JPH057349B2 - - Google Patents

Info

Publication number
JPH057349B2
JPH057349B2 JP60040755A JP4075585A JPH057349B2 JP H057349 B2 JPH057349 B2 JP H057349B2 JP 60040755 A JP60040755 A JP 60040755A JP 4075585 A JP4075585 A JP 4075585A JP H057349 B2 JPH057349 B2 JP H057349B2
Authority
JP
Japan
Prior art keywords
group
elements
nitrides
aluminum nitride
fluorides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60040755A
Other languages
Japanese (ja)
Other versions
JPS61201669A (en
Inventor
Koichi Sogabe
Osamu Komura
Masaya Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60040755A priority Critical patent/JPS61201669A/en
Publication of JPS61201669A publication Critical patent/JPS61201669A/en
Publication of JPH057349B2 publication Critical patent/JPH057349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は窒化アルミニウム焼結体及びその製
造方法に係り、更に詳しくは、緻密質で熱伝導
性、絶縁性、誘電率などの実用上の諸特性に優れ
ている窒化アルミニウム焼結体及びその製造方法
に関する。 従来の技術 窒化アルミニウム(AlN)焼結体は、高熱伝
導性、高絶縁性を有するなど、半導体工業におい
て、絶縁材料、あるいはパツケージ材料として注
目を集めつつある。 ところで、AlN単独で焼結体を製造する場合、
AlN自体の焼結体が良くなる為、AlN粉末を成
形後、焼結して得られるAlN焼結体の相対密度
(AlNの理論密度3.26g/cm3を基準とする)は、
焼結条件にも依るが、高々70〜80%しか示さな
い。また、その為、ホツトプレスを用いる加圧焼
結も試みられたが、良好な結果は得られていな
い。 一般にフオノン伝導を主体とする窒化アルミニ
ウム焼結体の如き絶縁性セラミツクスでは、気
孔、不純物等の欠陥によりフオノン散乱が生じ、
熱伝導率が低減する。 一方、最近のLSIの進歩はめざましく、集積度
の向上が著しい。これには、ICチツプサイズの
向上も寄与しており、ICチツプサイズの向上に
伴つてパツケージ当りの発熱量が増大している。
このため基板材料の放熱性が重要視されるように
なつてきた。また、従来IC基板として用いられ
ていたアルミナ焼結体の熱伝導率では放熱性が不
十分であり、ICチツプの発熱量の増大に対応で
きなくなりつつある。このためアルミナ基板に代
わるものとして、高熱伝導性のベリリア基板が使
用されているベリリアは毒性が強く取扱いが難し
いという欠点がある。 以上の様な技術的背景から、高絶縁性を有する
窒化アルミニウム焼結体の高熱伝導化、すなわち
高密度化が望まれるものである。 発明が解決すべき課題 本発明の目的は、緻密質で高熱伝導率の窒化ア
ルミニウム焼結体およびその製造方法を提供する
ことにある。さらに詳細には本発明の目的は、半
導体の絶縁材料あるいはパツケージ材料として好
適に使用できる窒化アルミニウム焼結体およびそ
の製造方法を提供することにある。 課題を解決するための手段 本発明者らは、上記の従来技術の問題点に鑑み
て、窒化アルミニウム焼結体に対し種々検討を行
い、その結果、Y、Sc、La、Ce、Smなどの周
期律表a族系列元素の窒化物とa、a族元
素の酸化物、フツ化物の添加が窒化アルミニウム
の焼結性を向上させ、緻密質の焼結体の実現に有
効であること、また、焼結体の熱伝導率の向上に
有効であることを見い出したものである。 すなわち、本発明に従うと、周期律表a族系
列元素の窒化物から選ばれた少なくとも1種類の
粉末とa族元素の酸化物、フツ化物、a族元
素の窒化物、酸化物、フツ化物のうち1種または
2種以上をa族元素の窒化物と併せて0.1〜
5.0wt%含む窒化アルミニウムの混合粉末から焼
結されたことを特徴とする、緻密質で熱伝導性の
優れた窒化アルミニウム焼結体が提供される。 さらに本発明に従うと、周期律表a族系列元
素、すなわちY、Sc、La、Ce、Smなどの元素
の窒化物から選ばれた少なくとも1種類の粉末と
a族元素の酸化物、フツ化物、a族元素の窒
化物、酸化物、フツ化物のうち1種または2種以
上をa族元素の窒化物と併せて0.1〜5.0wt%含
む窒化アルミニウムの混合粉末を成形し、ついで
1500〜2200℃の温度で、非酸化性雰囲気中で焼結
することを特徴とする窒化アルミニウム焼結体の
製造方法が提供される。 上記非酸化性雰囲気は、真空、窒素ガス、水素
ガス、一酸化炭素ガス、アルゴンガス、ヘリウム
ガスより成る群から選ばれた1種または2種以上
の雰囲気である。 本発明により製造された窒化アルミニウム焼結
体は93%以上の相対密度を示し、室温における熱
伝導率は80W/m・K以上である。 発明の作用 次に本発明の窒化アルミニウム焼結体の成分範
囲の限定理由およびその製造方法の条件限定理由
を説明する。 周期律表a族系列元素の窒化物とa族元素
の酸化物、フツ化物、a族元素の窒化物、酸化
物、フツ化物のうち1種または2種以上をa族
元素の窒化物と併せて0.1〜5.0wt%の混合割合と
したのは、0.1wt%未満では、添加効果がなく、
十分に緻密な焼結体が得られず、また、5.0wt%
を超えると、得られる焼結体の熱伝導率が低下す
る傾向を示すためである。 焼結温度は1500〜2200℃としたのは、1500℃未
満では、十分に焼結が行われないためである。窒
化アルミニウムの焼結に関しては、焼結温度は高
い方が望ましいが、2200℃以上では、窒化アルミ
ニウムの分散反応が著しい促進され、焼結体の重
量減少が大きくなる。 例えばY、La、Sc、Sm、Ceなどの周期律表
a族系列元素の窒化物とa族元素の酸化物、
フツ化物、a族元素の窒化物、酸化物、フツ化
物のうち1種または2種以上の添加により、窒化
アルミニウムの焼結性が向上する機構は明らかで
はないが、周期律表a族系列元素の窒化物と
a族元素の酸化物、フツ化物、a族元素の窒化
物、酸化物、フツ化物のうち1種または2種以上
が添加された場合その複合効果によつて窒化アル
ミニウムの固相焼結が促進されるためと考えられ
る。 また、後記の実施例で示されるように、熱伝導
率は、無添加の窒化アルミニウムの焼結体に比べ
最高3倍強の増加を示している。これは、窒化ア
ルミニウム焼結体の緻密化が促進されるためと考
えられるが、熱伝導率が向上する機構の詳細は明
らかではない。 以下、本発明の実施例により説明するが、この
実施例は本発明の範囲を何等制限するものではな
いことは勿論である。 実施例 窒化アルミニウム粉末(平均粒径1〜3μm)
に平均粒径0.5μmの窒化イツトリウム粉末及び、
酸化イツトリウム、フツ化イツトリウお、酸化カ
ルシウム、窒化カルシウム、フツ化カルシウムの
中から選ばれた少なくとも1種類以上の粉末を加
えた混合粉末を2t/cm2のプレス圧で予備成型し、
1800℃、3時間常圧焼結(N2雰囲気、1.0気圧)
を行つた。 得られた焼結体の密度は表1に示すように、焼
結体実測値で93%以上に改善され、これによつて
焼結体肌実測値で熱伝導率はいずれも80W/m・
K以上であつた。
