JPH02196403A - High magnetic flux density anisotropic silicon steel plate excellent in iron loss characteristic and manufacture thereof - Google Patents

High magnetic flux density anisotropic silicon steel plate excellent in iron loss characteristic and manufacture thereof

Info

Publication number
JPH02196403A
JPH02196403A JP1014008A JP1400889A JPH02196403A JP H02196403 A JPH02196403 A JP H02196403A JP 1014008 A JP1014008 A JP 1014008A JP 1400889 A JP1400889 A JP 1400889A JP H02196403 A JPH02196403 A JP H02196403A
Authority
JP
Japan
Prior art keywords
less
silicon steel
magnetic flux
flux density
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1014008A
Other languages
Japanese (ja)
Other versions
JP2746631B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Yasuyuki Hayakawa
康之 早川
Fumihiko Takeuchi
竹内 文彦
Yoshiaki Iida
飯田 嘉明
Katsuo Sadayori
貞頼 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1014008A priority Critical patent/JP2746631B2/en
Publication of JPH02196403A publication Critical patent/JPH02196403A/en
Application granted granted Critical
Publication of JP2746631B2 publication Critical patent/JP2746631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stabilize magnetic flux density of a high magnetic flux density anisotropic silicon steel plate whose thickness is equal to or less than 0.30mm, and reduce the secondary grain diameter, thereby effectively decreasing iron loss and realizing excellent characteristics of iron loss by a method wherein respectively specified amount of Si, Mn and Ge are contained, and the residual part is constituted of Fe and a very small amount of inevitable elements. CONSTITUTION:The following are contained in the tile plate; Si: 2.5wt.% or more and 4.0wt.% or less, Mn: 0.04wt.% or more and 0.15wt.% or less, and Ge: 0.005wt.% or more and 0.20wt.% or less. The residual part is constituted of Fe and a very small amount of inevitable elements. The plate thickness is 0.10-0.30mm. Basic component of steel row material is as follows; C: 0.02-0.90wt.%, Si: 2.5-4.0wt.%, Mn: 0.04-0.15wt.%, solAl: 0.010wt.%, and N: 0.0040-0.0120wt.%. As to silicon steel slab, Ge is added in the range of 0.005-0.20wt.% to the steel row material. The slab thus obtained is subjected to hot rolling and cold rolling. After intermediate annealing, the slab is rapidly cooled and subjected to a second cold rolling. After a final cold-rolled plate is finished, a first recrystallization annealing serving in combination as decarburization is performed, and further high temperature finish-annealing is performed, thereby manufacturing a silicon steel plate.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損特性の優れた高磁束密度方向性けい素
鋼板およびその製造方法に関し、とくに2次粒径の効果
的な細分化により、磁束密度の低下を招くことなしに鉄
損特性の有利な改善を図ったものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a high magnetic flux density grain-oriented silicon steel sheet with excellent iron loss characteristics and a method for manufacturing the same, in particular, by effective refining of the secondary grain size. , which aims to advantageously improve iron loss characteristics without causing a decrease in magnetic flux density.

(従来の技術) 方向性けい素鋼板は、軟磁性材料として変圧器や発電機
の鉄心材料として使用されるもので、磁気特性として磁
束密度と鉄損とが良好でな《ではならないが、この他に
も欠陥の少ない表面被膜を形成させることが必要とされ
る。磁気特性の優れた材料は、製品の結晶粒(以下2次
粒と呼ぶ)をゴス方位と呼ばれる(110) (001
)方位に高度に揃えることが必要であり、これによって
磁束密度の向上が実現される。
(Prior art) Grain-oriented silicon steel sheets are soft magnetic materials that are used as core materials for transformers and generators. There is also a need to form surface coatings with fewer defects. Materials with excellent magnetic properties have crystal grains (hereinafter referred to as secondary grains) in the product with a Goss orientation (110) (001
) orientation is required, which improves the magnetic flux density.

このような結晶方位制御技術としては、たとえば特公昭
33−4710号公報や特公昭40−15644号公報
には、素材中にAIを含有させ、最終冷延の圧下率を8
1〜95%の高圧下率とすると共に最終冷延前の焼鈍で
AINを析出させる技術が、また特公昭46−2382
0号公報には、この最終冷延前の焼鈍における冷却速度
を750〜950℃の温度域から400 ’Cまで2秒
〜200秒間で急冷にする技術がそれぞれ開示されてい
る。
As such crystal orientation control technology, for example, Japanese Patent Publication No. 33-4710 and Japanese Patent Publication No. 40-15644 contain AI in the material and reduce the final cold rolling reduction to 8.
A technology to achieve a high rolling reduction of 1 to 95% and to precipitate AIN during annealing before final cold rolling was also developed in Japanese Patent Publication No. 46-2382.
No. 0 discloses a technique in which the cooling rate during annealing before the final cold rolling is rapidly cooled from a temperature range of 750 to 950°C to 400'C in 2 to 200 seconds.

上記の諸技術によって磁束密度の向上が図られ、現在で
は理論値の96%程度の特性を有するものまで工業的に
製造されるようになってきた。これに伴って鉄損も改善
されてきたが、ここに2つの問題点があった。
The above-mentioned techniques have improved the magnetic flux density, and now products having characteristics of about 96% of the theoretical value have been industrially manufactured. Along with this, iron loss has been improved, but there are two problems.

その第1点は、磁束密度が向上していくに伴って製品の
2次粒径が増大し、所望の鉄損向上効果が得られなくな
ることである。
The first point is that as the magnetic flux density increases, the secondary particle size of the product increases, making it impossible to obtain the desired iron loss improvement effect.

また第2点は、鉄損の向上を図るべく製品の板厚を薄く
した場合に、2次再結晶が困難となり、2次粒の方位を
ゴス方位に揃えることができなくってかえって磁束密度
の劣化を招くことである。
The second point is that when the thickness of the product is made thinner in order to improve core loss, secondary recrystallization becomes difficult, and the orientation of the secondary grains cannot be aligned with the Goss orientation, which results in an increase in magnetic flux density. This leads to deterioration.

第1の問題点の回避策として、特公昭50−26493
号公報には、冷間圧延のパス間温度を所定の温度に保持
して時効させる技術が開示されているが、これでも2次
粒の粒径を完全に制御することは困難であり、しかも実
操業上極めて煩雑なだけでなく、第2の問題点に対して
は無力であった。
As a workaround for the first problem,
The publication discloses a technique for aging by maintaining the inter-pass temperature of cold rolling at a predetermined temperature, but even with this, it is difficult to completely control the grain size of the secondary grains, and furthermore, Not only is this extremely complicated in actual operation, but it is also powerless to deal with the second problem.

また第2の問題点を回避する技術としては、特開昭60
−197819号公報に、素材中にCuを0.03 〜
0.5wtχ (以下単に%で示す)とSnを0.03
〜0.5%添加し、熱延での仕上げ前面温度を1150
〜1250”C。
In addition, as a technique to avoid the second problem, there is
-197819, Cu is added to the material by 0.03 ~
0.5wtχ (hereinafter simply expressed as %) and Sn 0.03
Added ~0.5% and raised the finishing front temperature to 1150 in hot rolling.
~1250"C.

