JPH0570833A - Manufacture of silicon steel sheet by continuous annealing - Google Patents

Manufacture of silicon steel sheet by continuous annealing

Info

Publication number
JPH0570833A
JPH0570833A JP3256508A JP25650891A JPH0570833A JP H0570833 A JPH0570833 A JP H0570833A JP 3256508 A JP3256508 A JP 3256508A JP 25650891 A JP25650891 A JP 25650891A JP H0570833 A JPH0570833 A JP H0570833A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
rolling
cold rolling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3256508A
Other languages
Japanese (ja)
Inventor
Masahiko Manabe
昌彦 真鍋
Yoshinari Muro
吉成 室
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3256508A priority Critical patent/JPH0570833A/en
Publication of JPH0570833A publication Critical patent/JPH0570833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a silicon steel sheet good in magnetic properties in the rolling direction as well as in its orthogonal direction by heating a steel slab having a specified compsn. at a specified temp., thereafter subjecting it to hot rolling, executing cold rolling including process annealing to regulate its sheet thickness into a final one, subjecting it to decarburizing annealing and thereafter executing continuous annealing under specified conditions. CONSTITUTION:A steel slab constituted of, by weight, 0.010 to 0.10% C, <=4.0% Si, 0.02 to 0.10% Mn, 0.005 to 0.030% Se and/or S and the balance Fe is heated at 1150 to 1250 deg.C and is thereafter subjected to hot rolling. This steel sheet is subjected to cold rolling for one or two times including process annealing to regulate its sheet thickness into a final one, and after that, it is subjected to decarburizing annealing and is subjected to short time finish annealing at 950 to 1200 deg.C for 10 to 600s by continuous annealing. Moreover, it is enable to execute 0.5 to 5.0% cold rolling as well after the decarburizing annealing. In this way, a silicon steel sheet having a suitable amt. of inhibitor components with moderate strength and proper secondary recrystals, stable in magnetic properties and suitable as the stock for generators and large size rotating machines can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、大型回転機の素材と
して好適な電磁鋼板の経済的な製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an economical method for producing an electromagnetic steel sheet suitable as a material for a large rotating machine.

【0002】[0002]

【従来の技術】大型回転機に使用される電磁鋼板は、冷
間圧延によって最終成品板厚としたのち、高温加熱に際
し、(110) 001 方位を持つ結晶粒を優先的に成長させる
いわゆる2次結晶現象を利用して製造される。
2. Description of the Related Art A magnetic steel sheet used in a large-sized rotating machine is cold-rolled to a final product thickness, and then a so-called secondary crystal that preferentially grows crystal grains having a (110) 001 orientation during high temperature heating. It is manufactured by utilizing the crystallization phenomenon.

【0003】現在、発電機、大型モーター及び変圧機等
の鉄心には、無方向性電磁鋼板のハイグレード品又は一
方向性電磁鋼板が用いられている。しかしながら無方向
性電磁鋼板は、圧延方向(L方向)の磁束密度、鉄損が
低く、L方向特性の向上が要望されている。また一方向
性電磁鋼板は、(110) 001方位を持つ結晶粒を優先成長
させる必要上、最終焼鈍は長時間加熱が必要であり、そ
のために通常箱焼鈍が用いられるが、この場合、(110)
001 方位に高度に集積するため、L方向特性は優れるも
のの、圧延方向に垂直な方向(C方向)の特性は著しく
劣化する。加えて箱焼鈍によるため、コスト高ともな
る。
Currently, high-grade non-oriented electrical steel sheets or unidirectional electrical steel sheets are used for iron cores of generators, large motors, transformers and the like. However, the non-oriented electrical steel sheet has low magnetic flux density and iron loss in the rolling direction (L direction), and improvement in L direction characteristics is desired. Further, in the grain-oriented electrical steel sheet, since it is necessary to preferentially grow the crystal grains having the (110) 001 orientation, the final annealing requires heating for a long time, and therefore, the box annealing is usually used. )
Since it is highly integrated in the 001 direction, the characteristics in the L direction are excellent, but the characteristics in the direction perpendicular to the rolling direction (C direction) are significantly deteriorated. In addition, because of box annealing, the cost is high.

【0004】一方で、こうした高価な箱焼鈍の代わりに
短時間の連続焼鈍を採用して、一方向性電磁鋼板を製造
する方法が提案されている。例えば、特公昭51-20373号
公報には、一方向性電磁鋼の冷延板を脱炭焼鈍し、つい
で2次再結晶のための焼鈍を連続焼鈍とし、1000〜1100
℃での保持時間を5〜10分間という比較的短時間で行う
ことからなる製造方法が開示されている。また特開昭49
-95816号公報には、最終板厚とした冷延板を 500〜1000
0 ℃/minの加熱速度で急速加熱し、 950℃超、1200℃以
下の温度で10分以内保持して仕上げ焼鈍する方向性電磁
鋼板の製造方法が示されている。さらに特開昭55-58332
号公報には、C:0.01wt%(以下単に%で示す)の素材
で脱炭焼鈍なしに、急速加熱、短時間均熱による仕上げ
焼鈍を行うことが示されている。
On the other hand, a method of manufacturing a unidirectional electrical steel sheet by employing continuous annealing for a short time instead of such expensive box annealing has been proposed. For example, in Japanese Examined Patent Publication No. 51-20373, a cold rolled sheet of unidirectional electrical steel is decarburized and annealed for secondary recrystallization, and then continuous annealing is performed.
A manufacturing method is disclosed in which the holding time at ° C is performed in a relatively short time of 5 to 10 minutes. In addition, JP-A-49
-95816 discloses that the cold rolled sheet with the final sheet thickness is 500-1000.
A method for producing a grain-oriented electrical steel sheet is described, in which rapid heating is performed at a heating rate of 0 ° C./min, and finish annealing is performed at a temperature of 950 ° C. or higher and 1200 ° C. or lower for 10 minutes or less. Furthermore, JP-A-55-58332
The publication discloses that C: 0.01 wt% (hereinafter simply referred to as%) material is used for finish annealing by rapid heating and short-time soaking without decarburizing annealing.

