JPH0573509U - Strain sensor - Google Patents

Strain sensor

Info

Publication number
JPH0573509U
JPH0573509U JP311192U JP311192U JPH0573509U JP H0573509 U JPH0573509 U JP H0573509U JP 311192 U JP311192 U JP 311192U JP 311192 U JP311192 U JP 311192U JP H0573509 U JPH0573509 U JP H0573509U
Authority
JP
Japan
Prior art keywords
strain sensor
strain
region
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP311192U
Other languages
Japanese (ja)
Other versions
JP2573336Y2 (en
Inventor
信夫 福田
浩之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Co Ltd
NEC Corp
Original Assignee
Ishida Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Co Ltd, NEC Corp filed Critical Ishida Co Ltd
Priority to JP1992003111U priority Critical patent/JP2573336Y2/en
Publication of JPH0573509U publication Critical patent/JPH0573509U/en
Application granted granted Critical
Publication of JP2573336Y2 publication Critical patent/JP2573336Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

(57)【要約】 【目的】金属基板上に複数個編集配置した歪センサをレ
ーザー切断法で切り出す際に、精度良く座標を決定する
ための基準点を有し、また、切り出した後も基準点とし
て使用でき、歪検出回路の信頼性を確保する構造を有す
る歪センサを提供する。 【構成】金属基板1上に薄膜技術により形成する歪検出
回路10を第1の領域8の有機絶縁膜上に設け、これと
完全に分離する第2の領域9上に座標位置認識用パター
ン11を設ける。これにより、第1の領域の歪検出回路
を、回路形成直後の有機保護膜で単独に被覆できるの
で、歪検出回路の信頼性を向上させる事ができるととも
に、基準点を切り出し以後のプロセスでも使用できる。
(57) [Abstract] [Purpose] When cutting out a plurality of strain sensors that are edited and arranged on a metal substrate by the laser cutting method, it has a reference point for accurately determining the coordinates, and it also serves as a reference after cutting. Provided is a strain sensor which can be used as a point and has a structure for ensuring the reliability of a strain detection circuit. [Structure] A strain detecting circuit 10 formed by a thin film technique on a metal substrate 1 is provided on an organic insulating film in a first region 8, and a coordinate position recognition pattern 11 is formed on a second region 9 which is completely separated from the organic insulating film. To provide. As a result, the strain detection circuit in the first region can be independently covered with the organic protective film immediately after the circuit is formed, so that the reliability of the strain detection circuit can be improved and the reference point can be used in the subsequent processes. it can.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、歪センサに関し、特に金属基板上に薄膜技術により歪センサ回路を 形成した歪センサに関する。 The present invention relates to a strain sensor, and more particularly to a strain sensor in which a strain sensor circuit is formed on a metal substrate by thin film technology.

【0002】[0002]

【従来の技術】[Prior Art]

一般に、歪センサは金属基板上に薄膜技術による歪センサ回路を形成して製造 している。 Generally, strain sensors are manufactured by forming strain sensor circuits by thin film technology on a metal substrate.

【0003】 図4はかかる従来の歪センサを形成する基板の断面図であり、図5は平面図、 図6は拡大平面図である。FIG. 4 is a sectional view of a substrate forming such a conventional strain sensor, FIG. 5 is a plan view, and FIG. 6 is an enlarged plan view.

【0004】 図4に示すように、従来の歪センサはステンレス基板1の主面上にポリイミド からなる耐熱性絶縁樹脂膜2を形成し、その上に抵抗体3及び導体薄膜4を付着 させた後、所定の回路をフォトエッチング法で形成し、抵抗値調整を行ってから 個々のものに分割した後、部品や端子の取り付けおよび保護樹脂の付着を行って 得られる。分割の際、切り出し位置を決めるための基準点5は図5に示すように 歪センサを形成しない金属基板の周囲の部分や、図6に示すように切り出しの時 除去される切りしろ部分7に形成されるのが一般的であった。As shown in FIG. 4, in the conventional strain sensor, a heat-resistant insulating resin film 2 made of polyimide is formed on the main surface of a stainless substrate 1, and a resistor 3 and a conductor thin film 4 are attached thereon. After that, a predetermined circuit is formed by a photo-etching method, the resistance value is adjusted, and then it is divided into individual parts, and then parts and terminals are attached and a protective resin is attached. At the time of division, the reference point 5 for determining the cutout position is the peripheral portion of the metal substrate on which the strain sensor is not formed as shown in FIG. 5 or the cutout portion 7 removed at the time of cutout as shown in FIG. It was generally formed.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述した従来の歪センサは、以下のような問題点が有る。 The conventional strain sensor described above has the following problems.