仕上げ後面温度を950〜1050℃にすると共に、巻
取り温度を500〜600 ’Cの温度域に制御するこ
とによって、板厚: 0,30mm以下の低鉄損高磁束
密度方向性けい素鋼板を製造する技術が提案されている
。A1を含有する綱にCuを含有させることは前掲の特
公昭33−4710号公報にも開示されているように古
くから公知であり、この技術の要点は熱延工程の諸条件
を規制することによって、熱延でのAINの析出を抑え
ると同時に、Snを粒界に積極的に析出させる点にある
By controlling the finishing surface temperature to 950~1050℃ and the coiling temperature within the temperature range of 500~600'C, we can produce grain-oriented silicon steel sheets with a thickness of 0.30mm or less and a low core loss and high magnetic flux density. A manufacturing technique has been proposed. Adding Cu to a steel containing A1 has been known for a long time, as disclosed in the above-mentioned Japanese Patent Publication No. 33-4710, and the key point of this technology is to regulate the conditions of the hot rolling process. By this, the precipitation of AIN during hot rolling is suppressed, and at the same time, Sn is actively precipitated at the grain boundaries.

しかしながら上記の技術では、Snを粒界に析出させる
ため、鋼の脆化を招き、後段の圧延で破断したり、鱗状
模様の表面欠陥をもたらすことの他、酸洗性が良くない
ことから、圧延後も鋼板表面に一部酸化層が残存し、脱
炭焼鈍時に脱炭不良を起こし、磁気特性が劣化したり、
表面にヘゲ状欠陥が発生する場合があり、安定性に欠け
ていた。
However, in the above technology, Sn is precipitated at the grain boundaries, which leads to embrittlement of the steel, which may cause breakage during subsequent rolling or cause surface defects with scale-like patterns, as well as poor pickling properties. Even after rolling, some oxidized layers remain on the surface of the steel sheet, causing decarburization failure during decarburization annealing, resulting in deterioration of magnetic properties.
Scratch-like defects may occur on the surface, resulting in lack of stability.

(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、板厚
が0.30mm以下の高磁束密度方向性けい素鋼板にお
いて磁束密度の安定化を図るとともに、2次粒径を細か
くして鉄損も効果的に低減した鉄損特性に優れた高磁束
密度方向性けい素鋼板を、その有利な製造方法と共に提
案することを目的とする。
(Problems to be Solved by the Invention) The present invention advantageously solves the above problems by stabilizing the magnetic flux density in a high magnetic flux density grain-oriented silicon steel sheet with a plate thickness of 0.30 mm or less, and The purpose of the present invention is to propose a high magnetic flux density grain-oriented silicon steel sheet with excellent iron loss characteristics, which has fine secondary grain size and effectively reduces iron loss, together with an advantageous manufacturing method thereof.

(課題を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意研究を重
ねた結果、鋼中にGeを含有させることによつて仕上げ
焼鈍後の2次粒径を細かくすることができることを見出
し、この知見に基いて種々の工夫を加味した末に、この
き発明を完成させるに至ったのである。
(Means for Solving the Problems) As a result of extensive research to solve the above problems, the inventors have found that by incorporating Ge into steel, the secondary grain size after final annealing can be made finer. After discovering that it was possible to do this, and adding various ideas based on this knowledge, they were able to complete this invention.

すなわちこの発明は、St : 2.5%以上、4.0
%以下、Mn : 0.04%以上、 0.15%以下
、Ge : 0.005%以上、 0.20%以下、を
含有し、ときにはさらにMo : 0.005〜0.2
0%、Cu : 0.01〜0.3%、Sb:0.00
5〜0.2Q%、Sn : 0.010〜0.025%
およびP: 0.010〜0.10%のうちから選ばれ
る少なくとも一種を含み、残部はFeおよび微量の不可
避元素からなり、板厚が0.10〜0.30mmである
鉄損特性の優れた高磁束密度方向性けい素鋼板である。
That is, this invention provides St: 2.5% or more, 4.0
% or less, Mn: 0.04% or more and 0.15% or less, Ge: 0.005% or more and 0.20% or less, and sometimes further contains Mo: 0.005 to 0.2
0%, Cu: 0.01-0.3%, Sb: 0.00
5-0.2Q%, Sn: 0.010-0.025%
and P: Contains at least one selected from 0.010 to 0.10%, the remainder is Fe and trace amounts of unavoidable elements, and has a plate thickness of 0.10 to 0.30 mm, and has excellent iron loss characteristics. High magnetic flux density grain-oriented silicon steel plate.

またこの発明は、C: 0.02〜0.090%、Si
:2.5 〜4.0  %、Mn  :  0.04 
〜0.15%、sol  Al  :0.010〜0.
050%およびN : 0.0040〜0.0120%
を基本成分とする鋼素材に、0.005〜0.20%の
範囲でGeを添加したけい素鋼スラブを、熱間圧延し、
ついで1回目の冷間圧延を施して中間板厚としてから、
1000〜1200℃,0,5〜10minの中間焼鈍
後、少なくとも500℃までを7℃八以上の冷却速度で
急冷し、ついで圧下率:75〜90%の条件下に2回目
の冷間圧延を施して板厚:0.10〜0.30+nmの
最終冷延板に仕上げたのち、脱炭を兼ねる1次再結晶焼
鈍を施し、しかるのちMgOを主成分とする焼鈍分離剤
を塗布してから、高温仕上げ焼鈍を施すことからなる鉄
損特性の優れた高磁束密度方向性けい素鋼板の製造方法
である。
In addition, this invention includes C: 0.02 to 0.090%, Si
:2.5 to 4.0%, Mn: 0.04
~0.15%, sol Al: 0.010~0.
050% and N: 0.0040-0.0120%
Hot-rolling a silicon steel slab with Ge added in the range of 0.005 to 0.20% to a steel material whose basic component is
Then, after performing the first cold rolling to obtain an intermediate thickness,
After intermediate annealing at 1000-1200°C for 0.5-10 min, it is rapidly cooled to at least 500°C at a cooling rate of 7°C or more, and then cold-rolled a second time under the condition of a rolling reduction of 75-90%. After finishing the final cold-rolled plate with a plate thickness of 0.10 to 0.30+nm, it is subjected to primary recrystallization annealing that also serves as decarburization, and then an annealing separator mainly composed of MgO is applied. This is a method for manufacturing a grain-oriented silicon steel sheet with high magnetic flux density and excellent iron loss characteristics, which comprises performing high-temperature finish annealing.

以下この発明の基礎となった実験結果について説明する
The experimental results that formed the basis of this invention will be explained below.

C: 0.066%、Si : 3.25%、S  :
 0.025%、sat Al : 0.025%およ
びN : 0.008%を含有し、残部は実質的にFe
の組成になる溶鋼に、Geを無添加および0.001〜
0.50%の範囲で種々の量添加した計10本の鋼塊を
鋳造した。
C: 0.066%, Si: 3.25%, S:
0.025%, sat Al: 0.025% and N: 0.008%, the remainder being substantially Fe.
Ge is not added to the molten steel having the composition of 0.001~
A total of 10 steel ingots were cast with various amounts added in the range of 0.50%.