【0005】しかしながら特公昭51-20373号公報及び特
開昭49-95816号公報では、主インヒビターとしてAlNを
利用しているが、このAlNはインヒビター作用が特に強
く、その2次再結晶粒は強く(110) 001 方位へ集積する
ため、C方向特性は改善されず、L方向とC方向の特性
差は依然として大きいところに問題を残していた。
However, in Japanese Patent Publication No. 51-20373 and Japanese Patent Laid-Open No. 49-95816, AlN is used as the main inhibitor, but this AlN has a particularly strong inhibitory action and its secondary recrystallized grains are strong. Since it was integrated in the (110) 001 orientation, the C-direction characteristics were not improved, and there was a problem in that the characteristic difference between the L-direction and the C-direction was still large.

【0006】[0006]

【発明が解決しようとする課題】上述したとおり、従来
の技術では、発電機や大型モーター用の鉄心材料として
L方向及びC方向とも良好な特性を持ち、しかも安価な
材料を提供することはできなかった。この発明は、上記
の問題を有利に解決するもので、圧延方向及びその直角
方向共に良好な磁気特性を有する大型回転機用電磁鋼板
を安価に得ることができる製造方法を提案することを目
的とする。
As described above, according to the prior art, it is not possible to provide an inexpensive iron core material for generators and large motors, which has good characteristics in both the L and C directions. There wasn't. The present invention advantageously solves the above problems, and an object thereof is to propose a manufacturing method capable of inexpensively obtaining a magnetic steel sheet for a large-sized rotating machine having good magnetic properties in both the rolling direction and the direction perpendicular to the rolling direction. To do.

【0007】[0007]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく、安価で、しかもL方向特性が無方向
性電磁鋼板より優れ、かつC方向特性が一方向性電磁鋼
板よりも優れ、さらにはL,C方向特性のバランスも良
好な電磁鋼板の製造方法について鋭意検討を重ねた。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention are inexpensive, have better L-direction characteristics than non-oriented electrical steel sheets, and have C-direction characteristics better than unidirectional electrical steel sheets. Further, the inventors have earnestly studied about a method of manufacturing an electrical steel sheet which is excellent, and has a good balance of characteristics in the L and C directions.

【0008】その結果、仕上げ焼鈍時の2次再結晶は不
可欠であるけれども、C方向特性を改善するには、一方
向性電磁鋼板のように(110) 001 方位があまりに強く集
積するのはかえって不利であり、結晶方位は適度に分散
しているのが望ましいことを見出した。そしてそのため
には、適正な量と強さを有するインヒビター成分ならび
に適正な2次再結晶焼鈍条件さらには冷間圧延条件の選
択が極めて重要であることの知見を得た。この発明は、
上記の知見に立脚するものである。
As a result, although secondary recrystallization at the time of finish annealing is indispensable, in order to improve the C-direction characteristics, it is rather that the (110) 001 orientation is too strong to be integrated like the grain-oriented electrical steel sheet. It has been found to be disadvantageous, and it is desirable that the crystal orientations are appropriately dispersed. Then, for that purpose, it was found that it is extremely important to select an inhibitor component having an appropriate amount and strength, an appropriate secondary recrystallization annealing condition, and a cold rolling condition. This invention is
It is based on the above findings.

【0009】すなわちこの発明は、C:0.010 〜0.10
%、Si:4.0 %以下、Mn:0.02〜0.10%、Se及び/又は
S:0.005 〜0.030 %を含有し、残部は実質的にFeの組
成になる鋼スラブを、1150〜1250℃の温度範囲でスラブ
加熱後、熱間圧延し、ついで中間焼鈍を含む1〜2回の
冷間圧延で最終板厚とした後、脱炭焼鈍を施してから、
連続焼鈍により 950〜1200℃,10〜600 sの短時間仕上
げ焼鈍を施すことからなる電磁鋼板の製造方法(第1発
明)である。
That is, the present invention provides C: 0.010 to 0.10.
%, Si: 4.0% or less, Mn: 0.02 to 0.10%, Se and / or S: 0.005 to 0.030%, and the balance substantially consisting of Fe, a steel slab having a temperature range of 1150 to 1250 ° C. After heating with a slab, hot rolling, and then cold rolling 1 to 2 times including intermediate annealing to obtain the final plate thickness, followed by decarburizing annealing,
This is a method for manufacturing an electrical steel sheet (first invention), which comprises performing a short-time finish annealing at 950 to 1200 ° C. for 10 to 600 s by continuous annealing.