INDUSTRIAL APPLICATION FIELD This invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more specifically, the present invention relates to an aluminum nitride sintered body that is dense and has excellent practical properties such as thermal conductivity, insulation, and dielectric constant. This article relates to a body and a method for producing the same. BACKGROUND ART Aluminum nitride (AlN) sintered bodies are attracting attention as insulating materials or package materials in the semiconductor industry due to their high thermal conductivity and high insulation properties. By the way, when manufacturing a sintered body using AlN alone,
Since the sintered body of AlN itself becomes better, the relative density of the AlN sintered body obtained by molding and sintering the AlN powder (based on the theoretical density of AlN, 3.26 g/cm 3 ) is:
Depending on the sintering conditions, it shows only 70-80% at most. For this reason, pressure sintering using a hot press has also been attempted, but good results have not been obtained. Generally, in insulating ceramics such as aluminum nitride sintered bodies that mainly conduct phonons, phonon scattering occurs due to defects such as pores and impurities.
Thermal conductivity is reduced. On the other hand, recent advances in LSI have been remarkable, with significant improvements in the degree of integration. Improvements in IC chip size are also contributing to this, and as IC chip size improves, the amount of heat generated per package increases.
For this reason, importance has been placed on the heat dissipation properties of substrate materials. Furthermore, the thermal conductivity of the alumina sintered bodies conventionally used as IC substrates is insufficient for heat dissipation, and they are becoming unable to cope with the increase in heat generation of IC chips. For this reason, a highly thermally conductive beryllia substrate is used as an alternative to an alumina substrate, but beryllia has the drawback of being highly toxic and difficult to handle. From the above-mentioned technical background, it is desired that aluminum nitride sintered bodies having high insulation properties have higher thermal conductivity, that is, higher density. Problems to be Solved by the Invention An object of the present invention is to provide a dense aluminum nitride sintered body with high thermal conductivity and a method for manufacturing the same. More specifically, it is an object of the present invention to provide a sintered aluminum nitride body that can be suitably used as an insulating material or a package material for semiconductors, and a method for manufacturing the same. Means for Solving the Problems In view of the problems of the prior art described above, the present inventors conducted various studies on aluminum nitride sintered bodies, and as a result, found that Y, Sc, La, Ce, Sm, etc. The addition of nitrides of Group A elements of the periodic table and oxides and fluorides of Group A and A elements improves the sinterability of aluminum nitride and is effective in realizing dense sintered bodies; , was found to be effective in improving the thermal conductivity of sintered bodies. That is, according to the present invention, at least one powder selected from nitrides of group A elements of the periodic table, oxides, fluorides of group A elements, nitrides, oxides, and fluorides of group A elements One or more of these together with nitrides of group a elements from 0.1 to
A dense aluminum nitride sintered body with excellent thermal conductivity is provided, which is characterized by being sintered from a mixed powder of aluminum nitride containing 5.0 wt%. Furthermore, according to the present invention, at least one powder selected from nitrides of group A elements of the periodic table, that is, elements such as Y, Sc, La, Ce, and Sm, and oxides and fluorides of group A elements, A mixed powder of aluminum nitride containing 0.1 to 5.0 wt% of one or more of nitrides, oxides, and fluorides of group A elements together with nitrides of group A elements is molded, and then
A method for producing an aluminum nitride sintered body is provided, which comprises sintering in a non-oxidizing atmosphere at a temperature of 1500 to 2200°C. The non-oxidizing atmosphere is one or more atmospheres selected from the group consisting of vacuum, nitrogen gas, hydrogen gas, carbon monoxide gas, argon gas, and helium gas. The aluminum nitride sintered body produced according to the present invention exhibits a relative density of 93% or more, and a thermal conductivity at room temperature of 80 W/m·K or more. Effect of the Invention Next, the reason for limiting the range of components of the aluminum nitride sintered body of the present invention and the reason for limiting the conditions of the manufacturing method will be explained. Nitride of Group A elements of the periodic table, oxides and fluorides of Group A elements, and one or more of the nitrides, oxides, and fluorides of Group A elements in combination with nitrides of Group A elements. The reason why we set the mixing ratio to be 0.1 to 5.0wt% is because if it is less than 0.1wt%, there is no addition effect.
A sufficiently dense sintered body could not be obtained, and 5.0wt%
This is because, if the temperature exceeds 100%, the thermal conductivity of the obtained sintered body tends to decrease. The reason why the sintering temperature was set to 1500 to 2200°C is that sintering is not performed sufficiently at less than 1500°C. Regarding the sintering of aluminum nitride, it is desirable that the sintering temperature be high, but at temperatures above 2200°C, the dispersion reaction of aluminum nitride is significantly accelerated, resulting in a large weight loss of the sintered body. For example, nitrides of group a elements of the periodic table such as Y, La, Sc, Sm, Ce, etc. and oxides of group a elements,
The mechanism by which the sinterability of aluminum nitride is improved by the addition of one or more of fluorides, nitrides, oxides, and fluorides of group A elements is not clear, but When one or more of nitrides, oxides and fluorides of group A elements, and nitrides, oxides, and fluorides of group A elements are added, the combined effect causes the solid phase of aluminum nitride to form. This is thought to be because sintering is promoted. Furthermore, as shown in the examples below, the thermal conductivity increased by a maximum of three times compared to the sintered body of aluminum nitride without additives. This is thought to be because the densification of the aluminum nitride sintered body is promoted, but the details of the mechanism by which the thermal conductivity improves are not clear. The present invention will be explained below using examples, but it goes without saying that these examples do not limit the scope of the present invention in any way. Example Aluminum nitride powder (average particle size 1-3 μm)
Yttrium nitride powder with an average particle size of 0.5 μm and
A mixed powder containing at least one powder selected from yttrium oxide, yttrium fluoride, calcium oxide, calcium nitride, and calcium fluoride is preformed at a press pressure of 2t/ cm2 ,
Normal pressure sintering at 1800℃ for 3 hours ( N2 atmosphere, 1.0 atm)
I went there. As shown in Table 1, the density of the obtained sintered body was improved to 93% or more based on the actual value of the sintered body, and the thermal conductivity of the sintered body was 80 W/m・
It was over K.

【表】【table】

【表】 発明の効果 以上に説明の如く本発明は、周期律表a族系
列元素の窒化物から選ばれた少なくとも1種類の
粉末とa族元素の酸化物、フツ化物、a族元
素の窒化物、酸化物、フツ化物のうち1種または
2種以上をa族元素の窒化物と併せて0.1〜
5.0wt%含む窒化アルミニウムの混合粉末を成形
し、次いで1500〜2200℃の温度で非酸化性雰囲気
中で焼結することを特徴とし、本発明により得ら
れた窒化アルミニウム焼結体は、緻密質であり、
そのため熱伝導性、絶縁性、誘電特性などに優
れ、半導体の絶縁材料、あるいはパツケージ材料
として有用である。 本発明の窒化アルミニウム焼結体は、サーデイ
ツプ用基板、サーパツク用基板、ハイブリツド
IC用基板等のIC基板のみならず、パワートラン
ジスタ、パワーダイオードおよびレーザダイオー
ド用のヒートシンクとして、更にレーザーデイス
ク、或いはマイカ代替としての絶縁性薄板として
好適に利用できる。
[Table] Effects of the Invention As explained above, the present invention provides at least one powder selected from nitrides of Group A elements of the periodic table, oxides and fluorides of Group A elements, and nitrides of Group A elements. 0.1 to 0.1 or more in combination with nitrides of group a elements, one or more of compounds, oxides, and fluorides
The aluminum nitride sintered body obtained by the present invention is characterized by molding a mixed powder of aluminum nitride containing 5.0 wt% and then sintering it at a temperature of 1500 to 2200°C in a non-oxidizing atmosphere. and
Therefore, it has excellent thermal conductivity, insulation properties, dielectric properties, etc., and is useful as an insulating material for semiconductors or a packaging material. The aluminum nitride sintered body of the present invention can be used for sur-deep dip substrates, surpack substrates, and hybrid sintered bodies.
It can be suitably used not only as an IC substrate such as an IC substrate, but also as a heat sink for power transistors, power diodes, and laser diodes, as a laser disk, or as an insulating thin plate as an alternative to mica.

Claims (1)