【0006】 一般的に、基板を完全に平滑化することは難しく、反りやうねり等の変形が存 在する。薄膜技術で回路を形成するとき、真空吸着などにより基板を吸着し、基 板をできるだけ平滑化してフォトマスクのパターンをフォトエッチング法により 基板に転写している。従って、レーザー切断法で金属基板から歪センサを切り出 す場合、同様に基板を平滑化してから行わなければレーザービームの照射されて いる位置が、基板の変形の影響を受けて初期の位置かずれ、所望の形状の歪セン サを切り出せなくなる。金属基板を平滑化する事が出来れば精度良く歪センサを 切り出せるが、切り出し位置を決めるための基準点が従来方式であれば以下の理 由により精度良く切り出せない。Generally, it is difficult to completely smooth the substrate, and there are deformations such as warpage and undulation. When a circuit is formed using thin film technology, the substrate is adsorbed by vacuum adsorption, the substrate is smoothed as much as possible, and the photomask pattern is transferred to the substrate by photoetching. Therefore, when a strain sensor is cut out from a metal substrate by the laser cutting method, the position irradiated with the laser beam is affected by the deformation of the substrate and must be the initial position unless the substrate is smoothed similarly. It becomes impossible to cut out the strain sensor having the desired shape. If the metal substrate can be smoothed, the strain sensor can be cut out accurately, but if the reference point for determining the cutting position is the conventional method, it cannot be cut out accurately for the following reasons.

【0007】 1.基準点を金属基板の周囲に形成した場合 セラミック基板のように基板に溝に入れ、後で機械的な力を加えて分割する場 合、基板分割用のレーザービームは金属裏面に達しないので、基板裏面全面に接 触して基板を吸着固定する平滑な台を用意して基板の平滑化が可能であるので基 板周囲に形成した基準点に対して切り出し位置のずれは少ない。しかし、金属基 板にこの方法を適用し金属基板に溝をいれ、後で機械的な力で、分割した場合、 機械的なストレスがかかるので基板にうねりや反りなどの変形が新たに生じ、残 留ストレスも発生する。そして、この残留ストレスは徐々に解放されるので、歪 センサに誤差を生じさせる原因となる。従って、金属基板を分割する場合は、レ ーザービームを基板裏面まで貫通させ歪センサを個片単位に切り出す方法が取ら れるが、基板裏面に貫通したレーザービームによる損傷及び切り出し時にレーザ ーパワーとアシストガスによる風圧により歪センサが飛散するのを防ぐために、 歪センサを個片単位に各歪センサより小さい面積の台を用いて吸着固定する必要 がある。このように個片単位で吸着した場合、金属基板全面の平滑化を行うのは 難しく基板に変形が残り、切り出し位置のずれが発生し易くなる。1. When the reference point is formed around the metal substrate When the substrate is placed in a groove like a ceramic substrate and the substrate is divided by applying mechanical force later, the laser beam for substrate division does not reach the metal back surface. Since the smooth surface of the substrate can be smoothed by contacting the entire back surface of the substrate and adsorbing and fixing the substrate, there is little deviation of the cutting position from the reference point formed around the substrate. However, if this method is applied to a metal substrate and a groove is formed in the metal substrate and then the substrate is divided by mechanical force, mechanical stress will be applied, resulting in new deformation such as waviness or warpage on the substrate. Residual stress also occurs. Then, this residual stress is gradually released, which causes an error in the strain sensor. Therefore, when splitting a metal substrate, the laser beam may be penetrated to the back surface of the substrate and the strain sensor may be cut into individual pieces. In order to prevent the strain sensors from scattering due to wind pressure, it is necessary to adsorb and fix the strain sensors on an individual unit basis using a stand having an area smaller than each strain sensor. In this way, when adsorbing in the unit of individual pieces, it is difficult to smooth the entire surface of the metal substrate, and the substrate remains deformed, and the cutting position is likely to be displaced.