【0010】またこの発明は、C:0.010 〜0.10%、S
i:4.0 %以下、Mn:0.02〜0.10%、Se及び/又はS:
0.005 〜0.030 %を含有し、残部は実質的にFeの組成に
なる鋼スラブを、1150〜1250℃の温度範囲でスラブ加熱
後、熱間圧延し、ついで中間焼鈍を含む1〜2回の冷間
圧延を行ったのち、脱炭焼鈍を施してから、 0.5〜5.0
%の圧下率の冷間圧延を施して最終板厚とし、しかるの
ち連続焼鈍により 900〜1200℃,3〜600 sの短時間焼
鈍を施すことからなる電磁鋼板の製造方法(第2発明)
である。
The present invention also provides C: 0.010 to 0.10%, S
i: 4.0% or less, Mn: 0.02 to 0.10%, Se and / or S:
A steel slab containing 0.005 to 0.030% and the balance being substantially Fe is heated in a temperature range of 1150 to 1250 ° C, hot rolled, and then cooled once or twice including intermediate annealing. 0.5 ~ 5.0 after decarburization annealing after hot rolling
A method for manufacturing an electrical steel sheet, which comprises cold rolling at a reduction rate of 10% to obtain a final sheet thickness, and then performing continuous annealing for a short time annealing at 900 to 1200 ° C. for 3 to 600 s (second invention).
Is.

【0011】以下、この発明を具体的に説明する。まず
第1発明の基礎となった実験結果について述べる。次表
1に示す成分組成になる一方向性けい素鋼素材を、1200
℃に加熱した後、圧下率:99%、仕上げ温度:860 ℃で
熱間圧延し、ついで圧下率:75%の冷間圧延を施して
0.5mmの最終板厚としたのち、 800℃,4分間の脱炭焼
鈍を施し、ついで種々の加熱温度及び時間で仕上げ焼鈍
を施したときの、2次再結晶状況について調べた結果
を、加熱温度及び加熱時間との関係で図1に示す。
The present invention will be described in detail below. First, the experimental results which are the basis of the first invention will be described. The unidirectional silicon steel material having the composition shown in Table 1 below is
After heating to ℃, rolling reduction: 99%, finishing temperature: 860 ℃ hot rolling, then cold rolling: 75% cold rolling.
After the final plate thickness of 0.5 mm, decarburization annealing was performed at 800 ° C for 4 minutes, and then final annealing was performed at various heating temperatures and times. The relationship between the temperature and the heating time is shown in FIG.

【0012】[0012]

【表1】 [Table 1]

【0013】図1から明らかなように、A鋼のように素
材C%が低すぎると全く2次再結晶が生じない。この理
由は、板厚中心にバンド組織が残存し、2次再結晶を阻
害するためである。
As is clear from FIG. 1, when the material C% is too low as in the case of steel A, secondary recrystallization does not occur at all. The reason for this is that the band structure remains in the center of the plate thickness and inhibits secondary recrystallization.

【0014】また図2に、スラブ加熱温度を1200℃と13
00℃とした場合におけるC鋼の2次再結晶後の磁気特性
と加熱温度(60s保持) との関係を示す。同図より明ら
かなように、高温・短時間加熱の場合、2次再結晶さえ
すれば、両鋼でL方向の磁気特性に大きな差はない。し
かしながらC方向特性については、スラブ加熱温度によ
りその差が顕著になり、MnSeが未固溶で残留している12
00℃加熱の方がL方向とC方向の特性差は小さい。なお
仕上げ焼鈍温度は 950℃以上が必要であることが判る。
Further, in FIG. 2, the slab heating temperatures of 1200 ° C. and 13
The relationship between the magnetic properties of C steel after secondary recrystallization at a temperature of 00 ° C and the heating temperature (holding for 60 s) is shown. As is clear from the figure, in the case of heating at high temperature for a short time, there is no significant difference in the magnetic properties in the L direction between the two steels as long as secondary recrystallization is performed. However, regarding the C-direction characteristics, the difference becomes remarkable depending on the slab heating temperature, and MnSe remains as a non-solid solution.
The difference in characteristics between the L and C directions is smaller when heated at 00 ° C. It can be seen that the finish annealing temperature must be 950 ° C or higher.

【0015】次に、第2発明の基礎となった実験結果に
ついて述べる。表1中のB鋼について、脱炭焼鈍後、3
%の冷間圧延を施したのち、仕上げ焼鈍を種々の温度、
時間で行ったところ、加熱温度が 900℃でも、3s以上
の均熱処理を施せば2次再結晶することが判明した。図
3に、脱炭焼鈍後、冷間圧延を施した場合における、磁
気特性と均熱温度(10s保持)との関係を、冷間圧延を
施さなかった場合のそれと比較して示す。同図より明ら
かなように、冷間圧延を施した場合には 900℃でも良好
な磁気特性が得られている。勿論、 950℃以上の各温度
では良好な特性の向上が認められた。このように脱炭焼
鈍後、インヒビターの在圧下で微小歪を加えることによ
り、粒成長が促進され、ひいては鉄損特性の有利な向上
が達成される。
Next, the experimental results which are the basis of the second invention will be described. For B steel in Table 1, after decarburization annealing, 3
% Cold rolling, then finish annealing at various temperatures,
As a result of conducting the heating for a time, it was found that even if the heating temperature was 900 ° C., secondary recrystallization was carried out if a soaking treatment for 3 s or more was applied. FIG. 3 shows the relationship between the magnetic properties and the soaking temperature (holding for 10 s) in the case of performing cold rolling after decarburization annealing, in comparison with that in the case of not performing cold rolling. As is clear from the figure, good magnetic properties were obtained even at 900 ° C when cold rolling was performed. Of course, at each temperature of 950 ° C. or higher, a good improvement in characteristics was recognized. Thus, after decarburization annealing, by applying a minute strain under the presence of the inhibitor, the grain growth is promoted, and the advantageous improvement of the iron loss characteristics is achieved.