これらの鋼塊を1200℃に加熱した後、分塊圧延し、
次いで1420℃に加熱して熱間圧延を施し、2.3m
m厚の熱延板とした。これらを酸洗後、第1回目の冷間
圧延を施して1.50an厚の中間板厚としてから、N
2中で1100’C13分間の焼鈍を施したのち、80
℃の渦中に急冷(平均冷却速度:40℃/S)した。
After heating these steel ingots to 1200°C, they are bloomed and rolled.
Then, it was heated to 1420°C and hot rolled to a length of 2.3 m.
It was made into a hot-rolled plate with a thickness of m. After pickling these, they were subjected to the first cold rolling to obtain an intermediate plate thickness of 1.50 an, and then N
After annealing at 1100'C for 13 minutes in
It was rapidly cooled in a vortex at ℃ (average cooling rate: 40 ℃/S).

次いで0.23mmの最終厚みまで2次冷延したのち、
湿H2中で850℃15分間の脱炭焼鈍を施した。その
後MgOを主体とする焼鈍分離剤を塗布してから、n2
中で1200℃120hの仕上げ焼鈍を施した。
Then, after second cold rolling to a final thickness of 0.23 mm,
Decarburization annealing was performed at 850° C. for 15 minutes in wet H2. After that, after applying an annealing separator mainly composed of MgO,
Finish annealing was carried out at 1200° C. for 120 hours.

かくして得られた製品板の磁気特性および平均2次粒径
について調べた結果を第1図に示す。
FIG. 1 shows the results of examining the magnetic properties and average secondary particle size of the product sheet thus obtained.

同図より明らかなように、方向性けい素鋼素材中にGe
を0.005〜0.20%の範囲にわたって含有させた
ものは、製品板において、2次粒径が小さ(なり、著し
い鉄損の低減がもたらされている。しかも磁束密度の劣
化もない。
As is clear from the figure, Ge is present in the grain-oriented silicon steel material.
In the product plate containing 0.005% to 0.20%, the secondary particle size is small (resulting in a significant reduction in iron loss).Furthermore, there is no deterioration in magnetic flux density. .

このような2次粒径の低減をもたらした原因を調査した
ところ、第2図に示すように、実験材の脱炭・1次再結
晶板の表層の集合組織のうち(110)強度が著しく増
大していることが判明した。また、脱炭・1次再結晶板
のAIN析出サイズのうち、50Å以下の極めて小さな
析出物の析出頻度が増加していることも判明した。この
ようにAINの微細析出物が増加しているということは
、抑制力が強化されていることを意味し、このため鋼板
の板厚が薄くなった場合でも、磁束密度の低下が防げた
ものと考えられる。また(110)強度が増加したこと
は、2次再結晶における核生成頻度の増加を意味し、こ
のため2次粒の生成頻度が増し、2次粒径が細粒化され
たものと考えられる。
When we investigated the cause of this reduction in secondary grain size, we found that the (110) strength of the texture of the surface layer of the decarburized and primary recrystallized plate of the experimental material was significantly lower, as shown in Figure 2. It was found that it was increasing. It was also found that among the AIN precipitation sizes of the decarburized and primary recrystallized plates, the frequency of precipitation of very small precipitates of 50 Å or less was increasing. This increase in the number of fine precipitates in AIN means that the suppressing force is strengthened, and therefore even if the thickness of the steel plate becomes thinner, a decrease in magnetic flux density can be prevented. it is conceivable that. Furthermore, an increase in (110) strength means an increase in the frequency of nucleation during secondary recrystallization, which is thought to result in an increase in the frequency of secondary grain generation and a reduction in the secondary grain size. .

次に、(110)強度が増加した原因を調べるために、
中間焼鈍後の鋼板の組織を調査したところ0.032%
Geを添加した第3図の(a)の例に示されるように、
極めて細かい炭化物が、稠密に析出していることがわか
った。これに比較し、Geを添加していない第3図のさ
)では細かい炭化物の析出頻度ははるかに小さい。
Next, in order to investigate the cause of the increase in (110) intensity,
An investigation of the structure of the steel plate after intermediate annealing revealed that it was 0.032%.
As shown in the example in FIG. 3(a) in which Ge is added,
It was found that extremely fine carbides were densely precipitated. In comparison, the frequency of precipitation of fine carbides is much lower in the case shown in Fig. 3, in which Ge is not added.

以上のことより、Geの添加によって、中間焼鈍後の炭
化物の微細析出が促進され、脱炭・1次再結晶焼鈍後の
鋼板表層の(110)強度が増し、併せて2次再結晶の
核生成頻度が増大した結果、2次粒径が細かくなったも
のと推察される。
From the above, the addition of Ge promotes the fine precipitation of carbides after intermediate annealing, increases the (110) strength of the steel sheet surface layer after decarburization and primary recrystallization annealing, and also nucleates secondary recrystallization. It is presumed that the secondary particle size became finer as a result of the increased generation frequency.

さてこの発明において用いるけい素鋼板素材の成分は次
のとおりである。
Now, the ingredients of the silicon steel sheet material used in this invention are as follows.

すなわちC: 0.02〜0.090%、St : 2
.5〜4.0%、Mn : 0.04〜0.15%、s
ol Al : 0.010〜0.040%およびN 
: 0.0040〜0.0120%を基本成分とする鋼
素材に、Geを0.005〜0.20%の範囲において
含有させる。またさらに、抑制力を補強するため、従来
より公知であるSおよび/またはSe :  0.01
0〜0.040%、sbおよび/またはMo : 0.
005〜0.20%、Cu : 0.01〜0.3%、
P : 0.010〜0.10%、およびSn : 0
.010〜0.025%のうちから選ばれる少なくとも
一種を添加しても良い。
That is, C: 0.02-0.090%, St: 2
.. 5-4.0%, Mn: 0.04-0.15%, s
ol Al: 0.010-0.040% and N
: A steel material having a basic component of 0.0040 to 0.0120% contains Ge in a range of 0.005 to 0.20%. Furthermore, in order to reinforce the suppressing force, conventionally known S and/or Se: 0.01
0-0.040%, sb and/or Mo: 0.
005-0.20%, Cu: 0.01-0.3%,
P: 0.010-0.10%, and Sn: 0
.. At least one selected from 0.010 to 0.025% may be added.

以下、この発明においてけい素鋼素材を上記の範囲に限
定した理由について説明する。
The reason why the silicon steel material is limited to the above range in this invention will be explained below.

Cは、変態を利用して熱延組織を改善するのに有用な元
素であり、0.02%以上を必要とするのが、0.09
0%を超すと後工程の脱炭焼鈍で脱炭不良を起こすので
好ましくない。
C is an element useful for improving the hot-rolled structure by utilizing transformation, and 0.02% or more is required for C.
If it exceeds 0%, decarburization failure will occur in the subsequent decarburization annealing process, which is not preferable.

