion when steel with a C content of 0.03% or less is immersed in a saturated NaCl solution and heated at -750°C for 10 cycles, and the target high-temperature corrosion resistance is 1.5 times that of SUS304 steel. In this case, the total erosion amount expressed by equation (1) needs to be 500 or less. In addition, in formula (1), Nb is Ti, Nb, Zr,
Ta is represented by Nb, and it represents the total content of this element group. [Example] Each 17 kg of test steel whose composition is shown in Table 1 was melted by vacuum melting, and then hot rolled and cold rolled to a thickness of 4.9 kg.
After forming steel plates with a thickness of 1.5 mm, they were subjected to solution treatment, and then test specimens with a width of 20 mm, a length of 30 mm, and a thickness of 3 mm were taken from each steel plate. In order to evaluate high-temperature corrosivity in the presence of chlorides, each test piece was immersed in a saturated NaCl solution for 5 minutes, held at 650 to 750°C for 2 hours, and cooled in air for 5 minutes.
Ten cycles were repeated, after which the total amount of corrosion was investigated. The total corrosion amount was determined by investigating the amount of corrosion thinning, measuring the maximum depth of grain boundary corrosion from cross-sectional microscopic observation, and adding the two. The results are shown in Table 1. Note that the crystal grain size was adjusted by the heat treatment temperature and time. In Table 1, test steels No. 1 to 20 are steels of the present invention,
Nos. 21 to 24 are conventional steel. It can be seen that the steel of the present invention has significantly superior high-temperature corrosion resistance in a dry corrosion environment in which chlorides coexist as compared to conventional steel.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明のステ
ンレス鋼は、塩化物共存の乾式腐食環境下での耐
高温腐食性に優れるので、自動車の排気系に融雪
剤が付着する場合にあつても高度の耐久性を保証
し、更に廃棄物焼却炉、廃熱利用設備、厨房等に
使用して高度の耐久性を示すものとなる。 しかも、本発明のステンレス鋼は、Siの増量に
より耐高温腐食性を高め、むしろCrを減らすの
で、経済性にも著しく優れるものとなる。
As is clear from the above description, the stainless steel of the present invention has excellent high-temperature corrosion resistance in a dry corrosion environment where chlorides coexist, so it can withstand high temperatures even when snow-melting agents adhere to the exhaust system of an automobile. Furthermore, it can be used in waste incinerators, waste heat utilization equipment, kitchens, etc., and exhibits a high degree of durability. In addition, the stainless steel of the present invention has improved high-temperature corrosion resistance by increasing the amount of Si, and on the contrary, it has reduced Cr content, so it is extremely economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は塩化物共存下での耐高温腐食
性に影響を与える各種因子の影響度を示すグラフ
である。
FIGS. 1 to 4 are graphs showing the degree of influence of various factors that affect high temperature corrosion resistance in the presence of chlorides.

Claims (1)

【特許請求の範囲】 1 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下を含有し、
残部Feおよび不可避的不純物からなり、更に結
晶粒度が粒度番号(JIS)6以上の細粒で且つ下
式が500以下であることを特徴とする塩化物共存
下での耐高温腐食性に優れたステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si 2 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Mo0.5〜5%およびN0.02〜0.4%のいずれか1種
または2種を含有し、残部Feおよび不可避的不
純物からなり、更に結晶粒度が粒度番号(JIS)
6以上の細粒で且つ下式が500以下であることを
特徴とする塩化物共存下での耐高温腐食性に優れ
たステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si−56.9Mo 3 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Ti、Nb、ZrおよびTaのいずれか1種または2
種以上の合計0.1〜1%を含有し、残部Feおよび
不可避的不純物からなり、更に結晶粒度が粒度番
号(JIS)6以上の細粒で且つ下式が500以下であ
ることを特徴とする塩化物共存下での耐高温腐食
性に優れたステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb 4 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Mo0.5〜5%およびN0.02〜0.4%のいずれか1種
または2種、Ti、Nb、ZrおよびTaのいずれか
1種または2種以上の合計0.1〜1.0%を含有し、
残部Feおよび不可避的不純物からなり、更に結
晶粒度が粒度番号(JIS)6以上の細粒で且つ下
式が500以下であることを特徴とする塩化物共存
下での耐高温腐食性に優れたステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb 5 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Ca、Mg、Al、Yおよび希土類元素のいずれか1
種または2種以上の合計0.001〜0.1%を含有し、
残部Feおよび不可避的不純物からなり、更に結
晶粒度が粒度番号(JIS)6以上の細粒で且つ下
式が500以下であることを特徴とする塩化物共存
下での耐高温腐食性に優れたステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si 6 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Mo0.5%〜5%およびN0.02〜0.4%のいずれか1
種または2種、Ca、Mg、Al、Yおよび希土類元
素のいずれか1種または2種以上の合計0.001〜
0.1%を含有し、残部Feおよび不可避的不純物か
らなり、更に結晶粒度が粒度番号(JIS)6以上
の細粒で且つ下式が500以下であることを特徴と
する塩化物共存下での耐高温腐食性に優れたステ
ンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si−56.9Mo 7 重量%でC0.03%未満、Cr10〜20%、Ni10〜
30%、Mn2%以下、Si2%超6%以下、ならびに
Mo0.5%〜5%およびN0.02〜0.4%のいずれか1
種または2種、Ti、Nb、ZrおよびTaのいずれ
か、1種または2種以上の合計0.1〜1%、Ca、
Mg、Al、Yおよび希土類元素のいずれか1種ま
たは2種以上の合計0.001〜0.1%を含有し、残部
Feおよび不可避的不純物からなり、更に結晶粒
度が粒度番号(JIS)6以上の細粒で且つ下式が
500以下であることを特徴とする塩化物共存下で
の耐高温腐食性に優れたステンレス鋼。 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb
[Claims] 1. Less than 0.03% C by weight, 10-20% Cr, 10-10% Ni
Contains 30%, Mn 2% or less, Si more than 2% and 6% or less,
The balance consists of Fe and unavoidable impurities, and the grain size is fine with grain size number (JIS) 6 or more, and the following formula is 500 or less. Excellent high-temperature corrosion resistance in the coexistence of chlorides. stainless steel. 24.4Cr+2.8Ni+6.7Mn−48.8Si 2 Weight% less than C0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Contains one or two of Mo0.5-5% and N0.02-0.4%, the balance is Fe and unavoidable impurities, and the crystal grain size is determined by the grain size number (JIS).
A stainless steel with excellent high-temperature corrosion resistance in the coexistence of chlorides, characterized by having fine grains of 6 or more and the following formula of 500 or less. 24.4Cr+2.8Ni+6.7Mn−48.8Si−56.9Mo 3 Weight% less than C0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Any one or two of Ti, Nb, Zr and Ta
A chloride containing a total of 0.1 to 1% of seeds or more, the remainder consisting of Fe and unavoidable impurities, and further having a fine crystal grain size of grain size number (JIS) 6 or more and the following formula of 500 or less Stainless steel with excellent high-temperature corrosion resistance in the presence of substances. 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb 4 Weight% less than C0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Contains a total of 0.1 to 1.0% of any one or two of Mo0.5 to 5% and N0.02 to 0.4%, and one or two or more of Ti, Nb, Zr, and Ta,
The balance consists of Fe and unavoidable impurities, and the grain size is fine with grain size number (JIS) 6 or more, and the following formula is 500 or less. Excellent high-temperature corrosion resistance in the coexistence of chlorides. stainless steel. 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb 5 Weight% C less than 0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Any one of Ca, Mg, Al, Y, and rare earth elements
Contains a total of 0.001 to 0.1% of a species or two or more species,
The balance consists of Fe and unavoidable impurities, and the grain size is fine with grain size number (JIS) 6 or more, and the following formula is 500 or less. Excellent high-temperature corrosion resistance in the coexistence of chlorides. stainless steel. 24.4Cr+2.8Ni+6.7Mn−48.8Si 6 Weight% C less than 0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Any one of Mo0.5%~5% and N0.02~0.4%
A total of 0.001 or more of one or more of Ca, Mg, Al, Y, and rare earth elements
0.1%, the balance consists of Fe and unavoidable impurities, and the crystal grain size is fine with grain size number (JIS) 6 or more, and the following formula is 500 or less. Stainless steel with excellent high temperature corrosion resistance. 24.4Cr+2.8Ni+6.7Mn−48.8Si−56.9Mo 7 Weight% less than C0.03%, Cr10~20%, Ni10~
30%, Mn2% or less, Si over 2% and 6% or less, and
Any one of Mo0.5%~5% and N0.02~0.4%
species or two species, any one or more of Ti, Nb, Zr and Ta, total 0.1 to 1%, Ca,
Contains a total of 0.001 to 0.1% of one or more of Mg, Al, Y, and rare earth elements, with the remainder
It consists of Fe and unavoidable impurities, and has a fine crystal grain size of grain size number (JIS) 6 or more and the following formula:
Stainless steel with excellent high-temperature corrosion resistance in the coexistence of chlorides, characterized by a corrosion resistance of 500 or less. 24.4Cr+2.8Ni+6.7Mn−48.8Si −56.9Mo−148.0Nb
JP4627587A 1987-02-27 1987-02-27 Stainless steel excellent in resistance to high-temperature corrosion in the presence of chloride Granted JPS63213643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4627587A JPS63213643A (en) 1987-02-27 1987-02-27 Stainless steel excellent in resistance to high-temperature corrosion in the presence of chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4627587A JPS63213643A (en) 1987-02-27 1987-02-27 Stainless steel excellent in resistance to high-temperature corrosion in the presence of chloride

Publications (2)

Publication Number Publication Date
JPS63213643A JPS63213643A (en) 1988-09-06
JPH057458B2 true JPH057458B2 (en) 1993-01-28

Family

ID=12742673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4627587A Granted JPS63213643A (en) 1987-02-27 1987-02-27 Stainless steel excellent in resistance to high-temperature corrosion in the presence of chloride

Country Status (1)

Country Link
JP (1) JPS63213643A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527605B2 (en) * 1988-08-16 1996-08-28 日新製鋼株式会社 Austenitic stainless steel with excellent high temperature salt corrosion resistance
US5824264A (en) * 1994-10-25 1998-10-20 Sumitomo Metal Industries, Ltd. High-temperature stainless steel and method for its production
JP3424314B2 (en) * 1994-02-24 2003-07-07 大同特殊鋼株式会社 Heat resistant steel
JPH09249946A (en) * 1996-03-14 1997-09-22 Nkk Corp Steel for pressure fluidized bed combustion type thermal power plant
CN104060190A (en) * 2014-07-09 2014-09-24 上海大学兴化特种不锈钢研究院 Chromium-saving and nickel-saving type high-silicon heat-resistant stainless steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104515A (en) * 1976-12-14 1978-09-11 Armco Steel Corp Abrasionnresistant austenitic stainless steel
JPS5681618A (en) * 1979-12-04 1981-07-03 Japan Steel Works Ltd:The Grain fining method of austenite steel
JPS573743A (en) * 1980-06-03 1982-01-09 Toshiba Corp Joining method of glass
JPS5716187A (en) * 1980-06-20 1982-01-27 Furukawa Electric Co Ltd:The Electrolytic refinery of copper
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature
JPS6220856A (en) * 1985-07-19 1987-01-29 Sumitomo Metal Ind Ltd Heat resisting steel having excellent resistance to high temperature corrosion by chloride
JPS62202056A (en) * 1986-02-28 1987-09-05 Sumitomo Electric Ind Ltd Stainless steel excellent in resistance to oxidation and corrosion
JPS63158785A (en) * 1986-12-19 1988-07-01 松下電器産業株式会社 Sheathed heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104515A (en) * 1976-12-14 1978-09-11 Armco Steel Corp Abrasionnresistant austenitic stainless steel
JPS5681618A (en) * 1979-12-04 1981-07-03 Japan Steel Works Ltd:The Grain fining method of austenite steel
JPS573743A (en) * 1980-06-03 1982-01-09 Toshiba Corp Joining method of glass
JPS5716187A (en) * 1980-06-20 1982-01-27 Furukawa Electric Co Ltd:The Electrolytic refinery of copper
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature
JPS6220856A (en) * 1985-07-19 1987-01-29 Sumitomo Metal Ind Ltd Heat resisting steel having excellent resistance to high temperature corrosion by chloride
JPS62202056A (en) * 1986-02-28 1987-09-05 Sumitomo Electric Ind Ltd Stainless steel excellent in resistance to oxidation and corrosion
JPS63158785A (en) * 1986-12-19 1988-07-01 松下電器産業株式会社 Sheathed heater

Also Published As

Publication number Publication date
JPS63213643A (en) 1988-09-06

Similar Documents

Publication Publication Date Title
US4999159A (en) Heat-resistant austenitic stainless steel
US9816163B2 (en) Cost-effective ferritic stainless steel
US5130085A (en) High al austenitic heat-resistant steel superior in hot workability
JPS5923855A (en) Steel having high strength at high temperature containing carbide forming element
JPH057458B2 (en)
CN116555666A (en) Pitting corrosion resistant ferrite stainless steel and manufacturing method thereof
JPS6214628B2 (en)
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH04173939A (en) Ferritic stainless steel excellent in high temperature strength and toughness
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
JPS6119764A (en) Two-phase stainless steel excellent in toughness
JP3779043B2 (en) Duplex stainless steel
JPH0563537B2 (en)
JPS6214626B2 (en)
JP3351837B2 (en) Al-containing ferritic stainless steel with excellent manufacturability and high-temperature oxidation resistance
JPS6211065B2 (en)
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
JP3422878B2 (en) Ferritic stainless steel excellent in corrosion resistance in air and method for producing the same
JP2820255B2 (en) High A1 austenitic heat-resistant steel with excellent hot workability
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPS59179758A (en) High corrosion-resistant chromium steel for exhaust system member of automobile
WO2021043913A1 (en) A new welding material
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
RU2002851C1 (en) Low-alloy steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term