【0016】普通鋼でも、歪付与−再結晶で粒成長が促
進されることが知られているが、この発明は、その場合
とは全く異なり、インヒビターの存在下において、非常
にわずかの歪付加で、 900℃という低温の仕上げ焼鈍で
も著しい効果が得られるのである。しかも軽圧下を加え
ることにより、仕上げ焼鈍温度の下限を 900℃まで拡大
することができる。なお高温焼鈍は板の変形やエネルギ
ー節約の点で問題があり、所望の特性が得られるならば
低温焼鈍にこしたことはない。
It is known that even in ordinary steel, grain growth is promoted by strain imparting-recrystallization, but the present invention is completely different from that, and in the presence of an inhibitor, very little strain is applied. Therefore, a remarkable effect can be obtained even with a finish annealing at a low temperature of 900 ° C. Moreover, by applying light reduction, the lower limit of the final annealing temperature can be expanded to 900 ° C. High-temperature annealing has a problem in that the plate is deformed and energy is saved, and low-temperature annealing has never been performed if desired properties can be obtained.

【0017】[0017]

【作用】この発明の各構成要件について詳細に説明す
る。まず使用する素材の成分組成を前記の範囲に限定し
た理由について説明する。 C:0.010 〜0.10% Cは、熱延時に鋳造組織を破壊し、バンド組織を残さな
いために必要な元素であり、充分に、このバンド組織を
破壊するためには0.010 %以上が必要である。しかしな
がら最終成品に残存すると磁気特性の劣化を招くので、
仕上げ焼鈍前の脱炭焼鈍で成品C量を磁気特性に悪影響
を及ぼさない量まで低減できる0.10%を素材C量の上限
とした。
Each constituent element of the present invention will be described in detail. First, the reason why the component composition of the material used is limited to the above range will be described. C: 0.010 to 0.10% C is an element necessary for destroying the cast structure during hot rolling and leaving no band structure, and 0.010% or more is necessary for sufficiently destroying this band structure. .. However, if it remains in the final product, it will deteriorate the magnetic properties,
The upper limit of the amount of raw material C was 0.10%, which can reduce the amount of product C by decarburization annealing before finish annealing so as not to adversely affect the magnetic properties.

【0018】Si:4.0 %以下 Siは、磁気特性に支配的影響を与える元素であり、一般
にはSiが多くなるにつれて鉄損は改善され、一方飽和磁
束密度の方は逆に減少する傾向になる。電磁鋼板として
の性能は基本的にはこのSi量の選定によって決定され
る。この発明は種々の要求に対応できるよう、Si含有量
の広い範囲にわたって良好な磁気特性を得ることを狙い
としているが、 4.0%を超えると冷延が著しく困難にな
るので、上限を 4.0%とした。なお下限については、必
要により十分に高い磁束密度が実現できるように、特に
制限はしない。
Si: 4.0% or less Si is an element that has a dominant influence on the magnetic properties. Generally, as the amount of Si increases, the iron loss is improved, while the saturation magnetic flux density tends to decrease. .. The performance as a magnetic steel sheet is basically determined by the selection of this Si content. This invention aims to obtain good magnetic properties over a wide range of Si content so as to meet various requirements, but if it exceeds 4.0%, cold rolling becomes extremely difficult, so the upper limit is set to 4.0%. did. The lower limit is not particularly limited so that a sufficiently high magnetic flux density can be realized if necessary.

【0019】Mn:0.02〜0.10%、Se及び/又はS:0.00
5 〜0.030 % MnとS及び/又はSe量については、2次再結晶焼鈍の際
にインヒビターとして機能を持つ程度存在することが必
要であり、この点から下限が決まる。ただし、あまりに
多量のMn及びS,Seはかえって磁気特性を劣化させるの
で、この点からそれぞれ上記の範囲に上限を定めた。
Mn: 0.02 to 0.10%, Se and / or S: 0.00
Regarding 5 to 0.030% Mn and the amount of S and / or Se, it is necessary that they exist so as to function as an inhibitor during the secondary recrystallization annealing, and the lower limit is determined from this point. However, since an excessively large amount of Mn, S, and Se rather deteriorates the magnetic characteristics, the upper limits are set in the above ranges from this point.

【0020】上記成分を含むスラブは、熱間圧延に先立
ち、スラブ加熱が施される。このスラブ加熱における処
理温度は、所望量のインヒビターは固溶するが、完全に
は固溶しない温度とすることが望ましい。というのはイ
ンヒビターを完全に固溶させると、通常の一方向性電磁
鋼板と同様、L方向の特性は向上するけれども、C方向
の特性向上は期待できなくなるからである。この観点か
らスラブ加熱温度は、1150〜1250℃の範囲に限定した。
The slab containing the above components is subjected to slab heating prior to hot rolling. It is desirable that the treatment temperature in the slab heating is a temperature at which a desired amount of the inhibitor is solid-dissolved but not completely dissolved. The reason is that when the inhibitor is completely dissolved, the characteristics in the L direction are improved, but the characteristics in the C direction cannot be expected, as in the case of the ordinary grain-oriented electrical steel sheet. From this viewpoint, the slab heating temperature was limited to the range of 1150 to 1250 ° C.

【0021】ついで熱間圧延に供されるが、熱延条件に
ついては常法の一方向性けい素鋼板の製造条件と特に変
わるところはなく、従って通常の条件の下で行えば良
い。熱間圧延後は、インヒビターの量や最終製品板厚に
応じて、850〜1000℃程度の中間焼鈍を含む1回ないし
2回の冷間圧延を施し、ついで 750〜900 ℃,1〜5分
程度の湿水素雰囲気中で脱炭焼鈍を施す。
Then, hot rolling is carried out, but the hot rolling conditions are not particularly different from the manufacturing conditions of the conventional unidirectional silicon steel sheet, and therefore the hot rolling conditions may be carried out under normal conditions. After hot rolling, depending on the amount of inhibitor and the thickness of the final product, cold rolling is performed once or twice including intermediate annealing at about 850 to 1000 ° C, and then at 750 to 900 ° C for 1 to 5 minutes. Decarburization annealing is performed in a moist hydrogen atmosphere.

【0022】かかる脱炭焼鈍後、この発明ではさらに、
0.5〜5.0%の冷間圧延を加えることができる。ここに
圧下率を上記の範囲に限定したのは、 0.5%より少ない
と2次再結晶不良となる場合があり、板幅方向全体に安
定して2次再結晶粒を得ることができず、一方 5.0%よ
り大きいと、結晶粒に余分の回転が生じ、2次再結晶後
の集合組織が磁気特性上不利な方位に集積し易くなり、
磁気特性の劣化を招くからである。
After such decarburization annealing, the present invention further
Cold rolling of 0.5-5.0% can be added. The reason why the rolling reduction is limited to the above range is that if it is less than 0.5%, secondary recrystallization failure may occur, and secondary recrystallized grains cannot be stably obtained in the entire plate width direction. On the other hand, if it is more than 5.0%, extra rotation occurs in the crystal grains, and the texture after secondary recrystallization tends to accumulate in the orientation which is disadvantageous in terms of magnetic properties.
This is because the magnetic properties are deteriorated.

【0023】ついでかかる脱炭焼鈍板又は冷間圧延板を
連続焼鈍するのであるが、昇温条件については、板厚及
び設備能力に応じた、通常の昇温速度で差し支えない
(通常5〜150 ℃/s程度)。また加熱条件について
は、2次再結晶を速やかに進行させるには、脱炭焼鈍板
の場合、 950℃以上の温度で10s以上確保することが必
要である。これより低温度、短時間では、2次再結晶が
不完全で安定した磁気特性は得られない。一方、脱炭・
冷延板については、 900℃以上の温度で3s以上確保す
ることが必要である。これにより低温、短時間ではやは
り2次再結晶が不完全で、安定した磁気特性は得られな
い。
Then, the decarburized annealed plate or the cold rolled plate is annealed continuously, but the temperature rising conditions may be a normal temperature rising rate depending on the plate thickness and the equipment capacity (usually 5 to 150). C / s). Regarding the heating conditions, in the case of a decarburized annealed plate, it is necessary to secure a temperature of 950 ° C or higher for 10 seconds or more in order to promptly promote secondary recrystallization. At a temperature lower than this and a short time, secondary recrystallization is incomplete and stable magnetic characteristics cannot be obtained. On the other hand, decarburization
For cold-rolled sheets, it is necessary to secure at least 900 seconds at a temperature of at least 3 s. As a result, secondary recrystallization is still incomplete at a low temperature for a short time, and stable magnetic characteristics cannot be obtained.

【0024】とはいえ加熱温度が1200℃を超えると設備
上の制約が大きくなるだけでなく、板形状も劣化するの
で、コスト高となり、また 600sを超える均熱時間では
2次粒がさらに粒成長してC方向の特性劣化を招くだけ
でなく、設備が長大化してコスト高ともなり、安価な方
法というこの発明の目的に反するので、 600sを上限と
した。
However, if the heating temperature exceeds 1200 ° C., not only the restrictions on the equipment become large, but also the plate shape deteriorates, resulting in higher costs, and in the soaking time of more than 600 s, the secondary particles become even more granular. Not only does it grow and cause characteristic deterioration in the C direction, but the equipment becomes large and costly, which is contrary to the object of the present invention, which is an inexpensive method, so the upper limit was made 600 s.

【0025】焼鈍終了後は、そのまま又はさらに通常の
工程に従って絶縁被膜処理等の表面処理を施したのち製
品とする。
After the annealing is finished, the product is subjected to a surface treatment such as an insulating film treatment as it is or according to a usual process, and then the product is obtained.

【0026】この発明に従い得られた電磁鋼板は、急速
加熱、短時間均熱の連続焼鈍工程を経るため、箱焼鈍材
に比べるとL方向の磁気特性は一方向性けい素鋼板より
は若干劣るけれども、C方向の特性は良好であり、また
無方向性電磁鋼板に比べると、磁気特性ははるかに高
い。したがって発電機、大型モーター等の電磁鋼板とし
て使用された場合、機器性能の向上及びコストの低減の
両面から著しいメリットが得られる。
Since the electrical steel sheet obtained according to the present invention undergoes a continuous annealing process of rapid heating and short-time soaking, the magnetic properties in the L direction are slightly inferior to those of the unidirectional silicon steel sheet as compared with the box annealed material. However, the properties in the C direction are good, and the magnetic properties are much higher than those of the non-oriented electrical steel sheet. Therefore, when it is used as a magnetic steel sheet for generators, large motors, etc., significant advantages are obtained from both aspects of improving equipment performance and reducing costs.