Siは、電気抵抗を高めて鉄損を低下させる主要な元素
であり、少なくとも2.5%を必要とするが、4.0%
を超すと冷延が困難となり好ましくない。
Si is a major element that increases electrical resistance and reduces iron loss, and requires at least 2.5%, but 4.0%
If it exceeds this, cold rolling becomes difficult, which is not preferable.

sol AlとNは、本成分系の基本元素であり、鋼中
でAINとして析出し、抑制剤として作用するものであ
るが、sol Atは0.010〜0.050%の範囲
を、またNは0..0040〜0.0120%の範囲を
逸脱すると2次再結晶が不安定となる。
sol Al and N are the basic elements of this component system, which precipitate as AIN in steel and act as inhibitors. is 0. .. If the content exceeds the range of 0.0040% to 0.0120%, secondary recrystallization becomes unstable.

Mnは、鋼の熱間加工性の改善に有効に寄与するだけで
なく、SもしくはSeが混在している場合には、MnS
やMnSe等の析出物を形成し同じく抑制剤としての機
能を発揮するので0.04〜0.15%の範囲とする。
Mn not only effectively contributes to improving the hot workability of steel, but also when S or Se is mixed, MnS
Since it forms precipitates such as MnSe and MnSe and also functions as an inhibitor, the content is set in the range of 0.04 to 0.15%.

以上の成分にGeを添加することがこの発明の最大の特
徴であり、鋼素材にGeを添加させることによって、鋼
中のAINと炭化物が極めて微細に分散析出するように
なり、さらに好ましいことには、板厚の薄い鋼板の1次
再結晶組織が改善されるのである。しかしながらGeが
0.005%未満では、この効果が少なく、一方0.2
0%を超えると炭化物の析出が低下し抑制効果が弱くな
るので0.005〜0.20%の範囲で含有させる必要
がある。
The greatest feature of this invention is the addition of Ge to the above ingredients. By adding Ge to the steel material, AIN and carbides in the steel become extremely finely dispersed and precipitated, which is even more preferable. This improves the primary recrystallization structure of thin steel sheets. However, when Ge is less than 0.005%, this effect is small;
If it exceeds 0%, the precipitation of carbides will decrease and the suppressive effect will be weakened, so it must be contained in a range of 0.005 to 0.20%.

この発明の目的は、上述した鋼素材成分とすることによ
って実現されるが、この他にも抑制力の補強として以下
の元素を添加することができる。
The object of the present invention is achieved by using the above-mentioned steel material components, but the following elements can also be added to strengthen the restraining force.

すなわち抑制力補強元素としてS、 Se、 Sb、 
Mo+Cu、  PおよびSnなどを添加しても良い。
In other words, S, Se, Sb,
Mo+Cu, P, Sn, etc. may be added.

SおよびSeはいずれも、抑制剤として有用な元素であ
り、両者は同等の効果を有するが、含有量が0.010
%に満たないと十分な抑制効果が期待できず、一方0.
040%を超えるとMnS等の粗大化、純化不良、表面
性状の劣化などを招くので、単独または併用いずれの場
合においても0.010〜0.040%の範囲で添加す
ることが好ましい。
Both S and Se are elements useful as inhibitors, and both have equivalent effects, but when the content is 0.010
If it is less than 0.0%, a sufficient suppressing effect cannot be expected;
If it exceeds 0.040%, it will cause coarsening of MnS etc., poor purification, deterioration of surface properties, etc. Therefore, it is preferable to add it in the range of 0.010 to 0.040%, either alone or in combination.

sbは、粒界に偏析して抑制力を強める効果を有し、ま
たMoは、2次粒の核をゴス方位に先鋭化させる効果を
有し、いずれも0.005〜0.20%の範囲でその効
果が顕著である。
sb has the effect of increasing the suppressive force by segregating at the grain boundaries, and Mo has the effect of sharpening the nuclei of secondary grains in the Goss orientation. The effect is noticeable within the range.

Cuは、Mnと同様、SやSeと結合して、析出物を形
成し抑制効果を高める元素であり、その効果は0.01
〜0.3%の範囲で顕著となる。
Cu, like Mn, is an element that combines with S and Se to form precipitates and enhances the suppressing effect, and the effect is 0.01
It becomes noticeable in the range of ~0.3%.

Pは、sbと同様、粒界に偏析して抑制力を強める効果
を有し、0.010〜0.10%の範囲でその効果が顕
著である。
Similar to sb, P has the effect of increasing the suppressing force by segregating at grain boundaries, and this effect is significant in the range of 0.010 to 0.10%.

Snは、sbと同様、粒界に偏析して抑制力を強める元
素であるが、0.010%未満ではその添加効果に乏し
く、一方0.025%を超えると前述した磁気特性、表
面性状を不安定化させるので、0.010〜0.025
%とする。
Sn, like sb, is an element that segregates at grain boundaries and strengthens the suppressing force, but if it is less than 0.010%, the addition effect is poor, while if it exceeds 0.025%, it may deteriorate the magnetic properties and surface texture described above. Since it destabilizes, 0.010 to 0.025
%.

なお上記の各成分において、C,S、Se、N。In addition, in each of the above components, C, S, Se, and N.

AIおよびP等は各機能を果たした後、Cは主として脱
炭焼鈍において、またS、 Se、 N、 AIおよび
P等は仕上げ焼鈍後半の純化焼鈍において除去されるの
で、製品の地鉄中には不純物として微量に残存するのみ
である。
After AI, P, etc. have fulfilled their respective functions, C is mainly removed during decarburization annealing, and S, Se, N, AI, P, etc. are removed during purification annealing in the latter half of finish annealing, so they are removed in the base iron of the product. only a trace amount remains as an impurity.

次にこの発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.

上記の成分を有するけい素鋼素材は従来公知のいかなる
溶解法、造塊法、分塊法によっても製造することができ
る。次いで、このけい素鋼素材は通常の熱間圧延により
熱延コイルに圧延される。
A silicon steel material having the above-mentioned components can be produced by any conventionally known melting method, agglomeration method, or blooming method. This silicon steel material is then rolled into a hot rolled coil by conventional hot rolling.

熱延コイルは公知のように必要に応じてノルマ焼鈍を行
い、さらに引き続いて、1000〜1200℃、0.5
〜101Ilinの中間焼鈍を挟む2回の冷間圧延によ
って0.10〜0.30mmの最終板厚とする。ここに
最終板厚を0.10〜0.30Mの範囲に限定したのは
、板厚が0.30mmを超えるものについては、この発
明の技術をとくに適用する必要がなく、一方0.10+
+m+未満のものについては、この発明の技術によって
も良好な製品を得ることが難しいからである。
The hot-rolled coil is subjected to norm annealing as required as is known, and then further annealed at 1000 to 1200°C for 0.5
A final plate thickness of 0.10 to 0.30 mm is obtained by cold rolling twice with intermediate annealing of ~101 Ilin. The reason why the final plate thickness is limited to the range of 0.10 to 0.30M is that there is no need to apply the technique of this invention to plates with a thickness exceeding 0.30 mm, whereas 0.10+
This is because it is difficult to obtain a good product even with the technique of the present invention for those with a value less than +m+.

冷延工程における1回目、2回目の圧下率配分は、例え
ば特公昭40−15644号公報や特公昭46−238
20号公報に開示の技術で十分である。ここに2回目の
圧下率はAIを含有するけい素鋼の圧延で公知のように
強圧下が必要であるが、この発明の成分系においては、
75〜90%と従来の好適範囲である80〜95%より
も、やや低圧下率側に好適範囲が移行している。
The first and second rolling reduction ratio distribution in the cold rolling process is described in, for example, Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 46-238.
The technique disclosed in Publication No. 20 is sufficient. The second rolling reduction rate here requires a strong reduction as is known in the rolling of silicon steel containing AI, but in the composition system of this invention,
The preferred range is 75-90%, which is slightly lower than the conventional preferred range of 80-95%.

