JPH0573459B2 - - Google Patents

Info

Publication number
JPH0573459B2
JPH0573459B2 JP62216527A JP21652787A JPH0573459B2 JP H0573459 B2 JPH0573459 B2 JP H0573459B2 JP 62216527 A JP62216527 A JP 62216527A JP 21652787 A JP21652787 A JP 21652787A JP H0573459 B2 JPH0573459 B2 JP H0573459B2
Authority
JP
Japan
Prior art keywords
metal
powder
metal halide
oxygen
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62216527A
Other languages
Japanese (ja)
Other versions
JPS6463039A (en
Inventor
Masaru Meguro
Junichi Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU BIJINESU PUROMOOTO
NITSUTETSU BIJINESU PUROMOOTO TOHOKU KK
Original Assignee
NITSUTETSU BIJINESU PUROMOOTO
NITSUTETSU BIJINESU PUROMOOTO TOHOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU BIJINESU PUROMOOTO, NITSUTETSU BIJINESU PUROMOOTO TOHOKU KK filed Critical NITSUTETSU BIJINESU PUROMOOTO
Priority to JP21652787A priority Critical patent/JPS6463039A/en
Publication of JPS6463039A publication Critical patent/JPS6463039A/en
Publication of JPH0573459B2 publication Critical patent/JPH0573459B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は食品の腐敗変質を防止し保存するため
に用いられる脱酸素剤の製造方法に関するもので
ある。 (従来の技術) 従来野菜、魚を初めとする食品の保存にはかび
の発生や腐敗を防止するため、真空バツク法や冷
蔵法ガス置換法が用いられてきた。しかしこれら
の方法では、高価な設備を必要とし、実施するに
もかなりの技術を必要とする欠点があつた。 この問題点の解決法として、鉄粉が水分の存在
下で空気中の酸素と反応固定する原理を応用した
脱酸素剤が種々提案され実用化されている。 とくに特公昭56−33980号公報には、金属粉を
ハロゲン化金属で被覆してなりハロゲン化金属の
被覆量が金属粉100に対し0.001〜5部であり、か
つ水分含有量が全体重量の1%以下である酸素吸
収剤と金属粉をハロゲン化金属の溶液と混合して
ハロゲン化金属で被覆した後に、水分1重量%以
下になるまで乾燥する酸素吸収剤の製造方法が提
案されている。 さらに特開昭60−20986号公報には、150メツシ
ユ通過量が50重量%以上の鉄粉に、150メツシユ
通過量が50重量%以上に電解質微粉末を均一に混
合した脱酸素剤が提案されている。 ところがこれら従来技術による脱酸素剤は次の
ような問題を有している。特公昭56−33980号公
報の場合は、金属表面にハロゲン化金属を被覆す
ることを特徴としている。そのためハロゲン化金
属を水あるいはアルコール等の液体に溶かし、こ
の溶液で金属粉を処理する必要がある。 すなわち溶液と金属粉を混合し、その後乾燥す
ると言う複雑な操作を必要とする。この場合の乾
燥は金属粉の酸化を防止するため真空または減圧
下での急速な乾燥が必要なため設備が大きくな
り、従つてその製品は高価なものとなる。またハ
ロゲン化金属を溶液の形で用いるため、廃液の処
理等の問題が生じ満足な方法とはいいかねる。 これに対し特開昭60−20986号公報による脱酸
素剤は、前者の特公昭56−33980号公報のように
溶液の調整および乾燥工程の必要はないが、使用
する鉄粉および電解質粉に条件がある。 混合前に両者とも150メツシユ通過量が50重量
%以上に調整を行う必要があり、ふるい分けの工
程を要する欠点がある。さらに鉄粉および電解質
粉は、ある粒度範囲を持つたものであり、150メ
ツシユ通過量が50重量%以上のものを得るには、
ふるい分けのみではバランスが崩れ粗粒部分の破
砕を必要とする。 また特開昭60−129137号公報は鉄粉と電解質微
粉末とが付着結合した鉄/電解質混合物を得る開
示がある。 しかしながら単なる混合では鉄粉とハロゲン化
金属が必ずしも緊密な位置関係にあるとはいいが
たく、製品の信頼度に問題がある。 (発明が解決しようとする問題点) 本発明は従来技術で脱酸素剤を製造しようとし
た場合、高価な設備を必要としまた原材料の調整
が難しい、あるいは排水処理を必要とする等の製
造上の問題点を解決した脱酸素剤の製造方法であ
る。 (問題点を解決するための手段) 鉄とハロゲン化金属の水溶液が共存した場合、
鉄が通常の環境におかれた以上に腐食すること即
ち酸化が進むことはよく知られている。これはハ
ロゲン化金属がイオン化し酸化に伴う電子の移動
を容易にするからである。 また乾燥状態のハロゲン化金属であつても、そ
のほとんどが潮解性を有するため空気中の水分に
より潮解し、同じように酸化が進むことも知られ
ている。これも機構的には前述した通りである。 鉄とハロゲン化金属を使用して安定した性能を
有する脱酸素剤を製造するためには、鉄粉とハロ
ゲン化金属を適当量金一にかつ緊密に混合された
状態、好ましくは金属表面に強固に付着させるこ
とが必要である。 しかしこれを被覆したような状態にまでする
と、前述のように高価な設備を要しかつ煩雑な操
作が必要となる。また単なる混合では原料に細か
い条件が必要になり、安定性のある製品が得られ
ない。 本発明者らの実験によると鉄粉とハロゲン化金
属粉とから得られた脱酸素剤は、染み出し、べと
付きの問題があるが、黒鉛含有する金属粉を用い
ることにより、この問題が解消された。 ここで黒鉛を含有する金属粉とは、炭素2%以
上含有し、かつ炭素の大半が黒鉛として存在する
金属粉および同金属の機械加工時に発生するダラ
イ粉をいう。以下本明細書では金属粉と総称す
る。 さらに本発明によると、金属粉とハロゲン化金
属を合わせて、破砕機、好ましくは振幅を有する
破砕筒内に円柱状のロツド、あるいは球状のボー
ルを投入し、同時に破砕することにより好ましい
金属粉とハロゲン化金属の存在状態が得られるこ
とが分かつた。即ち同時に破砕することにより脆
いハロゲン化金属は優先的に破砕され、金属粉に
比べ微細化されるとともに、活性化された界面が
生成する。また金属粉も破砕されることにより、
活性界面が生成するとともに、表面は摩砕(すり
つぶし)作用により酸化物層等の不活性層が除か