【0027】[0027]

【実施例】実施例1 C:0.036 %、Si:3.31%、Mn:0.072%及びSe:0.022
%を含み、残部は実質的にFeの組成になる鋼スラブ
に、表2に示す種々の温度で4時間のスラブ加熱を施し
た後、圧下率:99%、仕上げ圧延温度:860 ℃で熱間圧
延を施して板厚:2.7 mmの熱延板とし、ついで酸洗後、
1次冷延で0.65mm厚にしたのち、 950℃、3min の中間
焼鈍後、2次冷延を施して0.35mmの最終製品厚に仕上げ
た。その後、湿水素雰囲気中で 800℃、4min の脱炭焼
鈍を行ったのち、連続焼鈍ラインにて、表2に示す種々
の加熱温度、加熱時間条件下に2次再結晶焼鈍を行っ
た。かくして得られた製品の磁気特性について調べた結
果を表2に併記する。
EXAMPLES Example 1 C: 0.036%, Si: 3.31%, Mn: 0.072% and Se: 0.022
% Of steel, the balance of which is substantially Fe, after heating the slab at various temperatures shown in Table 2 for 4 hours, then rolling reduction: 99%, finish rolling temperature: 860 ℃ Hot rolled sheet with a thickness of 2.7 mm by hot rolling, then pickled,
After primary cold rolling to a thickness of 0.65 mm, after intermediate annealing at 950 ° C for 3 minutes, secondary cold rolling was performed to a final product thickness of 0.35 mm. After that, decarburization annealing was performed at 800 ° C. for 4 minutes in a wet hydrogen atmosphere, and then secondary recrystallization annealing was performed in a continuous annealing line under various heating temperatures and heating time conditions shown in Table 2. The results of examining the magnetic properties of the products thus obtained are also shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】同表より明らかなように、この発明に従い
得られたものは、L方向及びC方向とも良好な磁気特性
が得られている。これに対し、加熱温度が低い比較例1
及び加熱時間が短い比較例2はいずれも、L方向及びC
方向とも低い特性しか得られず、またスラブ加熱温度が
高い比較例3及び連続焼鈍時間の長い比較例4は、C方
向の特性に劣っていた。
As is clear from the table, the magnetic material obtained according to the present invention has excellent magnetic characteristics in both the L and C directions. On the other hand, Comparative Example 1 in which the heating temperature is low
And Comparative Example 2 in which the heating time is short are both L direction and C
In Comparative Example 3 in which only the properties in the direction were low and the slab heating temperature was high and Comparative Example 4 in which the continuous annealing time was long, the properties in the C direction were inferior.

【0030】実施例2 C:0.041 %、Si:2.95%、Mn:0.068%及びSe:0.025
%を含み、残部は実質的にFeの組成になる鋼スラブ
に、表3に示す種々の温度で4時間のスラブ加熱を施し
た後、圧下率:99%、仕上げ圧延温度:870 ℃で熱間圧
延を施して板厚:2.4 mmの熱延板とし、ついで酸洗後、
1次冷延で0.65mm厚にしたのち、 950℃、3min の中間
焼鈍後、2次冷延を施して0.35mmの最終製品厚に仕上げ
た。その後、湿水素雰囲気中で 800℃、4min の脱炭焼
鈍を行ったのち、連続焼鈍ラインにて、表3に示す種々
の加熱温度、加熱時間条件下に2次再結晶焼鈍を行っ
た。かくして得られた製品の磁気特性について調べた結
果を表3に併記する。
Example 2 C: 0.041%, Si: 2.95%, Mn: 0.068% and Se: 0.025
% Of steel, the balance of which is substantially Fe composition, after heating the slabs for 4 hours at various temperatures shown in Table 3, rolling reduction: 99%, finish rolling temperature: 870 ℃ Hot rolled to a thickness of 2.4 mm by hot rolling, then pickled,
After primary cold rolling to a thickness of 0.65 mm, after intermediate annealing at 950 ° C for 3 minutes, secondary cold rolling was performed to a final product thickness of 0.35 mm. After that, decarburization annealing was performed at 800 ° C. for 4 minutes in a wet hydrogen atmosphere, and then secondary recrystallization annealing was performed in a continuous annealing line under various heating temperatures and heating time conditions shown in Table 3. The results of examining the magnetic properties of the thus obtained products are also shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】同表より明らかなように、この発明に従い
得られたものは、L方向及びC方向とも良好な磁気特性
が得られている。これに対し、加熱温度及び加熱時間と
もこの発明の適正範囲からはずれた比較例1は、L方向
及びC方向いずれについても劣悪な磁気特性しか得られ
ず、またスラブ加熱温度の高い比較例2及び焼鈍温度が
高い比較例3はいずれも、L方向の特性は優れるものの
C方向の特性に劣る。
As is clear from the table, the magnetic material obtained according to the present invention has good magnetic characteristics in both the L and C directions. On the other hand, in Comparative Example 1 in which both the heating temperature and the heating time are out of the proper ranges of the present invention, only poor magnetic properties are obtained in both the L direction and the C direction, and Comparative Example 2 in which the slab heating temperature is high and In Comparative Example 3 in which the annealing temperature is high, the characteristics in the L direction are excellent, but the characteristics in the C direction are inferior.