またこの発明法では、中間焼鈍における冷却速度を制御
することが有利である。従来よりAlを含有するけい素
鋼の焼鈍時の冷却に関しては、たとえば特公昭46−2
3820号公報に記載されているように急速冷却が良い
とされている。これは冷却時のAINの析出に関連して
おり、磁気特性上極めて重要であるので、数々の実験が
なされ、素材成分によって微妙な制御を行う必要がある
ことが指摘されている。かかる技術を大別すると500
℃前後(黒化点も−含む)まで急冷する制御冷却が必要
であるとする技術(特公昭46−23820号、特開昭
5163314号、特開昭62−180015号各公報
)と、室温まで制御しつつ急冷することが必要であると
する技術(特公昭59−48934号公報)に分けられ
る。
In the method of the invention, it is also advantageous to control the cooling rate during intermediate annealing. Regarding cooling during annealing of silicon steel containing Al, for example, Japanese Patent Publication No. 46-2
Rapid cooling is said to be better as described in Japanese Patent No. 3820. Since this is related to the precipitation of AIN during cooling and is extremely important in terms of magnetic properties, numerous experiments have been conducted and it has been pointed out that delicate control must be performed depending on the material components. Broadly speaking, there are 500 such technologies.
℃ (including blackening point) (Japanese Patent Publication No. 46-23820, Japanese Patent Application Laid-Open No. 5163314, Japanese Patent Application Laid-open No. 62-180015), and technology that requires controlled cooling to rapidly cool down to around ℃ (including the blackening point), and It is divided into techniques (Japanese Patent Publication No. 59-48934) that require controlled rapid cooling.

しかし前者の技術においても、500℃前後の温度以下
の冷却速度に関しては、AIN析出に無関係とされ、実
際の冷却処理については湯冷するとか、水焼入れすると
かの手法が採られ、実質的に両者の差異は明瞭でなかっ
た。
However, even in the former technology, the cooling rate below a temperature of around 500°C is considered to be unrelated to AIN precipitation, and the actual cooling process involves methods such as hot water cooling or water quenching, and in practice The difference between the two was not clear.

発明者らは、この点を鋭意研究した結果、A1とGeを
含有する素材においては、 ■AINの粗大析出を防ぐために少なくとも500″C
までを7℃/s以上の急冷とすることが有利であること
、 ■さらに好適には実質的に急冷処理を必要とする温度域
を750℃から250℃までとし、この範囲は平均冷却
速度ニア〜25℃/sで冷却すること、■またさらに好
適には、750〜250″Cの温度範囲は上記のように
平均冷却速度ニア〜25℃/sで象、冷し、250℃か
ら150℃までの冷却速度を4℃/s以下の徐冷とする
ことが好ましいこと を見出した。
As a result of intensive research into this point, the inventors found that for materials containing A1 and Ge:
It is advantageous to perform rapid cooling at a rate of 7°C/s or more, and more preferably, the temperature range that substantially requires rapid cooling is from 750°C to 250°C, and this range is within the average cooling rate near ~25°C/s, and even more preferably, the temperature range from 750 to 250"C is as described above with an average cooling rate of ~25°C/s; 250°C to 150°C It has been found that it is preferable to slow the cooling rate to 4° C./s or less.

ここに750℃から250℃の範囲の平均冷却速度が7
℃/sに満たないとAINの粗大析出を生じるきらいが
あり、一方25℃/sを超えると^INの析出量が不足
することがある。したがってこの温度範囲における好適
平均冷却速度は7℃/s〜25℃/sであるが、これは
、Geを含有しない素材に比較して、 平均冷却速度が小さい点に特徴があり、この点からも工
業生産上有利である。
Here, the average cooling rate in the range of 750℃ to 250℃ is 7
If it is less than 25° C./s, coarse precipitation of AIN tends to occur, while if it exceeds 25° C./s, the amount of ^IN precipitated may be insufficient. Therefore, the preferred average cooling rate in this temperature range is 7°C/s to 25°C/s, but this is because the average cooling rate is smaller than that of materials that do not contain Ge. It is also advantageous for industrial production.

また250℃から150″Cまでの平均冷却速度は特に
重要で、これが大きい場合には、理由は不明であるが2
次粒が局所的に粗大化し、鉄損が劣化する場合がある。
Also, the average cooling rate from 250℃ to 150''C is particularly important, and if this is large, the reason is unknown, but 2
The secondary grains may become coarse locally and the iron loss may deteriorate.

したがってこの温度域の平均冷却速度は4℃/s以下と
することがとりわけ有利である。
Therefore, it is particularly advantageous for the average cooling rate in this temperature range to be 4° C./s or less.

なおこの発明において、冷間圧延工程で特公昭54−1
3846号公報や特公昭54−29182号公報に開示
されている複数パス間において時効処理を施す技術は特
に必要ではないが、磁気特性の若干の安定効果があるの
で、この適用を妨げるのものではない。
In addition, in this invention, in the cold rolling process,
The technique of applying aging treatment between multiple passes as disclosed in Japanese Patent Publication No. 3846 and Japanese Patent Publication No. 54-29182 is not particularly necessary, but since it has a slight stabilizing effect on magnetic properties, it does not hinder its application. do not have.

最終板厚に圧延した冷延板は、続いて常法に従い750
〜900℃10,5〜10min程度の脱炭焼鈍を行う
。この時、上記の中間焼鈍において上述したような冷却
制御を行ったものについては、昇温速度を10℃/s以
上と急熱することにより、−層の磁気特性の向上効果が
期待できる。
The cold-rolled plate rolled to the final thickness is then rolled to 750 mm according to the conventional method.
Decarburization annealing is performed at ~900°C for about 10.5 to 10 minutes. At this time, for those in which the above-described cooling control was performed during the intermediate annealing, an effect of improving the magnetic properties of the - layer can be expected by rapidly heating at a temperature increase rate of 10° C./s or more.

脱炭焼鈍後の鋼板表面には、仕上げ焼鈍時における鋼板
焼付防止および表面フォルステライト被膜形成のために
MgOを主成分とする焼鈍分離剤を塗布する。
An annealing separator containing MgO as a main component is applied to the surface of the steel sheet after decarburization annealing to prevent seizure of the steel sheet during final annealing and to form a forsterite film on the surface.

ここに上記の焼鈍分離剤としては、特公昭51−124
51号公報に開示さているようにTiO□を添加したも
のがより好ましい。
Here, as the annealing separator mentioned above, Japanese Patent Publication No. 51-124
It is more preferable to add TiO□ as disclosed in Japanese Patent No. 51.

仕上げ焼鈍は、1100℃以上のN2又は、N2* N
!+Ar等の混合ガス雰囲気で5時間以上施されるが、
2次再結晶時には、特に、N2とNtの混合ガス雰囲気
とすることが望ましい。
Finish annealing is performed using N2 or N2*N at 1100℃ or higher.
! It is applied for more than 5 hours in a mixed gas atmosphere such as +Ar,
During secondary recrystallization, it is particularly desirable to use a mixed gas atmosphere of N2 and Nt.