れて新しく活性界面が生成する。 この結果ハロゲン化金属に比較して、粗粒な金
属粉表面に両者の粒度差とボールあるいはロツド
のすりつぶし作用により生成した新しい活性界面
の作用により強固な結合体が得られる。また活性
界面の微視的な密接した接触により、ハロゲン化
金属と金属粉の粒度差が小さい場合にも強固な結
合力を得ることができる。 さらに振幅を与えることにより破砕と同時に原
料が分散され、均一な混合も行われるため、ハロ
ゲン化金属の偏析は起こりがたく均一かつ安定し
た脱酸素能を持つハロゲン金属処理鉄粉が得られ
ることが分かつたのである。 (作用) 本発明はこれらの知見に基づくもであり、本発
明によれば従来の脱酸素剤の生産のために要した
設備投資や工程の煩雑さの欠点が解消され、容易
に安定した性能を有する脱酸素剤の生産が可能と
なる。 第1図に本発明になる脱酸素剤の製造工程を示
した。 本発明に用いる金属粉の粒度は粗くても細かく
てもよく、破砕条件を適当に設定することにより
所望の粒度を持つ脱酸素剤を製造できる。従つて
金属粉に関する条件はほとんどないと言つてよ
い。 とくに相対湿度70%以上で使用するときあるい
は潮解制の激しいハロゲン化金属を用いた場合、
脱酸素剤を包む包装材料に中身である鉄粉の水酸
化反応により生成した微粒子および/またはハロ
ゲン化金属が潮解した溶液の染み出しが問題とな
る。本発明は、金属粉に黒鉛を有する鋳鉄粉ある
いはダライ粉を用いるので、染み出しは軽減され
かつハロゲン化金属処理鋳鉄粉はべと付かず、取
り扱いが容易であると言う特徴がある。これは鋳
鉄粉中の黒鉛が、水分の調整材の役目とハロゲン
化金属の保持材の役目を果たしているためと考え
られる。 前記金属成分に対し、合わせ使用するハロゲン
化金属は例えばNaCl、KCl、NaBr、KBr等のア
ルカリ金属のハロゲン化物、NaCl、CaCl、
CaBr2、MgBr2、BaBr2等のアルカリ土類金属の
ハロゲン化物、そのほかAgCl、ZnCl、AlCl3
SnCl、MnCl、FeCl3、CoCl2、NiCl2、ZnBr2
SnBr2、CuBr、FeBr2等の各種金属のハロゲン化
物が挙げられる。 実際の使用にはこれらの単体あるいは混合物を
適宜選択して用いる。勿論ハロゲン化金属は粉末
であつても、顆粒状であつても塊状であつてもよ
い。その形態は本発明ではほんど問わないと言つ
てもよい。 本発明においては第2図に示した結果からハロ
ゲン化金属の使用量はとくに制約されないが、金
属粉成分100重量部に対し、無水物換算で0.01〜
10重量部、好ましくは0.5〜5重量部である。 ハロゲン化金属の使用量が0.01重量部以下のあ
まり少な過ぎると効果が十分でなく、脱酸素剤の
立ち上がり時間が長くなる。また10重量部以上の
あまりに多過ぎると経済的でないのは勿論である
が、水素ガスを発生したりハロゲン化金属の潮解
制により内容物の染み出しの原因となる。従つて
本発明の場合のハロゲン化金属の使用量は0.5〜
5重量部の範囲にするのがよい。 本発明の脱酸素剤の製造は以下のように行われ
る。 前記の金属粉およびハロゲン化金属はまず乾燥
され、水分含有量を1%以下とされる。この乾燥
は通常市販されている金属粉あるいはハロゲン化
金属であり、使用までの保管取り扱いに問題がな
ければ省くことも可能である。ほとんど水分が1
%以下となつているからである。乾燥するにして
も真空乾燥のような特別の装置は必要ない。その
後所定の重量割合に坪量され、破砕機に挿入破
砕・混合される。 この場合の破砕機はボール、ロツド等の破砕媒
体のある破砕機が好ましい。すりつぶし作用によ
り表面の酸化物層等の不活性層を除去できるから
である。破砕後のハロゲン化金属処理金属粉は、
取り出して使用するのみで乾燥等の後処理は全く
必要としない。従つて本発明は他の脱酸素剤の製
造方法と異なり製造は極めて簡便である。 またこのようにして得られた脱酸素剤は、単純
な混合法や水溶液処理法に比較して、破砕により
生じた新しい活性度の高い金属粉表面に、同じよ
うに新しい表面を持つた微細なハロゲン化金属が
付着し非常に強固な結合となり、これらハロゲン
化金属処理金属粉を包装して脱酸素剤とする場合
でも、ハロゲン化金属の脱落はなく安定した脱酸
素性能を有する。 本発明により製造した脱酸素剤は、それ自身水
分を有さないため湿分の少ない大気中では脱酸素
反応を起こさず安定であるが、湿分が多くなる金
属表面のハロゲン化金属が潮解し、大気中酸素と
高められた反応速度で反応する。 従つて本発明による脱酸素剤は、水分を含む食
品とともに通気性のない包装材料に密封すること
により、時間の経過とともに包装材中の酸素濃度
は低下し、ついには零となる。 実施例 1 金属粉として鋳鉄粉およびダライ粉を用い、ハ
ロゲン化金属としてNaClを1%添加した原料1
Kgを用意した。この原料を容器容量3.59の振動
ミルに直径30mm、長さ210mmのSC材ロツド3本を
挿入して振幅5mmにて60分粉砕・混合した。 このようにして製造した脱酸素剤と比較するた
め、20gの還元鉄粉、純鉄粉に2mlの10%NaCl
水溶液と混合後、約100℃の温度で真空乾燥して
製造した従来技術によるハロゲン化金属鉄粉を用
意した。 これらの処理粉を35×45mmの有孔ポリエチレン
フイルムをラミネートした紙袋内に5g封入し脱
酸素剤を製作した。これを容量が100c.c.の密閉容
器内に相対湿度が90%以上と50%以下になるよう
に制御して封じた。しかるのち容器内の酸素濃度
を経時的に測定した。測定温度は20±1℃となる
よう調整した。 その結果を表1に示した。 これより本発明による脱酸素剤は、相対湿度90
%以上の場合最長でも25時間以内に容器内の酸素
濃度が0%となり、比較材に比べ良好な性能を示
した。 また相対湿度50%以下では、時間経過後の最大
酸素吸収量が略3%であり、全容量の14%程度で
ある。これより低湿分ではほとんど反応しないこ
とが分かり、脱酸素剤として所要の性能を有して
いることが分かる。とくに本発明法は比較例に比
してべと付きは軽減され、汚れ染み出しの問題は
解消した。 実施例 2 FC20相当鋳鉄材のダライ粉を、比較例として
還元鉄粉を用い、これにハロゲン化金属として
NaClを1%添加した。この原料1Kgを振動数
1200cpm、振幅5mm、容器容量3.59の振動ミル
に、直径30mm、長さ210mmのSC材のロツド3本を
装入した。還元鉄の場合は60粉破砕・混合し、ダ
ライ粉の場合は60分および120分で破砕・混合し
た。 このハロゲン化金属処理鉄粉を、35×45mmの有
孔ポリエチレンフイルムをラミネートした紙袋に
5g封入し脱酸素剤を製作した。これを容量が
100c.c.の密閉容器内に、相対湿度が90%以上にな
るように制御し封入した。測定温度は20±1℃に
保つた。この容器内の酸素濃度を経時的に測定し
た結果を表2に示した。 表3に還元鉄とダライ粉の破砕前粒度を示した
が、ダライ粉の粒度が還元粉に比較して粗いにも
かかわらず、製造された脱酸素剤の性能は還元鉄
粉に近いものであつた。 さらにこのハロゲン化金属処理ダライ粉は、サ
ラサラしておりべと付かず取り扱いが容易であつ
た。これは鋳鉄中の黒鉛がハロゲン化金属粉保持
の役目と、水分調整の役目を果たすためと考えら
れた。 このように粗粒の金属粉でも破砕条件を適正化
することにより、脱酸素性能を改善した。 実施例 3 実施例1と同様に還元鉄粉、純鉄粉、鋳鉄粉の
3種の金属粉を用意し、ハロゲン化金属として
NaCl、CaCl2を0.1、0.5、1、5、10%添加し
た。 これを実施例1と同じ振動ミルで60分、90分、
120分、200分と破砕・混合時間を変化させ、ハロ
ゲン化金属処理鉄粉を製造した。 この鉄粉5gを内寸法45×35mmの有孔ポリエチ
レンフイルムをラミネートした紙袋に封入し脱酸
素剤を製作した。これを実施例1と同じように相
対湿度90%以上で、容量が100c.c.の容器内で20±
1℃の温度で酸素量の経時変化を測定した。 この容器内の酸素濃度の経時変化および酸素濃
度が0%になる時間を表4に示した。 この結果ハロゲン化金属にCaCl2を用いるよ
り、NaClを用いた方が酸素吸収能が優れている
ことが分かつた。NaCl濃度の影響としては0.1%
まで減ずると大幅な性能の悪化となるが、0.5〜
10%ではその間にあまり大きな性能の差は見られ
ない。 また10%NaClでは還元鉄粉および純鉄粉を用
いた脱酸素剤では、包装紙に染み出しが見られた
が鋳鉄粉では見られなかつた。これは実施例2に
述べたと同じ理由と考えられ鋳鉄粉の特徴であ
る。 これよりNaClの適正濃度としては染み出しの
問題、性能、経済的な面を考え合わせ0.5〜5%
が好ましい。 またNaCl添加濃度を1%として破砕時間を変
化させた場合の性能変化を見ると、破砕時間を
120分までは長くすることによつて性能は改善さ
れた。それ以上破砕時間を長くしても大幅な改善
効果は見られなかつた。これは破砕時間を長くし
たことで、鉄粉およびハロゲン化金属ともに新し
い活性界面の生成が進行して、効率よく結合体が
製造されたためと考える。
(Industrial Application Field) The present invention relates to a method for producing an oxygen absorber used to prevent and preserve foods from spoilage and deterioration. (Prior Art) Conventionally, the vacuum bag method, refrigeration method, and gas replacement method have been used to preserve foods such as vegetables and fish in order to prevent the growth of mold and rot. However, these methods have disadvantages in that they require expensive equipment and require considerable skill to implement. As a solution to this problem, various oxygen scavengers have been proposed and put into practical use that apply the principle that iron powder reacts with and fixes oxygen in the air in the presence of moisture. In particular, Japanese Patent Publication No. 56-33980 discloses that a metal powder is coated with a metal halide, the amount of metal halide coated is 0.001 to 5 parts per 100 parts of the metal powder, and the water content is 1 part of the total weight. % or less and metal powder are mixed with a metal halide solution, coated with the metal halide, and then dried until the water content is 1% by weight or less. Furthermore, JP-A No. 60-20986 proposes an oxygen scavenger in which iron powder having a 150 mesh passing amount of 50% by weight or more is uniformly mixed with electrolyte fine powder having a 150 mesh passing amount of 50% by weight or more. ing. However, these conventional oxygen scavengers have the following problems. Japanese Patent Publication No. 56-33980 is characterized in that the metal surface is coated with a metal halide. Therefore, it is necessary to dissolve the metal halide in a liquid such as water or alcohol and treat the metal powder with this solution. In other words, it requires a complicated operation of mixing the solution and metal powder and then drying them. Drying in this case requires rapid drying under vacuum or reduced pressure to prevent oxidation of the metal powder, which requires large equipment and therefore makes the product expensive. Furthermore, since the metal halide is used in the form of a solution, problems such as disposal of waste liquid arise, making this method unsatisfactory. On the other hand, the oxygen scavenger disclosed in JP-A No. 60-20986 does not require solution preparation and drying steps as in the former JP-A-56-33980, but it is There is. Before mixing, it is necessary to adjust the amount passing through the 150 mesh to 50% by weight or more for both, and there is a drawback that a sieving process is required. Furthermore, iron powder and electrolyte powder have a certain particle size range, and in order to obtain one that passes through 150 meshes at a rate of 50% by weight or more,
If only sieving is used, the balance will be lost and coarse particles will need to be crushed. Further, JP-A-60-129137 discloses obtaining an iron/electrolyte mixture in which iron powder and fine electrolyte powder are adhesively bonded. However, simply mixing the iron powder and the metal halide does not necessarily have a close positional relationship, which poses a problem in the reliability of the product. (Problems to be Solved by the Invention) The present invention solves the problem of producing an oxygen absorber using conventional techniques, which requires expensive equipment, difficult to prepare raw materials, or requires wastewater treatment. This is a method for producing an oxygen absorber that solves the above problems. (Means for solving the problem) When iron and metal halide aqueous solutions coexist,
It is well known that iron corrodes more rapidly than when exposed to a normal environment, that is, oxidation progresses. This is because the metal halide ionizes and facilitates the movement of electrons associated with oxidation. It is also known that even when metal halides are in a dry state, most of them have deliquescent properties, so they deliquesce when exposed to moisture in the air, and oxidation progresses in the same way. This is also mechanically as described above. In order to produce an oxygen scavenger with stable performance using iron and metal halide, it is necessary to mix appropriate amounts of iron powder and metal halide in a uniformly and intimately mixed state, preferably firmly attached to the metal surface. It is necessary to attach it to the However, if this were to be in a coated state, expensive equipment and complicated operations would be required as described above. Furthermore, simple mixing requires detailed conditions for the raw materials, making it impossible to obtain a stable product. According to experiments conducted by the present inventors, oxygen scavengers obtained from iron powder and halogenated metal powder have problems with seepage and stickiness, but this problem can be solved by using metal powder containing graphite. It has been resolved. Here, the metal powder containing graphite refers to a metal powder containing 2% or more of carbon and in which most of the carbon is present as graphite, and a metal powder generated during machining of the same metal. Hereinafter, they will be collectively referred to as metal powder in this specification. Further, according to the present invention, the metal powder and the metal halide are combined, and a cylindrical rod or a spherical ball is put into a crusher, preferably a crushing cylinder having an amplitude, and the metal powder and the metal halide are simultaneously crushed. It was found that the state of existence of metal halides can be obtained. That is, by simultaneously crushing, the brittle metal halide is preferentially crushed, becoming finer than the metal powder, and an activated interface is generated. Also, by crushing metal powder,
At the same time as an active interface is generated, an inert layer such as an oxide layer is removed from the surface by a grinding action, and a new active interface is generated. As a result, compared to metal halides, a stronger bond can be obtained on the surface of the coarse metal powder due to the particle size difference between the two and the action of a new active interface generated by the grinding action of the balls or rods. Further, due to close microscopic contact at the active interface, a strong bonding force can be obtained even when the difference in particle size between the metal halide and the metal powder is small. Furthermore, by applying vibration, the raw materials are dispersed at the same time as crushing and uniform mixing is performed, so segregation of halide metals does not occur and halogen metal-treated iron powder with uniform and stable oxygen scavenging ability can be obtained. We found out. (Function) The present invention is based on these findings, and according to the present invention, the disadvantages of equipment investment and complicated processes required for the production of conventional oxygen scavengers are eliminated, and stable performance can be easily achieved. It becomes possible to produce oxygen scavengers with FIG. 1 shows the manufacturing process of the oxygen scavenger according to the present invention. The particle size of the metal powder used in the present invention may be coarse or fine, and by appropriately setting crushing conditions, an oxygen scavenger having a desired particle size can be produced. Therefore, it can be said that there are almost no requirements regarding metal powder. Especially when used at relative humidity of 70% or higher or when using metal halides that are highly deliquescent,
Problems arise when fine particles generated by the hydroxylation reaction of the iron powder contained therein and/or a deliquescent solution of the metal halide seep into the packaging material surrounding the oxygen scavenger. Since the present invention uses cast iron powder or dry powder containing graphite as the metal powder, oozing is reduced, and the cast iron powder treated with halogenated metal is not sticky and is easy to handle. This is thought to be because the graphite in the cast iron powder plays the role of a moisture regulator and a metal halide retainer. The metal halides used in conjunction with the above metal components include, for example, alkali metal halides such as NaCl, KCl, NaBr, and KBr, NaCl, CaCl,
Alkaline earth metal halides such as CaBr 2 , MgBr 2 , and BaBr 2 , as well as AgCl, ZnCl, AlCl 3 ,
SnCl, MnCl, FeCl3 , CoCl2 , NiCl2 , ZnBr2 ,
Examples include halides of various metals such as SnBr 2 , CuBr, and FeBr 2 . In actual use, a single substance or a mixture of these may be appropriately selected and used. Of course, the metal halide may be in the form of powder, granules, or lumps. It can be said that the form is not particularly important in the present invention. In the present invention, the amount of metal halide used is not particularly limited based on the results shown in Figure 2, but it ranges from 0.01 to 100 parts by weight in terms of anhydride per 100 parts by weight of the metal powder component.
The amount is 10 parts by weight, preferably 0.5 to 5 parts by weight. If the amount of metal halide used is too small, such as 0.01 parts by weight or less, the effect will not be sufficient and the time required for the oxygen scavenger to rise will become longer. On the other hand, if the amount is too large (10 parts by weight or more), it is of course not economical, but it also generates hydrogen gas and causes the content to ooze out due to deliquescence of the metal halide. Therefore, in the case of the present invention, the amount of metal halide used is 0.5~
It is preferable that the amount is in the range of 5 parts by weight. The oxygen scavenger of the present invention is produced as follows. The metal powder and metal halide are first dried to reduce the moisture content to 1% or less. This drying process is usually carried out using commercially available metal powder or metal halide, and can be omitted if there are no problems with storage and handling before use. almost 1 water
% or less. Even when drying, special equipment such as vacuum drying is not required. Thereafter, the materials are weighed to a predetermined weight ratio and inserted into a crusher to be crushed and mixed. The crusher in this case is preferably a crusher with a crushing medium such as balls or rods. This is because an inactive layer such as an oxide layer on the surface can be removed by the grinding action. Metal halide treated metal powder after crushing is
Just take it out and use it, no post-processing such as drying is required. Therefore, unlike other methods for producing oxygen absorbers, the present invention is extremely simple to produce. In addition, compared to simple mixing methods or aqueous solution treatment methods, the oxygen scavenger obtained in this way has a similar effect on the surface of new highly active metal powders produced by crushing. The metal halide adheres to form a very strong bond, and even when these metal halide-treated metal powders are packaged and used as an oxygen scavenger, the metal halide does not fall off and has stable oxygen scavenging performance. The oxygen scavenger produced according to the present invention does not contain moisture and is therefore stable in an atmosphere with low humidity without causing a deoxidizing reaction. However, when moisture increases, the metal halide on the metal surface deliquesces. , reacts with atmospheric oxygen with an increased reaction rate. Therefore, by sealing the oxygen absorber according to the present invention together with a moisture-containing food in a non-breathable packaging material, the oxygen concentration in the packaging material decreases over time and eventually reaches zero. Example 1 Raw material 1 using cast iron powder and dry powder as metal powder and adding 1% NaCl as metal halide
I prepared Kg. This raw material was crushed and mixed for 60 minutes at an amplitude of 5 mm by inserting three SC rods with a diameter of 30 mm and a length of 210 mm into a vibrating mill with a container capacity of 3.59 mm. In order to compare with the oxygen scavenger produced in this way, 2ml of 10% NaCl was added to 20g of reduced iron powder and pure iron powder.
A conventional metal halide iron powder was prepared by mixing with an aqueous solution and vacuum drying at a temperature of about 100°C. An oxygen scavenger was prepared by sealing 5 g of these treated powders in a 35 x 45 mm paper bag laminated with a perforated polyethylene film. This was sealed in an airtight container with a capacity of 100 c.c., with the relative humidity controlled to be 90% or more and 50% or less. Thereafter, the oxygen concentration within the container was measured over time. The measurement temperature was adjusted to 20±1°C. The results are shown in Table 1. From this, the oxygen scavenger according to the present invention has a relative humidity of 90
% or more, the oxygen concentration in the container became 0% within 25 hours at the longest, showing better performance than the comparative materials. Further, at a relative humidity of 50% or less, the maximum amount of oxygen absorbed after time is approximately 3%, which is approximately 14% of the total capacity. It can be seen from this that there is almost no reaction at low humidity, indicating that it has the required performance as an oxygen scavenger. In particular, in the method of the present invention, stickiness was reduced compared to the comparative example, and the problem of dirt seeping out was resolved. Example 2 As a comparative example, reduced iron powder was used as a dull powder of cast iron material equivalent to FC 20 , and a metal halide was added to it as a metal halide.
1% NaCl was added. The frequency of 1Kg of this raw material
Three rods of SC material with a diameter of 30 mm and a length of 210 mm were charged into a vibrating mill of 1200 cpm, amplitude of 5 mm, and container capacity of 3.59 mm. In the case of reduced iron, it was crushed and mixed for 60 minutes, and in the case of Dalai powder, it was crushed and mixed for 60 minutes and 120 minutes. An oxygen scavenger was prepared by sealing 5 g of this halogenated metal-treated iron powder in a paper bag laminated with a 35 x 45 mm perforated polyethylene film. This capacity is
It was sealed in a 100 c.c. airtight container with the relative humidity controlled to be 90% or higher. The measurement temperature was maintained at 20±1°C. Table 2 shows the results of measuring the oxygen concentration in this container over time. Table 3 shows the particle size of reduced iron and powdered powder before crushing. Although the particle size of reduced iron powder is coarser than that of reduced powder, the performance of the produced oxygen scavenger is close to that of reduced iron powder. It was hot. Furthermore, this metal halide treated powder was smooth and non-sticky and easy to handle. This is thought to be because the graphite in cast iron plays the role of holding halide metal powder and regulating moisture. In this way, by optimizing the crushing conditions even for coarse metal powder, the deoxidizing performance was improved. Example 3 As in Example 1, three types of metal powders, reduced iron powder, pure iron powder, and cast iron powder, were prepared and used as metal halides.
NaCl and CaCl2 were added at 0.1, 0.5, 1, 5, and 10%. This was done in the same vibrating mill as in Example 1 for 60 minutes, 90 minutes,
Metal halide treated iron powder was produced by changing the crushing and mixing time to 120 minutes and 200 minutes. An oxygen absorber was prepared by enclosing 5 g of this iron powder in a paper bag laminated with a perforated polyethylene film having internal dimensions of 45 x 35 mm. As in Example 1, store this at a relative humidity of 90% or higher in a container with a capacity of 100cc.
Changes in oxygen content over time were measured at a temperature of 1°C. Table 4 shows the change in oxygen concentration in this container over time and the time when the oxygen concentration reaches 0%. As a result, it was found that using NaCl as the metal halide had better oxygen absorption ability than using CaCl 2 . The influence of NaCl concentration is 0.1%
If it is reduced to 0.5~, the performance will deteriorate significantly.
At 10%, there is not much difference in performance between them. In addition, with 10% NaCl, oozing was observed on the wrapping paper with oxygen scavengers using reduced iron powder and pure iron powder, but not with cast iron powder. This is considered to be due to the same reason as stated in Example 2, and is a characteristic of cast iron powder. From this, the appropriate concentration of NaCl is 0.5 to 5%, taking into account the problem of seepage, performance, and economic aspects.
is preferred. Also, looking at the performance change when changing the crushing time with NaCl addition concentration at 1%, we can see that the crushing time was
Performance was improved by increasing the time up to 120 minutes. Even if the crushing time was increased further, no significant improvement effect was observed. This is thought to be because the longer crushing time promoted the generation of new active interfaces for both the iron powder and the metal halide, resulting in efficient production of the composite.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 以上本発明により製造された脱酸素剤は、従来
法に比べ酸素吸収能に優れかつ製造法が容易で安
定した性能を有する。しかも黒鉛を含有する金属
粉を用い、かつハロゲン化金属との破砕条件の調
整により、黒鉛を含有しない鉄粉と同等あるいは
それ以上の性能を有する脱酸素剤で、染み出し、
べと付きが軽減された脱酸素剤を得るものであ
る。
[Table] (Effects of the Invention) The oxygen scavenger produced by the present invention has excellent oxygen absorption ability compared to conventional methods, is easy to produce, and has stable performance. In addition, by using metal powder containing graphite and adjusting the crushing conditions with metal halide, it is an oxygen scavenger that has performance equivalent to or better than iron powder that does not contain graphite, and it oozes out.
To obtain an oxygen absorber with reduced stickiness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による脱酸素剤の製造工程を
ブロツクで示す説明図、第2図は食塩添加量と酸
素濃度零到達時間および脱酸素開始立ち上り時間
の関係の図表である。
FIG. 1 is an explanatory diagram showing in blocks the manufacturing process of the oxygen scavenger according to the present invention, and FIG. 2 is a chart showing the relationship between the amount of salt added, the time to reach zero oxygen concentration, and the rise time at the start of deoxidation.

Claims (1)

【特許請求の範囲】[Claims] 1 水分含有量1%以下の黒鉛を含有する金属粉
とハロゲン化金属とを、破砕媒体とともに破砕機
に装入して同時に破砕・混合して、金属粉および
ハロゲン化金属に破砕面を生成させ、前記破砕・
混合時に振幅を併用して、微粉砕された金属粉お
よびハロゲン化金属の結合体を得ることを特徴と
する脱酸素剤の製造方法。
1. A metal powder containing graphite with a moisture content of 1% or less and a metal halide are charged into a crusher together with a crushing medium and simultaneously crushed and mixed to generate a crushed surface on the metal powder and metal halide. , the said crushing
A method for producing an oxygen scavenger, characterized in that a combination of finely pulverized metal powder and metal halide is obtained by using vibration at the time of mixing.
JP21652787A 1987-09-01 1987-09-01 Production of deoxidant Granted JPS6463039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21652787A JPS6463039A (en) 1987-09-01 1987-09-01 Production of deoxidant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21652787A JPS6463039A (en) 1987-09-01 1987-09-01 Production of deoxidant

Publications (2)

Publication Number Publication Date
JPS6463039A JPS6463039A (en) 1989-03-09
JPH0573459B2 true JPH0573459B2 (en) 1993-10-14

Family

ID=16689826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21652787A Granted JPS6463039A (en) 1987-09-01 1987-09-01 Production of deoxidant

Country Status (1)

Country Link
JP (1) JPS6463039A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293365A (en) * 1992-04-18 1993-11-09 Nippon Steel Corp Production of deoxidizer
JP4131030B2 (en) * 1997-03-13 2008-08-13 三菱瓦斯化学株式会社 Oxygen absorber composition, oxygen absorber package and article storage method
EP1506718A1 (en) * 2003-08-14 2005-02-16 COBARR S.p.A. Oxygen-scavenging compositions and the application thereof in packaging and containers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129137A (en) * 1983-12-17 1985-07-10 Daishiro Fujishima Manufacture of deoxidizing agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129137A (en) * 1983-12-17 1985-07-10 Daishiro Fujishima Manufacture of deoxidizing agent

Also Published As

Publication number Publication date
JPS6463039A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
JP5413790B2 (en) Solid oxygen scavenger composition and method for producing the same
US4908151A (en) Oxygen absorbent
TW201247307A (en) Oxygen absorber and method for storing same
US4552767A (en) Method of packaging coffee with carbon dioxide sorbent
CN109589933A (en) A kind of magnetic nanometer composite material UiO-66/Fe3O4The preparation method and application of/GO
EP3127865A1 (en) Powdered tobermorite type calcium silicate-based material and method for producing same
JPS62244443A (en) Oxygen scavenger
JPH0573459B2 (en)
EP0142903B1 (en) Absorbent for carbon dioxide or for carbon dioxide and oxygen, a method of making the same, and the use of the absorbent in a package
JP2003144113A (en) Free-oxygen absorber
JP3693424B2 (en) Method for producing iron powder for reactants
JPH057773A (en) Deoxidizing agent
JP3561724B2 (en) Reduced iron powder for oxygen scavenger and method for producing the same
JP3187305B2 (en) Oxygen scavenger and water donating carrier for oxygen scavenger
JP2738068B2 (en) Freshness preservative
JPH08206443A (en) Acidic gas absorbent and production thereof
JP4950391B2 (en) Oxygen absorber
JPH04290543A (en) Production of deoxidizer
JPH0811056B2 (en) Oxygen absorber
JPH0474528A (en) Oxygen scavenger
JP3522420B2 (en) Oxygen absorbing material
JPH0321148B2 (en)
JPH1147585A (en) Oxygen scavenger
JPH08238081A (en) Freshness-retaining material
JPH05293365A (en) Production of deoxidizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term