【0033】実施例3 C:0.036 %、Si:3.31%、Mn:0.072%及びSe:0.022
%を含み、残部は実質的にFeの組成になる鋼スラブ
に、表4に示す温度で4時間のスラブ加熱を施した後、
熱間圧延を施して板厚:2.7 mmとした熱延板を、酸洗
後、1次冷延で0.65mm厚にしてから、 950℃、3min の
中間焼鈍後、2次冷延で0.35〜0.37mm厚に仕上げた。つ
いで湿水素雰囲気中で 800℃, 4min の脱炭焼鈍を行っ
たのち、表4に示す種々の圧下率で冷間圧延を行って、
最終板厚:0.35mmとしたのち、連続焼鈍ラインにてやは
り表4に示す種々の均熱温度・時間で2次再結晶焼鈍を
行った。かくして得られた製品の磁気特性について調べ
た結果を表4に併記する。
Example 3 C: 0.036%, Si: 3.31%, Mn: 0.072% and Se: 0.022
%, And the balance being substantially Fe composition, after the slab heating at the temperature shown in Table 4 for 4 hours,
After hot-rolling the hot-rolled sheet to a thickness of 2.7 mm, after pickling it to a thickness of 0.65 mm in the primary cold rolling, after intermediate annealing at 950 ° C for 3 minutes, 0.35 in the secondary cold rolling. Finished to a thickness of 0.37 mm. Then, after performing decarburization annealing at 800 ° C for 4 min in a wet hydrogen atmosphere, cold rolling was performed at various reduction ratios shown in Table 4,
After setting the final plate thickness to 0.35 mm, secondary recrystallization annealing was performed on the continuous annealing line at various soaking temperatures and times shown in Table 4 as well. The results of examining the magnetic properties of the product thus obtained are also shown in Table 4.

【0034】[0034]

【表4】 [Table 4]

【0035】同表から明らかなように、この発明法に従
い得られたものはいずれも優れた磁気特性が得られてい
る。
As is clear from the table, all the magnetic particles obtained according to the method of the present invention have excellent magnetic characteristics.

【0036】実施例4 C:0.041 %、Si:2.95%、Mn:0.068%及びS:0.025
%を含み、残部は実質的にFeの組成になる鋼スラブ
に、表5に示す温度で4時間のスラブ加熱を施した後、
熱間圧延を施して板厚:2.4mm とした熱延板を、酸洗
後、1次冷延で0.65mm厚にしてから、 950℃、3min の
中間焼鈍後、2次冷延で0.35〜0.37mm厚に仕上げた。つ
いで湿水素雰囲気中で 800℃、4min の脱炭焼鈍を行っ
たのち、表5に示す種々の圧下率で冷間圧延を行って、
最終板厚:0.35mmとしたのち、連続焼鈍ラインにてやは
り表5に示す種々の均熱温度・時間で仕上げ焼鈍を行な
った。かくして得られた製品の磁気特性について調べた
結果を表5に併記する。
Example 4 C: 0.041%, Si: 2.95%, Mn: 0.068% and S: 0.025
%, And the balance being substantially Fe composition, after the slab heating at the temperature shown in Table 5 for 4 hours,
After hot-rolling the hot-rolled sheet to a thickness of 2.4 mm, after pickling it to a thickness of 0.65 mm in the first cold rolling, after intermediate annealing at 950 ° C for 3 minutes, 0.35 in the second cold rolling. Finished to a thickness of 0.37 mm. Then, after performing decarburization annealing at 800 ° C. for 4 minutes in a wet hydrogen atmosphere, cold rolling was performed at various rolling reductions shown in Table 5,
After setting the final plate thickness to 0.35 mm, finish annealing was performed on the continuous annealing line at various soaking temperatures and times as shown in Table 5. The results of examining the magnetic properties of the product thus obtained are also shown in Table 5.

【0037】[0037]

【表5】 [Table 5]

【0038】同表より明らかなように、この発明法に従
い得られたものはいずれも優れた磁気特性が得られた。
As is clear from the table, all the magnetic particles obtained according to the method of the present invention had excellent magnetic characteristics.

【0039】実施例5 C:0.037 %、Si:3.32%、Mn:0.073%及びSe:0.021
%を含み、残部は実質的にFeの組成になる鋼スラブ
に、表6に示す種々の温度で4時間のスラブ加熱を施し
た後、圧下率:99%、仕上げ温度:855 ℃の熱間圧延を
施して板厚:2.0mmの熱延板とし、ついで1000℃、30s
の焼鈍を施し、酸洗後、冷間圧延により0.50〜0.53mm厚
に仕上げた。ついで湿水素雰囲気中で 800℃、4min の
脱炭焼鈍を行ったのち、表6に示す種々の圧下率で冷間
圧延を行って、最終板厚:0.50mmとしたのち、連続焼鈍
ラインにてやはり表6に示す種々の均熱温度・時間で仕
上げ焼鈍を行なった。かくして得られた製品の磁気特性
について調べた結果を表6に併記する。
Example 5 C: 0.037%, Si: 3.32%, Mn: 0.073% and Se: 0.021
% Of steel, the balance of which is substantially Fe, after heating the slab for 4 hours at various temperatures shown in Table 6, rolling reduction: 99%, finishing temperature: 855 ℃ hot Rolled to a hot rolled sheet with a thickness of 2.0 mm, then 1000 ℃, 30s
Was annealed, pickled, and then cold rolled to a thickness of 0.50 to 0.53 mm. Then, after decarburizing annealing at 800 ° C for 4 min in a wet hydrogen atmosphere, cold rolling was performed at various reduction ratios shown in Table 6 to obtain a final sheet thickness of 0.50 mm, and then a continuous annealing line. After that, finish annealing was performed at various soaking temperatures and times shown in Table 6. The results of examining the magnetic properties of the products thus obtained are also shown in Table 6.