【0008】 2.基準点を金属基板切りしろ部に形成した場合 切りしろ上に基準点を形成した場合、各歪センサに隣接させて基準点を形成で きるので基板の反りなどの影響を受けにくいと考えられるが、切しろ部にあるの でレーザー光の照射後には基準点が無くなり、例えば、基板からランダムに歪セ ンサを切りだした場合、切り出したい歪センサの周囲に基準点が残らない場合が ありその場合は例えば離れた位置に残る基準点を参照しなければならず歪センサ を精度良く切り出せないということがある。2. When the reference point is formed on the metal substrate cutoff part When the reference point is formed on the cutout part, it is considered that the reference point can be formed adjacent to each strain sensor, so it is unlikely to be affected by the warp of the substrate. Since there is no reference point after irradiation with laser light because it is in the cutting margin, for example, when a strain sensor is cut out randomly from the substrate, the reference point may not remain around the strain sensor you want to cut out. In this case, for example, it may be impossible to accurately cut out the strain sensor because it is necessary to refer to reference points that remain at distant positions.

【0009】 また、ステンレス基板上に直接形成した薄膜の基準点は、ステンレスと薄膜と の間の色調が近い場合は認識しづらくなるという問題点がある。また、通常のス テンレスの平滑度は平均粗さが0.3μm程度なので厚さ1μm程度やそれ以下 の薄い膜厚の薄膜では、その表面の凹凸を吸収出来なくて鏡面状の基板上に形成 した場合と比べ光の散乱量が多くなり認識し易さが更に低下するという問題点が ある。また、基準点を歪検出回路と同じ有機絶縁膜上に形成した場合、レーザー 光の熱による有機絶縁膜の燃焼や有機絶縁膜の密着性劣化を起こすという問題点 がある。Further, there is a problem that the reference point of the thin film directly formed on the stainless steel substrate becomes difficult to recognize when the color tone between the stainless steel and the thin film is close. Moreover, since the average surface roughness of ordinary stainless steel is about 0.3 μm, thin films with a thickness of about 1 μm or less cannot absorb surface irregularities and are formed on a mirror-like substrate. There is a problem that the amount of light scattering increases and the recognizability is further reduced compared to the case. Further, when the reference point is formed on the same organic insulating film as the strain detection circuit, there is a problem that the heat of the laser beam causes the organic insulating film to burn and the adhesiveness of the organic insulating film to deteriorate.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

本考案によれば、金属基板上に絶縁膜を有し、絶縁膜上に第1の抵抗体領域と 第2の抵抗体領域とを有し、第1の抵抗体領域上に歪検出用回路を有し、第2の 抵抗体領域上に位置確認用パターンを有する歪センサが得られる。 According to the present invention, an insulating film is provided on a metal substrate, a first resistor region and a second resistor region are provided on the insulating film, and a strain detection circuit is provided on the first resistor region. And a strain sensor having a position confirmation pattern on the second resistor region is obtained.

【0011】 更に本考案によれば、絶縁膜としてポリイミドを用いる前述の歪センサが得ら れる。Further, according to the present invention, the above-mentioned strain sensor using polyimide as the insulating film can be obtained.

【0012】[0012]

【実施例】【Example】

次に、本考案について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

【0013】 図1は本考案による第1の実施例を示す切断前の歪センサの平面図であり、図 2及び図3は本考案による第1の実施例を示す歪センサの製造工程を示す平面図 である。FIG. 1 is a plan view of a strain sensor before cutting showing a first embodiment according to the present invention, and FIGS. 2 and 3 show a manufacturing process of the strain sensor according to the first embodiment of the present invention. It is a plan view.

【0014】 図2に示すように、本実施例では0.3mm厚のステンレス基板(10cm過 度1に、スピン塗布法により有機絶縁膜としてのポリイミド膜2を形成し通常の フォトエッチング法により第1の領域8と第2の領域9だけを残し不要部のポリ イミドを除去する。ポリイミドは350℃、60分の条件で硬化させる。硬化後 の膜厚は約4μmである。As shown in FIG. 2, in this embodiment, a 0.3 mm-thick stainless steel substrate (10 cm with a thickness of 1 is used to form a polyimide film 2 as an organic insulating film by spin coating, and then a first photoetching method is used to form a polyimide film 2. The unnecessary portion of the polyimide is removed leaving only the region 8 and the second region 9. The polyimide is cured at 350 ° C. for 60 minutes, and the film thickness after curing is about 4 μm.