さらにかかる仕上げ焼鈍後の鋼板の表面に絶縁性と張力
付与を兼ねたりん酸マグネシウム、りん酸アルミニウム
およびりん酸カルシウム等を主成分とした公知の無機質
コーティングを平坦化焼鈍を兼ねて被成することもでき
る。
Furthermore, a known inorganic coating mainly composed of magnesium phosphate, aluminum phosphate, calcium phosphate, etc., which serves both as insulation and imparts tension, is applied to the surface of the steel sheet after finish annealing, which also serves as flattening annealing. You can also do it.

(作 用) か(して得られた製品の結晶粒度は従来の製品に比べ2
次粒径が極めて小さいところに特徴がある。すなわち従
来の平均2次粒径は10〜20111Im程度であった
のに対してこの発明のものは3〜7mmにすぎない。し
かも、結晶方位の低下もないので、磁束密度が高く、鉄
損が極めて低い優れた方向性けい素鋼板が得られるので
ある。さらに表面性状、磁気特性の安定性にも優れてお
り、製造も容易という利点がある。
(Effect) The crystal grain size of the product obtained is 2 times smaller than that of conventional products.
It is characterized by its extremely small secondary particle size. That is, while the conventional average secondary particle diameter was about 10-20111 Im, the average secondary particle diameter of the present invention was only 3-7 mm. Moreover, since there is no decrease in crystal orientation, an excellent grain-oriented silicon steel sheet with high magnetic flux density and extremely low core loss can be obtained. Furthermore, it has the advantage of excellent stability in surface properties and magnetic properties, and is easy to manufacture.

(実施例) 実施例1 C: 0.062%、St : 3.26%、Mn :
 0.075%、Se : 0.010%、S : 0
.015%、sol Al : 0.025%、N :
 0.008%、Sb : 0.020%およびGe 
: 0.045%を含有し、残余は実質的にFeの組成
からなるスラブを、1380℃で3時間加熱した後、熱
間圧延により、2.2閤厚の熱延板とした。ついでこの
熱延板をNt中で1150℃、30秒間の焼鈍後、酸洗
し、1回目の冷間圧延で中間板厚: 1.40mmの冷
延板とした。
(Example) Example 1 C: 0.062%, St: 3.26%, Mn:
0.075%, Se: 0.010%, S: 0
.. 015%, sol Al: 0.025%, N:
0.008%, Sb: 0.020% and Ge
A slab containing 0.045% Fe with the remainder being substantially Fe was heated at 1380° C. for 3 hours and then hot rolled into a hot rolled sheet with a 2.2 pitch thickness. This hot-rolled sheet was then annealed in Nt at 1150° C. for 30 seconds, pickled, and cold-rolled for the first time to obtain a cold-rolled sheet having an intermediate thickness of 1.40 mm.

ついでこの冷延板を6分割し、N2中で1050℃22
分間の中間焼鈍を施したが、この時750℃から250
℃までの平均冷却速度および250℃から150℃まで
の平均冷却速度が表1に示されるような速度になるよう
に、ミスト冷却、ガス冷却および湯冷法を用いて調整し
た。この時の冷却曲線の例を第4図に示す。
Next, this cold-rolled sheet was divided into six parts and heated at 1050℃22 in N2.
Intermediate annealing was performed for 1 minute, but at this time the temperature was increased from 750℃ to 250℃.
Mist cooling, gas cooling, and hot water cooling methods were used to adjust the average cooling rate to 150°C and the average cooling rate from 250°C to 150°C as shown in Table 1. An example of the cooling curve at this time is shown in FIG.

これらの鋼板は2回目の冷間圧延により、いずれも、板
厚: 0.20an (圧下率:約86%)の冷延板と
し、次いで湿H2中で850℃12分間の脱炭焼鈍を施
したのち、MgOを主体とする分離剤を塗布してから、
CNz : 50%−〇z 150%)の雰囲気中にお
いて7℃/hの昇温速度で850℃から1150″Cま
でを昇温し、ついでitに切替え1150℃から120
0℃までを15℃/hで昇温後、1200℃で10時間
保持し、700℃まで冷却後、N2に切替えて冷却した
。その後、未反応分離剤を除去し、張力コーティングを
焼付けて製品とした。
These steel plates were cold-rolled for the second time to a thickness of 0.20 an (rolling reduction: approximately 86%), and then decarburized annealed at 850°C for 12 minutes in wet H2. Then, after applying a separating agent mainly composed of MgO,
The temperature was raised from 850°C to 1150″C at a heating rate of 7°C/h in an atmosphere of
After increasing the temperature to 0°C at a rate of 15°C/h, the temperature was maintained at 1200°C for 10 hours, and after cooling to 700°C, the atmosphere was switched to N2 for cooling. Thereafter, the unreacted separating agent was removed and the tension coating was baked into a product.

かくして得られた製品の磁気特性について調べた結果を
表1に併記する。
Table 1 also shows the results of investigating the magnetic properties of the product thus obtained.

同表より明らかなように、冷却条件の如何にかかわらず
良好な磁気特性が得られたけれども、750℃から25
0℃までの平均冷却速度が7〜25℃八でかつ、250
℃からi:’cまでの平均冷却速度を4’C/s以下と
した場合にとりわけ良好な値が得られている。
As is clear from the table, although good magnetic properties were obtained regardless of the cooling conditions,
The average cooling rate to 0℃ is 7 to 25℃ and 250℃
Particularly good values are obtained when the average cooling rate from °C to i:'c is 4'C/s or less.

ている。ing.

実施例2 C: 0.055%、St : 3.20%、Mn :
 0.080%、Se : 0.024%、Cu : 
0.03%、sol At : 0.018%、N :
 0.0082%、Mo : 0.012%およびGe
 : 0.040%を含み、残余は実質的にFeの組成
になるスラブを、1420℃まで昇温し、引続き熱間圧
延により、2.5−厚の熱延板とした。この熱延板を酸
洗後、1回目の冷間圧延を施して、1.20amの中間
板厚とした後、N2中で1000℃12分間の加熱を施
し、ミスト冷却によって第4図の曲線Cの冷却処理を施
したのち、2回目の冷間圧延によって0.18mn+の
最終板厚とした。この時各圧延パス毎に300℃で1分
間の時効処理を施した。
Example 2 C: 0.055%, St: 3.20%, Mn:
0.080%, Se: 0.024%, Cu:
0.03%, sol At: 0.018%, N:
0.0082%, Mo: 0.012% and Ge
A slab containing 0.040% Fe with the remainder being substantially Fe was heated to 1420°C and subsequently hot rolled to form a 2.5-thick hot-rolled plate. After pickling this hot-rolled sheet, it was cold-rolled for the first time to give an intermediate thickness of 1.20 am, then heated in N2 at 1000°C for 12 minutes, and then cooled with mist to form the curve shown in Figure 4. After performing the cooling treatment of C, a final plate thickness of 0.18 mm+ was obtained by a second cold rolling. At this time, aging treatment was performed at 300° C. for 1 minute after each rolling pass.