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【発明の効果】かくして第1発明によれば、通常工業的
に行われている連続焼鈍法で、無方向性けい素鋼板より
も磁気特性が格段に優れ、また一方向性けい素鋼と比較
するとL方向の特性は若干劣るもののC方向特性に優
れ、磁性バランスの良い、電磁鋼板を低コストの下に得
ることができる。また第2発明によれば、さらに低温、
短時間の連続焼鈍で、上記の効果を得ることができる。
As described above, according to the first aspect of the present invention, the continuous annealing method which is usually carried out industrially has remarkably superior magnetic properties to non-oriented silicon steel sheets and is compared with unidirectional silicon steel sheets. Then, although the characteristics in the L direction are slightly inferior, it is possible to obtain an electromagnetic steel sheet having excellent C direction characteristics and good magnetic balance at low cost. Further, according to the second aspect of the invention, a lower temperature,
The above effects can be obtained by continuous annealing for a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】2次再結晶挙動に及ぼす仕上げ焼鈍条件の影響
を示したグラフである。
FIG. 1 is a graph showing the effect of finish annealing conditions on secondary recrystallization behavior.

【図2】L方向及びC方向の特性に及ぼす仕上げ焼鈍条
件の影響を示したグラフである。
FIG. 2 is a graph showing the effect of finish annealing conditions on L-direction and C-direction characteristics.

【図3】脱炭焼鈍後、冷間圧延を施した場合の、L方向
及びC方向の特性に及ぼす仕上げ焼鈍条件の影響を示し
たグラフである。
FIG. 3 is a graph showing the influence of finish annealing conditions on the properties in the L direction and the C direction when cold rolling is performed after decarburization annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.010 〜0.10wt%、 Si:4.0 wt%以下、 Mn:0.02〜0.10wt%、 Se及び/又はS:0.005 〜0.030 wt% を含有し、残部は実質的にFeの組成になる鋼スラブを、
1150〜1250℃の温度範囲でスラブ加熱後、熱間圧延し、
ついで中間焼鈍を含む1〜2回の冷間圧延で最終板厚と
した後、脱炭焼鈍を施してから、連続焼鈍により 950〜
1200℃,10〜600sの短時間仕上げ焼鈍を施すことを特
徴とする電磁鋼板の製造方法。
1. C: 0.010 to 0.10 wt%, Si: 4.0 wt% or less, Mn: 0.02 to 0.10 wt%, Se and / or S: 0.005 to 0.030 wt%, the balance being substantially Fe. The steel slab that becomes the composition,
After slab heating in the temperature range of 1150 ~ 1250 ℃, hot rolling,
Then, after cold rolling 1 to 2 times including intermediate annealing to obtain the final plate thickness, decarburization annealing is performed and then continuous annealing is performed at 950 to
A method for manufacturing an electrical steel sheet, characterized by performing a short-time finish annealing at 1200 ° C for 10 to 600 s.
【請求項2】 C:0.010 〜0.10wt%、 Si:4.0 wt%以下、 Mn:0.02〜0.10wt%、 Se及び/又はS:0.005 〜0.030 wt% を含有し、残部は実質的にFeの組成になる鋼スラブを、
1150〜1250℃の温度範囲でスラブ加熱後、熱間圧延し、
ついで中間焼鈍を含む1〜2回の冷間圧延を行ったの
ち、脱炭焼鈍を施してから、 0.5〜5.0 %の圧下率の冷
間圧延を施して最終板厚とし、しかるのち連続焼鈍によ
り 900〜1200℃,3〜600 sの短時間焼鈍を施すことを
特徴とする電磁鋼板の製造方法。
2. C: 0.010-0.10 wt%, Si: 4.0 wt% or less, Mn: 0.02-0.10 wt%, Se and / or S: 0.005-0.030 wt%, the balance being substantially Fe. The steel slab that becomes the composition,
After slab heating in the temperature range of 1150 ~ 1250 ℃, hot rolling,
Then, after cold rolling 1 to 2 times including intermediate annealing, decarburization annealing is performed, and then cold rolling at a reduction rate of 0.5 to 5.0% is performed to obtain a final plate thickness, and then continuous annealing is performed. A method for producing an electromagnetic steel sheet, which comprises performing a short-time annealing at 900 to 1200 ° C for 3 to 600 s.
JP3256508A 1991-07-16 1991-10-03 Manufacture of silicon steel sheet by continuous annealing Pending JPH0570833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256508A JPH0570833A (en) 1991-07-16 1991-10-03 Manufacture of silicon steel sheet by continuous annealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-199916 1991-07-16
JP19991691 1991-07-16
JP3256508A JPH0570833A (en) 1991-07-16 1991-10-03 Manufacture of silicon steel sheet by continuous annealing

Publications (1)

Publication Number Publication Date
JPH0570833A true JPH0570833A (en) 1993-03-23

Family

ID=26511838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256508A Pending JPH0570833A (en) 1991-07-16 1991-10-03 Manufacture of silicon steel sheet by continuous annealing

Country Status (1)

Country Link
JP (1) JPH0570833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282501A (en) * 2016-09-27 2017-01-04 北京科技大学 A kind of heat treatment method of rapid solidification height silicon steel thin belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282501A (en) * 2016-09-27 2017-01-04 北京科技大学 A kind of heat treatment method of rapid solidification height silicon steel thin belt

Similar Documents

Publication Publication Date Title
US5413640A (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH01306523A (en) Production of non-oriented electrical sheet having high magnetic flux density
JPH0483823A (en) Production of grain-oriented silicon steel sheet excellent in magnetic flux density
JPH0570833A (en) Manufacture of silicon steel sheet by continuous annealing
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP7221480B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH02196403A (en) High magnetic flux density anisotropic silicon steel plate excellent in iron loss characteristic and manufacture thereof
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS62180015A (en) Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JPH0331420A (en) Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JPH1161358A (en) Electric steel sheet excellent in blanking and magnetic property in rolling direction and manufacture thereof