【特許請求の範囲】 1 周期律表a族系列元素の窒化物の少なくと
も1種類の粉末と、a族元素の酸化物、フツ化
物、a族元素の窒化物、酸化物、フツ化物のう
ち1種または2種以上をa族元素の窒化物と併
せて0.1〜5.0重量%とAlN粉末とを混合調製した
混合粉末から焼結されたことを特徴とする窒化ア
ルミニウム焼結体。 2 周期律表a族系列元素の窒化物の少なくと
も1種類の粉末と、a族元素の酸化物、フツ化
物、a族元素の窒化物、酸化物、フツ化物のう
ち1種または2種以上をa族の窒化物と併せて
0.1〜5.0重量%とAlN粉末とを混合調製した混合
粉末を成形し、次いで1500〜2200℃の温度で真
空、窒素ガス、水素ガス、一酸化炭素ガス、アル
ゴンガス、ヘリウムガスより成る群から選ばれた
1種または2種以上の非酸化性雰囲気中で焼結す
ることを特徴とする窒化アルミニウム焼結体の製
造方法。
[Scope of Claims] 1. At least one powder of nitrides of group A elements of the periodic table, oxides, fluorides of group A elements, and one of nitrides, oxides, and fluorides of group A elements. An aluminum nitride sintered body, characterized in that it is sintered from a mixed powder prepared by mixing 0.1 to 5.0% by weight of one or more species with a nitride of a group A element and AlN powder. 2. Powder of at least one type of nitride of group A elements of the periodic table, and one or more types of oxides, fluorides, and nitrides, oxides, and fluorides of group A elements. Together with group a nitrides
A mixed powder prepared by mixing 0.1 to 5.0% by weight and AlN powder is molded and then heated at a temperature of 1500 to 2200°C under vacuum, nitrogen gas, hydrogen gas, carbon monoxide gas, argon gas, or helium gas selected from the group consisting of A method for producing an aluminum nitride sintered body, comprising sintering in one or more non-oxidizing atmospheres.
JP60040755A 1985-03-01 1985-03-01 Aluminum nitride sintered body and manufacture Granted JPS61201669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040755A JPS61201669A (en) 1985-03-01 1985-03-01 Aluminum nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040755A JPS61201669A (en) 1985-03-01 1985-03-01 Aluminum nitride sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS61201669A JPS61201669A (en) 1986-09-06
JPH057349B2 true JPH057349B2 (en) 1993-01-28

Family

ID=12589439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040755A Granted JPS61201669A (en) 1985-03-01 1985-03-01 Aluminum nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS61201669A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712981B2 (en) * 1985-03-13 1995-02-15 株式会社東芝 Method for manufacturing aluminum nitride sintered body
JPS61205670A (en) * 1985-03-07 1986-09-11 住友電気工業株式会社 Aluminum nitride sintered body and manufacture
JP2565305B2 (en) * 1985-10-31 1996-12-18 京セラ株式会社 High thermal conductivity aluminum nitride sintered body and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180965A (en) * 1983-11-18 1985-09-14 ゼネラル・エレクトリツク・カンパニイ High heat conductivity aluminum nitride ceramic body and manufacture
JPS61146764A (en) * 1984-12-17 1986-07-04 ティーディーケイ株式会社 Aluminum nitride sintered body and manufacture
JPS61183174A (en) * 1985-02-08 1986-08-15 株式会社東芝 Aluminum nitride aintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180965A (en) * 1983-11-18 1985-09-14 ゼネラル・エレクトリツク・カンパニイ High heat conductivity aluminum nitride ceramic body and manufacture
JPS61146764A (en) * 1984-12-17 1986-07-04 ティーディーケイ株式会社 Aluminum nitride sintered body and manufacture
JPS61183174A (en) * 1985-02-08 1986-08-15 株式会社東芝 Aluminum nitride aintered body

Also Published As

Publication number Publication date
JPS61201669A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
WO1997000837A1 (en) Highly heat-conductive silicon nitride sinter, process for producing the same, and pressure-welded structure
JPS62128971A (en) Aluminum nitride base sintered body and manufacture
JPH057349B2 (en)
JPS6256109B2 (en)
JPS61201668A (en) High heat conducting aluminum nitride sintered body and manufacture
JPS6221764A (en) Manufacture of aluminum nitride
JPS61201670A (en) Aluminum nitride sintered body and manufacture
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2975882B2 (en) Silicon nitride heatsink for pressure welding and pressure welding structural parts using it
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
KR960001429B1 (en) Process for producing sintered bodies of aluminium nitromal
JPH01111776A (en) Aluminum nitride sintered body and production thereof
JPS61146764A (en) Aluminum nitride sintered body and manufacture
JPS6252181A (en) Manufacture of aluminum nitride sintered body
JPS63206360A (en) Manufacture of aluminum nitride sintered body
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JPH0566905B2 (en)
JPH0566339B2 (en)
JPH0587468B2 (en)
JPH0566904B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term