【0015】 次に、抵抗体膜として窒化タンタル(Ta2 N)膜4を約1000オングスト ロームの厚さに形成し、その上に導体膜としてNiCr(約1000オングスト ローム)、Pd(約1000オングストローム)、Au(約7000オングスト ローム)の積層膜をマグネトロンスパッタ法により成膜する。これを、ポリイミ ド膜の第1の領域上に歪検出用回路10、第2の領域上に座標位置認識用基準パ ターン(約0.4mm角のひし型パターン)11が形成されるようにフォトエッ チング法でパターン化後、250℃,7時間の抵抗体12の安定化熱処理を行う 。Next, a tantalum nitride (Ta 2 N) film 4 having a thickness of about 1000 angstroms is formed as a resistor film, and NiCr (about 1000 angstroms) and Pd (about 1000 angstroms) are formed thereon as conductor films. ) And Au (about 7,000 angstroms) are formed by a magnetron sputtering method. The strain detecting circuit 10 is formed on the first area of the polyimide film, and the coordinate position recognizing reference pattern (diamond pattern of about 0.4 mm square) 11 is formed on the second area. After patterning by the photo-etching method, the heat treatment for stabilizing the resistor 12 is performed at 250 ° C. for 7 hours.

【0016】 そして、図3に示すようにレーザートリミング法での抵抗値の調整後、歪検出 用回路の外部端子接続用導体部(約1mm角)13のみを露出させるように、第 1の領域8の全面及び第1の領域の周辺部にエポキシ系の有機保護膜14を約3 0μmの厚さで印刷法により付着する。この際、第2の領域9には基準点を露出 させるために有機保護膜を付着しない。Then, as shown in FIG. 3, after adjusting the resistance value by the laser trimming method, the first region is exposed so that only the external terminal connecting conductor portion (about 1 mm square) 13 of the strain detection circuit is exposed. An epoxy-based organic protective film 14 having a thickness of about 30 μm is attached to the entire surface of 8 and the peripheral portion of the first region by a printing method. At this time, the organic protective film is not attached to the second region 9 in order to expose the reference point.

【0017】 YAGレーザーにより歪センサを切り出す際に、第2の領域上の基準点を使い 座標を決め所定の形状(約5cm×3cmの大きさ)に歪センサを切り出す。ポ リイミド膜は平滑性がよいので基準点パターンは鏡面上に付着した膜と同程度の 滑らかな膜面が得られる。また、ポリイミド膜(茶褐色)と導体膜(実施例では 金色)は色調が全く異なるので基準点は容易に認識できる。導体膜にアルミニウ ムや銅を使用した場合も同様な効果が得られる。When cutting out the strain sensor with the YAG laser, the coordinates are determined using the reference points on the second region, and the strain sensor is cut into a predetermined shape (size of about 5 cm × 3 cm). Since the polyimide film has good smoothness, the reference point pattern can be as smooth as the film attached on the mirror surface. Further, since the color tone of the polyimide film (brown) and the conductor film (gold in the embodiment) are completely different, the reference point can be easily recognized. Similar effects can be obtained when aluminum or copper is used for the conductor film.

【0018】 切り出した個片15(図4)に部品及び端子を半田付けし、製造工程で吸湿し た水分を130℃で約1時間程、乾燥して除去した後、最終的な防湿膜としてブ チルゴムを付着させて歪センサ素子が得られる。The parts and terminals are soldered to the cut pieces 15 (FIG. 4), and the moisture absorbed in the manufacturing process is dried at 130 ° C. for about 1 hour to be removed, and then the final moisture-proof film is formed. A strain sensor element is obtained by attaching butyl rubber.

【0019】 切り出しに使用した基準点は個々の歪センサに付いているのでこれを参照する ことで端子や部品の搭載を精度良く行える。また、基準点は切り出し位置から約 500μm離れた位置にあるのでレーザー光の熱による有機絶縁膜の密着性に悪 影響を与えることは無い。また、第1の領域は歪検出回路形成後に保護膜によっ て被覆されているのでそれ以後の工程に於ける吸湿を大幅に防ぐ事が出来る。こ れにより、歪検出回路の信頼性を向上させる事が出来る。第2の領域の基準点は 防湿膜形成までの位置合わせの基準として使用するので、薄膜が露出した状態に ある時間が長いので吸湿量が多くなる。従って、第1の領域と第2の領域の有機 絶縁膜を完全に分離させた事で単独に保護膜を付着させる事が出来る第1の領域 の回路の信頼性を向上させる事が出来る。Since the reference point used for cutting out is attached to each strain sensor, by referring to this, the terminals and components can be mounted with high accuracy. Moreover, since the reference point is located at a distance of about 500 μm from the cut-out position, the heat of the laser beam does not adversely affect the adhesion of the organic insulating film. Further, since the first region is covered with the protective film after the strain detection circuit is formed, it is possible to largely prevent moisture absorption in the subsequent steps. This can improve the reliability of the distortion detection circuit. Since the reference point of the second area is used as a reference for alignment until the formation of the moisture-proof film, the amount of moisture absorption increases because the time during which the thin film is exposed is long. Therefore, by completely separating the organic insulating film in the first region and the second region, it is possible to improve the reliability of the circuit in the first region to which the protective film can be attached independently.

【0020】[0020]

【考案の効果】[Effect of the device]

以上説明したように、本考案の歪センサは歪センサ素子内の第2の領域の有機 絶縁膜上に基準点パターンを有しているので金属基板からの歪センサの切り出し を精度良く行えるだけでなく切り出し後の部品取り付け時の位置合わせ用基準点 としても使用できる。 As described above, since the strain sensor of the present invention has the reference point pattern on the organic insulating film in the second region in the strain sensor element, the strain sensor can be accurately cut out from the metal substrate. It can also be used as a reference point for alignment when mounting parts after cutting.

【0021】 また、第1の領域の有機絶縁膜は第2の領域の絶縁膜から完全に分離して形成 してあるので、回路形成後に付着した有機保護膜により吸湿が大幅に抑制され信 頼性の高い歪センサを作る事が出来る。もし、第1の領域と第2の領域の有機絶 縁膜が分離されておらず接続している場合露出した第2の領域の有機絶縁膜に浸 透する水分は領域の接続点部分を通して第1の領域にまで到達して歪検出回路を 形成する薄膜と有機絶縁膜との間の密着性低下、更には有機絶縁膜と金属基板と の間の密着性低下の原因となり歪センサの性能劣化をもたらす。第2の領域の有 機絶縁膜及び薄膜は歪検出機能には無関係なので製造工程で吸湿する水分による 影響は無視できるが、必要以上に長時間、吸湿した状態で保管することは避けな ければならない。尚、有機保護膜は端子を半田で接続する際の保護膜としても機 能する。Further, since the organic insulating film in the first region is formed completely separated from the insulating film in the second region, moisture absorption is largely suppressed by the organic protective film attached after the circuit is formed, and the reliability is improved. A highly accurate strain sensor can be made. If the organic insulating films in the first and second regions are not separated and are connected to each other, the moisture that permeates the exposed organic insulating film in the second region is transferred through the connection point part of the region to the first region. Deterioration of the performance of the strain sensor due to a decrease in the adhesion between the thin film that reaches the region 1 and forms the strain detection circuit and the organic insulating film, and further a decrease in the adhesion between the organic insulating film and the metal substrate. Bring Since the organic insulating film and the thin film in the second area have nothing to do with the strain detection function, the influence of moisture absorbed in the manufacturing process can be ignored, but it is necessary to store them in a moisture-absorbed state for an unnecessarily long time. I won't. The organic protective film also functions as a protective film when connecting the terminals with solder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による第1の実施例を示す切断前の歪セ
ンサの平面図である。
FIG. 1 is a plan view of a strain sensor before cutting according to a first embodiment of the present invention.

【図2】本考案による第1の実施例の歪センサの製造工
程を示す平面図である。
FIG. 2 is a plan view showing a manufacturing process of the strain sensor of the first embodiment according to the present invention.

【図3】本考案による第1の実施例の歪センサの製造工
程を示す平面図である。
FIG. 3 is a plan view showing a manufacturing process of the strain sensor of the first embodiment according to the present invention.

【図4】従来の歪センサを形成する基板の断面図であ
る。
FIG. 4 is a sectional view of a substrate forming a conventional strain sensor.

【図5】従来の切断前の歪センサの平面図である。FIG. 5 is a plan view of a conventional strain sensor before cutting.

【図6】従来の切断前の歪センサの拡大平面図である。FIG. 6 is an enlarged plan view of a conventional strain sensor before cutting.

【符号の説明】[Explanation of symbols]

1 ステンレス基板 2 耐熱性絶縁樹脂膜 3 抵抗体薄膜 4 導体薄膜 5 基準点 6 歪センサ形成領域 7 切りしろ 8 第1の領域 9 第2の領域 10 歪検出用回路 11 座標位置認識用パターン 12 抵抗体 13 外部端子接続用導体部 14 有機保護膜 15 切り出した個片 1 Stainless Steel Substrate 2 Heat Resistant Insulating Resin Film 3 Resistor Thin Film 4 Conductor Thin Film 5 Reference Point 6 Strain Sensor Forming Area 7 Cutting Area 8 First Area 9 Second Area 10 Strain Detection Circuit 11 Coordinate Position Recognition Pattern 12 Resistance Body 13 Conductor part for external terminal connection 14 Organic protective film 15 Pieces cut out

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 金属基板上に絶縁膜を有し、前記絶縁膜
上に第1の抵抗体領域と第2の抵抗体領域とを有し、前
記第1の抵抗体領域上に歪検出用回路を有し、前記第2
の抵抗体領域上に位置座標認認用パターンを有すること
を特徴とする歪センサ。
1. A strain detecting device having an insulating film on a metal substrate, having a first resistor region and a second resistor region on the insulating film, and detecting strain on the first resistor region. A circuit, the second
A strain sensor having a pattern for recognizing position coordinates on the resistor area of.
【請求項2】 前記絶縁膜としてポリイミドを用いるこ
とを特徴とする請求項1記載の歪センサ。
2. The strain sensor according to claim 1, wherein polyimide is used as the insulating film.
JP1992003111U 1992-01-31 1992-01-31 Strain sensor Expired - Fee Related JP2573336Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992003111U JP2573336Y2 (en) 1992-01-31 1992-01-31 Strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992003111U JP2573336Y2 (en) 1992-01-31 1992-01-31 Strain sensor

Publications (2)

Publication Number Publication Date
JPH0573509U true JPH0573509U (en) 1993-10-08
JP2573336Y2 JP2573336Y2 (en) 1998-05-28

Family

ID=11548245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992003111U Expired - Fee Related JP2573336Y2 (en) 1992-01-31 1992-01-31 Strain sensor

Country Status (1)

Country Link
JP (1) JP2573336Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214970A (en) * 2004-01-27 2005-08-11 Mettler Toledo Gmbh Moisture protection technique for electromechanical transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214970A (en) * 2004-01-27 2005-08-11 Mettler Toledo Gmbh Moisture protection technique for electromechanical transducer
JP4673630B2 (en) * 2004-01-27 2011-04-20 メトラー−トレド アクチェンゲゼルシャフト Moisture-proof technology for electromechanical transducers

Also Published As

Publication number Publication date
JP2573336Y2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5405809A (en) Semiconductor device, an image sensor device, and methods for producing the same
US5328551A (en) Method of making high output strain gage
CN100395886C (en) Semiconductor device manufacturing method
US4172907A (en) Method of protecting bumped semiconductor chips
JPH029198A (en) Method of bonding metal layer to board
JPH06326246A (en) Thick film circuit board and production thereof
JPH0573509U (en) Strain sensor
JPH10275702A (en) Chip resistor
JP4434699B2 (en) Resistor and manufacturing method thereof
JPS6114666B2 (en)
JP2001015565A (en) Manufacture of bump-attached membrane ring
JP3358751B2 (en) Method for planarizing thick film resist and method for manufacturing semiconductor device
US5895271A (en) Metal film forming method
JP2833152B2 (en) Semiconductor device
JP7329782B1 (en) Method for manufacturing GSR element
JP2666383B2 (en) Semiconductor device
JPH05283412A (en) Semiconductor device and its manufacture
JP2597809B2 (en) Method for manufacturing semiconductor device
JP2955006B2 (en) Method for measuring etching amount of semiconductor device
JPH0541405A (en) Semiconductor device
JPS60170944A (en) Method for mounting semiconductor device on substrate
JP2633122B2 (en) Method of forming gold pads on connection terminals
JPS5925206A (en) Method of producing thin film condenser
JPH05167264A (en) High density mounting circuit board
JPS58125878A (en) Fixing substrate for light-emitting element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210

LAPS Cancellation because of no payment of annual fees