ついで冷間圧延板を6分割し、それぞれ湿水素中で84
0℃12分間の脱炭焼鈍を行ったが、この時、400 
’Cから800℃までの昇温速度を表2のf〜にのよう
に変化させた。
The cold-rolled plate was then divided into six parts, each of which was heated at 84°C in wet hydrogen.
Decarburization annealing was carried out for 12 minutes at 0°C.
The temperature increase rate from 'C to 800C was changed as shown in f~ in Table 2.

その後MgOを主体とする分離剤を塗布してから、(N
z : 25%−〇Z I 75%)の雰囲気において
9℃/hの昇温速度で1150℃まで昇温後、N2雰囲
気に切替え、1200℃で15時間保持したのち、40
0″Cまで冷却し、さらにN2に切替えて冷却した。そ
の後、未反応の分離剤を除去してから張力コーティング
を焼付けて製品とした。
After that, a separating agent mainly composed of MgO is applied, and then (N
After raising the temperature to 1150°C at a heating rate of 9°C/h in an atmosphere of
The mixture was cooled to 0''C, and then switched to N2 for further cooling. After that, unreacted separation agent was removed and the tension coating was baked to obtain a product.

かくして得られた製品板の磁気特性について調べた結果
を表2に併記する。
Table 2 also shows the results of investigating the magnetic properties of the product board thus obtained.

表2 同表より明らかなように、脱炭・1次再結晶焼鈍の昇温
速度が10℃/s以上の急熱の場合にとりわけ良好な磁
気特性のものが得られた。
Table 2 As is clear from the table, particularly good magnetic properties were obtained when the temperature increase rate during decarburization and primary recrystallization annealing was rapid heating of 10° C./s or more.

実施例3 表3に示す種々の組成になるけい素鋼素材スラブを、A
、Bについては1250℃で2時間、その他(C−1)
については1400″Cで1時間の加熱を施したのち、
熱延により2.5mm厚の熱延板とした。
Example 3 Silicon steel material slabs having various compositions shown in Table 3 were
, B at 1250°C for 2 hours, others (C-1)
After heating at 1400″C for 1 hour,
A hot rolled sheet with a thickness of 2.5 mm was obtained by hot rolling.

これらの熱延板を酸洗後、1回目の冷間圧延で1.35
+m++の中間板厚とし、次いで1100℃で2分間の
焼鈍後、80℃の湯に入れて第4図の(a)で示される
冷却曲線に沿って冷却した。次に2回目の冷間圧延によ
って 0.23mmの最終板厚としたのち、湿H2中で
860℃13分間の脱炭焼鈍を施し、MgOを主体とす
る分離剤を塗布してから、800℃まで82雰囲気中で
昇温し、800℃から5℃/hの昇温速度で1200℃
まで (NZ : 20%−L 、80%)の雰囲気中
で昇温し、ついで1200”Cで雰囲気をN2に切替え
たのち、1200℃で5時間保持後、600℃まで冷却
し、さらにN2ガスに切替えた後、常温まで冷却した。
After pickling these hot-rolled sheets, the first cold rolling yielded 1.35
+m++ intermediate plate thickness, and then annealed at 1100°C for 2 minutes, then placed in hot water at 80°C and cooled along the cooling curve shown in FIG. 4(a). Next, after a second cold rolling to a final plate thickness of 0.23 mm, decarburization annealing was performed at 860°C for 13 minutes in wet H2, and a separating agent mainly composed of MgO was applied, followed by 800°C. The temperature was raised in an atmosphere of 82°C to 1200°C at a heating rate of 5°C/h from 800°C.
The temperature was raised in an atmosphere of (NZ: 20%-L, 80%), then the atmosphere was switched to N2 at 1200"C, held at 1200°C for 5 hours, cooled to 600°C, and further N2 gas After switching to the temperature, it was cooled to room temperature.

その後、未反応分離剤を除去してから、張力コーティン
グを焼付けて製品とした。
Thereafter, the unreacted separating agent was removed and the tension coating was baked into the product.

かくして得られた製品板の磁気特性および表面欠陥率に
ついて調べた結果を表4に示す。
Table 4 shows the results of investigating the magnetic properties and surface defect rate of the product board thus obtained.

また得られた製品の鋼中の鋼中成分の分析結果を表5に
示す。なお記載成分の外に鉄中の不純物成分として微量
のC,AI、  S、 Se、 N等が存在したが、こ
れらは磁性上問題ないレベルまで低減されていた。
Furthermore, Table 5 shows the analysis results of the components in the steel of the obtained product. In addition to the listed components, trace amounts of C, AI, S, Se, N, etc. were present as impurity components in the iron, but these had been reduced to a level that caused no magnetic problems.

第1 同表より明らかなように、この発明に従う適量のGeを
含有している場合のみ、良好な磁気特性が得られている
1. As is clear from the same table, good magnetic properties are obtained only when an appropriate amount of Ge is contained according to the present invention.

(発明の効果) かくしてこの発明によれば、厚みが0.30am以下の
薄板についても、磁気特性とくに磁束密度および鉄損特
性に優れた方向性けい素鋼板を安定して得ることができ
、有利である。
(Effects of the Invention) Thus, according to the present invention, it is possible to stably obtain grain-oriented silicon steel sheets with excellent magnetic properties, particularly magnetic flux density and iron loss properties, even for thin plates with a thickness of 0.30 am or less, which is advantageous. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ge含有量とBII+ Wlff/!i。お
よび平均2次粒径との関係を示したグラフ、 第2図は、Ge含有量と脱炭・1次再結晶板表層集合組
織の(110)強度および微細AINの析出頻度との関
係を示したグラフ、 第3図は、中間焼鈍後の鋼中の微細炭化物の析出状態が
Geを含有する場合(a)としない場合(b)とで変化
することを示した透過電顕組織写真(X 100000
)第4図は、中間焼鈍後の冷却曲線の例、80℃での湯
冷(a)、ミスト冷却(C)、((’) 、ガス冷却(
e)である。 第2図 第3図 第4図 、a) (b) 大flll FJ’r I/l / S jθ、IpM
Figure 1 shows the Ge content and BII+ Wlff/! i. Figure 2 shows the relationship between the Ge content and the (110) strength of the surface texture of the decarburized/primary recrystallized plate and the frequency of precipitation of fine AIN. Figure 3 is a transmission electron micrograph (X 100000
) Figure 4 shows examples of cooling curves after intermediate annealing, including water cooling at 80°C (a), mist cooling (C), (('), gas cooling (
e). Figure 2 Figure 3 Figure 4, a) (b) Large fllll FJ'r I/l / S jθ, IpM

Claims (1)

【特許請求の範囲】 1.Si:2.5 wt%以上,4.0wt%以下、M
n:0.04wt%以上,0.15wt%以下、Ge:
0.005wt%以上,0.20wt%以下を含有し、
残部はFeおよび微量の不可避元素からなり、板厚が0
.10〜0.30mmである鉄損特性の優れた高磁束密
度方向性けい素鋼板。 2.Si:2.5wt%以上,4.0wt%以下、Mn
:0.04wt%以上,0.15wt%以下、Ge:0
.005wt%以上,0.20wt%以下、を含有し、
かつ Mo:0.005〜0.20wt%、 Cu:0.01〜0.3wt%、 Sb:0.005〜0.20wt%、 Sn:0.010〜0.025wt%およびP:0.0
10〜0.10wt% のうちから選ばれる少なくとも一種を含み、残部はFe
および微量の不可避元素からなり、板厚が0.10〜0
.30である鉄損特性の優れた高磁束密度方向性けい素
鋼板。 3.C:0.02〜0.090wt%、 Si:2.5〜4.0wt%、 Mn:0.04〜0.15wt%、 sol Al:0.010〜0.050wt%およびN
:0.0040〜0.0120wt% を基本成分とする鋼素材に、 0.005〜0.20wt%の範囲でGeを添加したけ
い素鋼スラブを、熱間圧延し、ついで1回目の冷間圧延
を施して中間板厚としてから、1000〜1200℃、
0.5〜10minの中間焼鈍後、少なくとも500℃
までを7℃/s以上の冷却速度で急冷し、ついで圧下率
:75〜90%の条件下に2回目の冷間圧延を施して板
厚:0.10〜0.30mmの最終冷延板に仕上げたの
ち、脱炭を兼ねる1次再結晶焼鈍を施し、しかるのちM
gOを主成分とする焼鈍分離剤を塗布してから、高温仕
上げ焼鈍を施すことを特徴とする鉄損特性の優れた高磁
束密度方向性けい素鋼板の製造方法。 4.中間焼鈍後の冷却速度を、750℃から250℃ま
での温度範囲にわたり、平均冷却速度で7〜25℃/s
とする請求項3記載の製造方法。 5.中間焼鈍後の冷却速度を、750℃から250℃ま
では平均冷却速度で7〜25℃/s、250℃から15
0℃までは平均冷却速度で4℃/s以下とする請求項3
記載の製造方法。
[Claims] 1. Si: 2.5 wt% or more, 4.0 wt% or less, M
n: 0.04 wt% or more, 0.15 wt% or less, Ge:
Contains 0.005wt% or more and 0.20wt% or less,
The remainder consists of Fe and trace amounts of unavoidable elements, and the plate thickness is 0.
.. A high magnetic flux density grain-oriented silicon steel sheet with excellent iron loss characteristics of 10 to 0.30 mm. 2. Si: 2.5wt% or more, 4.0wt% or less, Mn
: 0.04 wt% or more, 0.15 wt% or less, Ge: 0
.. 0.005 wt% or more and 0.20 wt% or less,
and Mo: 0.005 to 0.20 wt%, Cu: 0.01 to 0.3 wt%, Sb: 0.005 to 0.20 wt%, Sn: 0.010 to 0.025 wt%, and P: 0.0
Contains at least one type selected from 10 to 0.10 wt%, and the remainder is Fe.
and trace amounts of unavoidable elements, and the plate thickness is 0.10 to 0.
.. High magnetic flux density grain-oriented silicon steel sheet with excellent core loss characteristics of 30. 3. C: 0.02-0.090 wt%, Si: 2.5-4.0 wt%, Mn: 0.04-0.15 wt%, sol Al: 0.010-0.050 wt% and N
: A silicon steel slab in which Ge is added in the range of 0.005 to 0.20 wt% to a steel material whose basic component is 0.0040 to 0.0120 wt% is hot rolled, and then the first cold rolling is performed. After rolling to obtain an intermediate plate thickness, 1000-1200℃,
At least 500℃ after 0.5-10min intermediate annealing
A final cold-rolled plate with a thickness of 0.10-0.30 mm is obtained by rapidly cooling the plate at a cooling rate of 7°C/s or higher, and then performing a second cold rolling at a rolling reduction of 75-90%. After finishing to M
A method for producing a high magnetic flux density grain-oriented silicon steel sheet with excellent iron loss characteristics, which comprises applying an annealing separator containing gO as a main component and then performing high-temperature finish annealing. 4. The cooling rate after intermediate annealing is set at an average cooling rate of 7 to 25°C/s over the temperature range from 750°C to 250°C.
The manufacturing method according to claim 3, wherein: 5. The cooling rate after intermediate annealing is 7 to 25°C/s from 750°C to 250°C, and 15°C from 250°C.
Claim 3: The average cooling rate is 4°C/s or less until 0°C.
Manufacturing method described.
JP1014008A 1989-01-25 1989-01-25 High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same Expired - Fee Related JP2746631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014008A JP2746631B2 (en) 1989-01-25 1989-01-25 High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014008A JP2746631B2 (en) 1989-01-25 1989-01-25 High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02196403A true JPH02196403A (en) 1990-08-03
JP2746631B2 JP2746631B2 (en) 1998-05-06

Family

ID=11849181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014008A Expired - Fee Related JP2746631B2 (en) 1989-01-25 1989-01-25 High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP2746631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297557A (en) * 1991-03-25 1992-10-21 Nkk Corp Nonoriented magnetic steel sheet excellent in magnetic property
WO2014005333A1 (en) * 2012-07-02 2014-01-09 深圳市华星光电技术有限公司 Packaging apparatus for liquid crystal display module
WO2015045397A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP5960335B1 (en) * 2015-09-30 2016-08-02 三菱重工業株式会社 Preparation method and characteristic evaluation method of metal material characteristic evaluation sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931823A (en) * 1982-08-17 1984-02-21 Kawasaki Steel Corp Production of unidirectional silicon steel plate having high magnetic flux density

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931823A (en) * 1982-08-17 1984-02-21 Kawasaki Steel Corp Production of unidirectional silicon steel plate having high magnetic flux density

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297557A (en) * 1991-03-25 1992-10-21 Nkk Corp Nonoriented magnetic steel sheet excellent in magnetic property
WO2014005333A1 (en) * 2012-07-02 2014-01-09 深圳市华星光电技术有限公司 Packaging apparatus for liquid crystal display module
WO2015045397A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
US9978489B2 (en) 2013-09-26 2018-05-22 Jfe Steel Corporation Method of producing grain oriented electrical steel sheet
JP5960335B1 (en) * 2015-09-30 2016-08-02 三菱重工業株式会社 Preparation method and characteristic evaluation method of metal material characteristic evaluation sample

Also Published As

Publication number Publication date
JP2746631B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JPH10121135A (en) Production of grain oriented silicon steel sheet with minimal iron loss and high magnetic flux density
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH0277524A (en) Production of thin high-flux-density grain-oriented electrical steel sheet having excellent iron loss
JPH10140243A (en) Production of high magnetic flux density grain oriented electrical steel sheet having extremely low iron loss
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH02196403A (en) High magnetic flux density anisotropic silicon steel plate excellent in iron loss characteristic and manufacture thereof
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JP3928275B2 (en) Electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0483823A (en) Production of grain-oriented silicon steel sheet excellent in magnetic flux density
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH08143964A (en) Production of grain oriented silicon steel sheet
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR100360096B1 (en) The method of manufacturing grain oriented silicon steel by low heating
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR100482205B1 (en) An insulation coating material with tacky resistant property for grain-oriented electrical steel sheet having high punching property
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2991613B2 (en) Method for producing grain-oriented silicon steel sheet with good magnetic properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees