JPH10140243A - Production of high magnetic flux density grain oriented electrical steel sheet having extremely low iron loss - Google Patents

Production of high magnetic flux density grain oriented electrical steel sheet having extremely low iron loss

Info

Publication number
JPH10140243A
JPH10140243A JP8301474A JP30147496A JPH10140243A JP H10140243 A JPH10140243 A JP H10140243A JP 8301474 A JP8301474 A JP 8301474A JP 30147496 A JP30147496 A JP 30147496A JP H10140243 A JPH10140243 A JP H10140243A
Authority
JP
Japan
Prior art keywords
rolling
annealing
temperature
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8301474A
Other languages
Japanese (ja)
Other versions
JP3415377B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Mitsumasa Kurosawa
光正 黒沢
Kazuaki Tamura
和章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30147496A priority Critical patent/JP3415377B2/en
Priority to US08/947,641 priority patent/US5885371A/en
Priority to DE69705282T priority patent/DE69705282T2/en
Priority to KR1019970052026A priority patent/KR100352675B1/en
Priority to EP97117614A priority patent/EP0835944B1/en
Priority to BR9707089A priority patent/BR9707089A/en
Priority to CN97126011A priority patent/CN1094981C/en
Publication of JPH10140243A publication Critical patent/JPH10140243A/en
Application granted granted Critical
Publication of JP3415377B2 publication Critical patent/JP3415377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate coarsening of crystal grain and deterioration of iron loss characteristic by particularly regulating hot-rolling condition. SOLUTION: The precipitation of B and N in the components of an inhibitor in the hot-rolling is restrained as much as possible, and the restraining action of the inhibitor is displayed by precipitating extremely fine B, N in the temp. raising process of a hot-rolled sheet in the following cold-rolled process. There are three points important for preventing the precipitation of B, N in the hot- rolling process are: First, the finish temp. of the hot-rolling is held as high as 950-1150 deg.C so that B, N may exist in the steel in supersaturated solid condition. Second, the steel sheet finished of the hot-rolling is rapidly cooled at >=20 deg.C/s cooling speed. In this way, B is kept remaining in the steel in supersaturated condition. Third, the coiling temp. after finishing the hot-rolling is kept to <=670 deg.C. By this method, the coil is held at near the coiling temp. for long time to prevent the precipitation of B, N.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板のなかでも、特に磁
束密度が高く鉄損が極めて低い方向性電磁鋼板の製造方
法を提案するものである。
BACKGROUND OF THE INVENTION The present invention proposes a method of manufacturing a grain-oriented electrical steel sheet having a particularly high magnetic flux density and extremely low iron loss, among grain-oriented electrical steel sheets used for an iron core of a transformer or a generator. Things.

【0002】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は優れた軟磁気特性を有することから商
用周波数域での各種鉄心材料として広く用いられてい
る。その折、電磁鋼板に要求される特性としては、一般
に50Hzの周波数で1.7 Tに磁化させたときの損失である
W 17/50 であらわす鉄損が低いことが重要である。発電
機や変圧器としての鉄心の鉄損は、この W17/50 の値が
低い材料を用いることにより大幅に低減できることか
ら、鉄損として W17/50 の低い材料の開発が年々強く求
められていきている。
[0002] It contains Si and has a crystal orientation of (110)
[001] orientation or (100) [001] orientation
Grain-oriented electrical steel sheets have excellent soft magnetic properties and
Widely used as various iron core materials in the
You. At that time, the characteristics required for electrical steel sheets are generally
Loss when magnetized to 1.7 T at a frequency of 50 Hz
 W 17/50It is important that the iron loss is low. Power generation
The iron loss of the iron core as a machine or transformer17/50Is the value of
What can be greatly reduced by using lower materials?
W as iron loss17/50Demand for low-cost materials is increasing year by year
It is being used.

【0003】[0003]

【従来の技術】一般に、材料の鉄損を低減するには、渦
電流損を低下させるために有効なSiの含有量を増加し電
気抵抗を高める方法、鋼板板厚を薄くする方法、結晶粒
径を低減する方法さらには結晶方位の集積度を高めて磁
束密度を向上させる方法などが知られている。このう
ち、Si含有量を増加させる手法、鋼板板厚を薄くする手
法および結晶粒径を低減する手法について検討を加えた
が、Si含有量を増加させる手法はSiを過度に含有させる
と圧延性や加工性を劣化させるので好ましなく限界があ
り、また鋼板板厚を薄くする手法は極端な製造コストの
増大をもたらすので自ずから限界があった。
2. Description of the Related Art In general, in order to reduce iron loss of a material, a method of increasing an effective Si content to reduce an eddy current loss to increase electric resistance, a method of reducing a thickness of a steel sheet, a method of reducing a crystal grain, There are known a method of reducing the diameter and a method of increasing the degree of integration of the crystal orientation to improve the magnetic flux density. Among them, we studied methods to increase the Si content, to reduce the thickness of the steel sheet, and to reduce the crystal grain size. And the workability is deteriorated, which is unfavorably limited, and the method of reducing the thickness of the steel sheet has an inherent limit because it extremely increases the manufacturing cost.

【0004】上記のうちの磁束密度を向上させる手法に
ついては、これまで数多く研究されてきており、例え
ば、特公昭46−23820号公報(高磁束密度電磁鋼
板の熱処理法)には、鋼中にAlを添加し熱間圧延後に10
00〜1200℃の温度範囲と高温での熱延板焼鈍とその後の
急冷処理によって微細なAlN を析出させ最終の冷間圧延
での圧下率を80〜95%とする高圧下を施す技術が提案開
示されており、これによってB10で1.95Tと極めて高い
磁束密度を得ている。これは、微細に分散析出したAlN
が1次再結晶粒の成長を抑制するインヒビターとしての
強い作用を有することを利用し、結晶方位の優れた核の
みを2次再結晶させることにより方位の優れた結晶組織
を有する製品を得ようとするものである。
[0004] Among the above-mentioned techniques for improving the magnetic flux density, many studies have been made so far. For example, Japanese Patent Publication No. 46-23820 (heat treatment method for high magnetic flux density electromagnetic steel sheet) discloses a method for improving the magnetic flux density in steel. Al added and 10 after hot rolling
A proposal is made of a technique in which fine AlN is precipitated by hot-rolled sheet annealing at a temperature range of 00 to 1200 ° C and high temperature, followed by quenching, and a high-pressure reduction of 80 to 95% in the final cold rolling is performed. It is disclosed, and thereby obtain a very high magnetic flux density and 1.95T in B 10. This is because finely dispersed AlN
Has a strong effect as an inhibitor that suppresses the growth of primary recrystallized grains, and secondary recrystallizes only nuclei with excellent crystal orientation to obtain a product having a crystal structure with excellent orientation. It is assumed that.

【0005】しかしながら、この技術では一般的に結晶
粒が粗大化し、よって低い鉄損を得ることが難かしく、
また、熱延板焼鈍において完全にAlN を固溶することが
困難であるので、安定して高磁束密度の製品を得ること
が困難であった。
However, in this technique, it is generally difficult to obtain a small iron loss by coarsening the crystal grains.
Further, since it is difficult to completely dissolve AlN into solid solution in hot-rolled sheet annealing, it has been difficult to stably obtain a product having a high magnetic flux density.

【0006】これとは別に、特公昭58−43445号
公報(立方体稜配向珪素鋼の製造方法)には、0.0006〜
0.0080%のBと0.0100%以下のNとを含有する鋼を用い
て、脱炭焼鈍に工夫を凝らすことによりB8 で1.89Tの
磁束密度が得られる技術が開示されている。この方法は
磁束密度が低く鉄損もさほど良好とはいえないので工業
化されることはなかったが、この方法によって得られる
製品は比較的安定した磁気特性を示すので、工業的には
好ましい技術である。
[0006] Separately, Japanese Patent Publication No. 58-43445 (a method for producing a cubic edge oriented silicon steel) has a value of 0.0006 to 0.0006.
With 0.0080% B and 0.0100% or less of the steel containing the N, techniques flux density of 1.89T in B 8 by congeal devised to decarburization annealing can be obtained is disclosed. This method was not industrialized because the magnetic flux density was low and the iron loss was not so good.However, the product obtained by this method exhibited relatively stable magnetic properties, so it was an industrially preferable technique. is there.

【0007】[0007]

【発明が解決しようとする課題】この発明は、前記した
BとNとをインヒビター成分とし、結晶方位の集積度を
高めて高磁束密度を得、結晶粒の粗大化ならびに鉄損特
性の劣化を解消できる方向性電磁鋼板の製造方法を提案
することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, B and N are used as inhibitor components to increase the degree of integration of crystal orientations to obtain a high magnetic flux density, to reduce crystal grain coarsening and deterioration of iron loss characteristics. An object of the present invention is to propose a method for manufacturing a grain-oriented electrical steel sheet that can be eliminated.

【0008】すなわち、結晶方位の集積度を高めた場
合、必然的に結晶粒が粗大化し鉄損の劣化および不安定
化を招き、逆に結晶粒の細粒化を図ると結晶方位の集積
度が低下し磁束密度の低下を招く。このような二律背反
状態のため、従来は極めて高い磁束密度で低鉄損材料を
安定して製造することはできなかった。そこでこの発明
では、BNをインヒビターとする方向性電磁鋼板の製造
方法において、磁束密度B8 が極めて高く、かつ本質的
に内在する製品の結晶粒の粗大化という不安定性を解消
しようとするものである。
That is, when the degree of integration of the crystal orientation is increased, the crystal grains are inevitably coarsened, leading to deterioration and instability of the iron loss. And the magnetic flux density is reduced. Due to such a trade-off state, conventionally, it has not been possible to stably produce a low iron loss material with an extremely high magnetic flux density. Therefore, in the present invention is a method for producing a grain-oriented electrical steel sheet and inhibitors of BN, the magnetic flux density B 8 is extremely high, and seeks to eliminate the instability of the crystal grain coarsening of the product essentially internalized is there.

【0009】[0009]

【課題を解決するための手段】この発明は、かかる二律
背反の状態を解消すべく、インヒビターであるBNの析
出分散状態に着目し、従来とは全く異なった析出方法を
採用することにより、極めて微細にBNを析出させ1次
再結晶粒の成長に対し強い抑制効果を得ることが可能で
あることを見出し、これを有効に活用することにより達
成したものである。すなわち、この発明の要旨とすると
ころは以下の通りである。
The present invention focuses on the precipitation and dispersion state of BN, which is an inhibitor, in order to eliminate such a trade-off state, and adopts a completely different deposition method from the conventional method to achieve a very fine structure. It has been found that it is possible to obtain a strong inhibitory effect on the growth of primary recrystallized grains by precipitating BN into the steel and to make effective use of this. That is, the gist of the present invention is as follows.

【0010】 C:0.025 〜0.095 wt%、Si:1.5 〜
7.0 wt%、Mn:0.03〜2.5 wt%およびSもしくはSeのう
ちの1種または2種の合計:0.003 〜0.040 wt%を含有
する鋼スラブを素材として、該スラブを1350℃以上の温
度に加熱し、熱間圧延後熱延板焼鈍を施してから1回冷
間圧延法または熱間圧延後熱延板焼鈍を施してから中間
焼鈍を挟む2回冷間圧延法、もしくは、熱間圧延後中間
焼鈍を挟む2回冷間圧延法のうちのいずれかの冷間圧延
により最終冷延板厚としたのち、1次再結晶焼鈍を施
し、その後、焼鈍分離剤を塗布してから最終仕上げ焼鈍
を施す一連の工程により方向性電磁鋼板を製造するにあ
たり、素材の成分組成にインヒビター成分として、B:
0.0008〜0.0085wt%およびN:0.0030〜0.0100wt%を含
有させること、熱間圧延の仕上げ圧延圧下率を85〜99%
の範囲とし、仕上げ圧延終了温度を950 〜1150℃の範囲
でかつ素材のSi含有量とB含有量との関係から下記式
(1) を満たす範囲とする熱間圧延を行ったのち、20℃/
s以上の冷却速度で急冷して670℃以下の温度でコイル
に巻取ること、熱延板焼鈍および中間焼鈍をともに、80
0 ℃の温度まで5〜25℃/sの範囲の昇温速度で昇温
し、900 〜1150℃の温度範囲で保持時間を150 秒間以下
とする条件で行うこと、冷間圧延を、1回冷間圧延法に
より圧下率:80〜95%の範囲で行い最終冷延板厚とする
か、もしくは、2回冷間圧延法により第1回目の圧延を
圧下率:15〜60%の範囲で行ったのち中間焼鈍後の第2
回目の圧延を圧下率:80〜95%の範囲で行い最終冷延板
厚とすること、最終仕上げ焼鈍の昇温途中の少なくとも
900 ℃以上の温度からはH2 を含有する雰囲気中で昇温
すること、との順次組合せになることを特徴とする極め
て鉄損の低い高磁束密度方向性電磁鋼板の製造方法(第
1発明)。 〔記〕 745 +35×+3Y≦T≦900 +35×+3Y ----(1) ただし T:仕上げ圧延終了温度(℃) X:Si(wt%) Y:B(wtppm )
C: 0.025 to 0.095 wt%, Si: 1.5 to
A steel slab containing 7.0 wt%, Mn: 0.03 to 2.5 wt%, and one or two of S or Se: 0.003 to 0.040 wt% is used as a raw material, and the slab is heated to a temperature of 1350 ° C. or more. After hot rolling, hot-rolled sheet annealing and then cold rolling once, or hot rolling and hot-rolled sheet annealing followed by double cold rolling with intermediate annealing, or after hot rolling The final cold-rolled sheet thickness is obtained by any one of the two cold rolling methods including the intermediate annealing, followed by primary recrystallization annealing, and then applying an annealing separator, and then final finishing annealing In producing a grain-oriented electrical steel sheet by a series of steps of applying B, B:
0.0008-0.0085wt% and N: 0.0030-0.0100wt%, hot rolling finish rolling reduction 85-99%
In the range of 950 to 1150 ° C and the relationship between the Si content and the B content of the material,
After performing hot rolling within the range that satisfies (1), 20 ° C /
Rapid cooling at a cooling rate of at least s and winding at a temperature of 670 ° C or less, and both hot-rolled sheet annealing and intermediate annealing
The temperature is raised to a temperature of 0 ° C. at a rate of 5 to 25 ° C./s and the holding time is 150 seconds or less in a temperature range of 900 to 1150 ° C., and cold rolling is performed once. Cold rolling is performed in the range of reduction ratio: 80 to 95% to obtain the final cold-rolled sheet thickness, or the first rolling is performed by double cold rolling in the range of reduction ratio: 15 to 60%. After the second annealing after intermediate annealing
The second rolling is performed in a rolling reduction range of 80 to 95% to obtain a final cold-rolled sheet thickness, and at least during the final heating of the final annealing.
A method of manufacturing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss, which is sequentially combined with increasing the temperature in an atmosphere containing H 2 from a temperature of 900 ° C. or more (first invention) ). [Note] 745 + 35 × + 3Y ≦ T ≦ 900 + 35 × + 3Y ---- (1) where T: finish rolling end temperature (° C) X: Si (wt%) Y: B (wtppm)

【0011】 最終冷間圧延直前の熱延板焼鈍または
中間焼鈍での冷却を、鋼板内固溶C量を高めるための急
冷処理とする第1発明に記載の極めて鉄損の低い高磁束
密度方向性電磁鋼板の製造方法(第2発明)。
[0011] The high magnetic flux density direction with extremely low iron loss according to the first invention, wherein the cooling in the hot rolled sheet annealing or intermediate annealing immediately before the final cold rolling is a quenching treatment for increasing the amount of solid solution C in the steel sheet. A method for producing a conductive electrical steel sheet (second invention).

【0012】 最終冷間圧延直前の熱延板焼鈍または
中間焼鈍で、0.005 〜0.025 wt%の脱炭を施すことを特
徴とする第1発明または第2発明に記載の極めて鉄損の
低い高磁束密度方向性電磁鋼板の製造方法(第3発
明)。
[0012] The high magnetic flux with extremely low iron loss according to the first or second invention, wherein decarburization of 0.005 to 0.025 wt% is performed by hot-rolled sheet annealing or intermediate annealing immediately before final cold rolling. Method for producing density-oriented electrical steel sheet (third invention).

【0013】 最終冷間圧延が、90〜350 ℃の温度範
囲での温間圧延か、もしくは、100〜300 ℃の温度範囲
で10〜60分間の時間範囲のパス間時効処理を施すもので
ある請求項1,2または3に記載の極めて鉄損の低い高
磁束密度方向性電磁鋼板の製造方法(第4発明)。
[0013] The final cold rolling is performed by warm rolling in a temperature range of 90 to 350 ° C or by aging treatment between passes in a temperature range of 100 to 300 ° C for a time range of 10 to 60 minutes. The method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss according to claim 1, 2, or 3.

【0014】ここで、第3発明における急冷処理とは、
高温焼鈍で固溶したC量の状態を過飽和状態にさせるた
め冷却過程で行う処理で、自然放冷よりも早い冷却速度
となるように、気体および/または液体を冷却媒として
該鋼板に吹きつける処理である。この処理により、固溶
Cの増加効果の他、冷却時の低温保持処理との組合せに
よる微細カーバイド析出効果も得られ磁気特性のさらな
る向上が得られる。
Here, the quenching treatment in the third invention is
A process performed in a cooling process to make the state of the amount of C solid-dissolved by high-temperature annealing into a supersaturated state, in which a gas and / or a liquid is sprayed as a cooling medium onto the steel sheet so as to have a cooling rate faster than natural cooling. Processing. By this treatment, in addition to the effect of increasing the solid solution C, a fine carbide precipitation effect by combination with the low-temperature holding treatment during cooling can be obtained, and the magnetic properties can be further improved.

【0015】[0015]

【発明の実施の形態】まず、この発明を達成するに至っ
た経緯を実験例に基づいて以下に述べる。 実験1 C:0.08wt%(以下単に%であらわす)、Si:3.36%、
Mn:0.07%、Al:0.009 %、Se:0.018 %、Sb:0.025
%、B:0.0020%およびN:0.008 %を含み残部は実質
的にFeからなる250 mm厚の方向性電磁鋼板用スラブ2本
を、それぞれ1390℃の温度に加熱し、一方を、1200℃の
温度で板厚:45mmとする粗圧延終了後、1020℃の温度で
板厚:2.2 mmとする仕上げ圧延を終了したのち、大量の
冷却水を噴射して50℃/sの冷却速度で冷却し550 ℃の
温度でコイルに巻取り(コイルA)、他方を、1200℃の
温度で板厚:45mmとする粗圧延終了後、935 ℃の温度で
板厚:2.2 mmとする仕上げ圧延を終了したのち、通常の
量の冷却水を噴射して25℃/sの冷却速度で冷却し550
℃の温度でコイルに巻取った(コイルB)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the process of achieving the present invention will be described below based on experimental examples. Experiment 1 C: 0.08 wt% (hereinafter simply expressed as%), Si: 3.36%,
Mn: 0.07%, Al: 0.009%, Se: 0.018%, Sb: 0.025
%, B: 0.0020% and N: 0.008%, and two slabs for grain-oriented electrical steel sheets each consisting essentially of Fe and having a thickness of 250 mm and having a thickness of 1390 ° C. were heated to 1390 ° C. After finishing the rough rolling at a temperature of 1020 ° C and finishing the finish rolling at a temperature of 1020 ° C and a sheet thickness of 45 mm, a large amount of cooling water is injected to cool at a cooling rate of 50 ° C / s. The coil was wound at a temperature of 550 ° C. (coil A), and the other was finished with rough rolling at a temperature of 1200 ° C. and a thickness of 45 mm, and then finished with a roll of 2.2 mm at a temperature of 935 ° C. After that, a normal amount of cooling water is injected to cool at a cooling rate of 25 ° C./s,
It was wound on a coil at a temperature of ° C. (coil B).

【0016】これらA,Bの2種類の熱延板コイルをそ
れぞれ2分割し(A−1,A−2およびB−1,B−
2)、A−1およびB−1の熱延板コイルは昇温速度:
12℃/sで1100℃の温度まで昇温したのち30秒間保持
する熱延板焼鈍を施し、A−2およびB−2の熱延板コ
イルは昇温速度:12℃/sで1170℃の温度まで昇温した
のち30秒間保持する熱延板焼鈍を施した。
The two types of hot-rolled sheet coils A and B are divided into two parts (A-1, A-2 and B-1, B-B).
2) The hot-rolled sheet coils of A-1 and B-1 were heated at a heating rate:
After the temperature was raised to a temperature of 1100 ° C. at 12 ° C./s, hot-rolled sheet annealing was performed for 30 seconds and the hot-rolled sheet coils of A-2 and B-2 were heated at a rate of 1170 ° C. After the temperature was raised to the temperature, hot-rolled sheet annealing was performed for 30 seconds.

【0017】これらの焼鈍板は酸洗後、120 ℃の温度で
冷間圧延を施し最終冷延板厚:0.27mmとしたのち、脱脂
処理を施してから850 ℃・2分間の脱炭・1次再結晶焼
鈍を施し、MgO を主成分とする焼鈍分離剤を鋼板表面に
塗布し、それぞれコイル状に巻取った。
After the pickling, these annealed sheets are subjected to cold rolling at a temperature of 120 ° C. to a final cold-rolled sheet thickness of 0.27 mm, and after degreasing, decarburized at 850 ° C. for 2 minutes. Next, recrystallization annealing was performed, and an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and each was wound into a coil.

【0018】その後、最終仕上げ焼鈍条件として、800
℃の温度までの昇温をN2 雰囲気中で30℃/hの昇温速
度で、800 〜1050℃の温度域の昇温をN2 :25%、
2 :75%の混合雰囲気中で15℃/sの昇温速度で、10
50〜1200℃の温度域の昇温および1200℃・5時間の均熱
をH2 雰囲気で、かつ1050〜1200℃の温度域の昇温速度
を20℃/sとし、降温に際しては、800 ℃の温度までH
2 雰囲気中で強制冷却し、800 ℃以下の温度をN2 雰囲
気中で冷却する熱サイクルと雰囲気を採用した。
Then, as final annealing conditions, 800
° C. for up to a temperature of heating at a heating rate of 30 ° C. / h in an N 2 atmosphere, the Atsushi Nobori of the temperature range of 800 ~1050 ℃ N 2: 25% ,
H 2 : 10% at a rate of 15 ° C./s in a mixed atmosphere of 75%
The temperature in the temperature range of 50 to 1200 ° C. and the soaking in 1200 ° C. for 5 hours are in an H 2 atmosphere, and the temperature in the temperature range of 1050 to 1200 ° C. is 20 ° C./s. Up to the temperature of H
A thermal cycle and atmosphere were employed in which cooling was performed forcibly in two atmospheres and cooled to a temperature of 800 ° C. or less in a N 2 atmosphere.

【0019】最終仕上げ焼鈍後は未反応焼鈍分離剤を除
去したのち、50%のコロイダルシリカとりん酸マグネシ
ウムからなる張力コートを塗布し焼付けそれぞれ製品と
した。
After the final finish annealing, the unreacted annealing separating agent was removed, and then a tension coat consisting of 50% colloidal silica and magnesium phosphate was applied and baked to obtain products.

【0020】かくして得られた各製品より圧延直角方向
に沿って圧延方向を長辺としたエプスタインサイズの試
験片を切り出し800 ℃の温度で3時間の歪取り焼鈍を施
したのち、1.7 Tの磁束密度における鉄損 W17/50 およ
び磁束密度B8 をそれぞれ測定し、さらにこれらの鋼板
をマクロエッチしてそれぞれ平均結晶粒径を調査した。
これらの調査結果を表1にまとめて示す。
From each of the products thus obtained, a test piece of Epstein size having a long side extending in the rolling direction was cut out along the direction perpendicular to the rolling direction, subjected to strain relief annealing at a temperature of 800 ° C. for 3 hours, and then subjected to a magnetic flux of 1.7 T. The iron loss W 17/50 and the magnetic flux density B 8 in the density were measured, respectively, and these steel sheets were macro-etched to investigate the average crystal grain size.
Table 1 summarizes the results of these investigations.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、熱間圧延終了温
度が高く、熱延板焼鈍温度が低いコイル記号A−1の製
品は、従来条件であるコイル記号B−2の製品に比し、
極めて高い磁束密度(B8)と極めて低い鉄損(
W17/50 )が得られている。かかる良好な結果を得た理
由について調査した結果、以下に述べることが判明し
た。
As is evident from Table 1, the product of coil code A-1 having a high hot rolling end temperature and a low hot rolled sheet annealing temperature is smaller than the product of coil code B-2 which is the conventional condition.
Extremely high magnetic flux density (B 8 ) and extremely low iron loss (
W 17/50 ). As a result of investigating the reason for obtaining such good results, the following has been found.

【0023】すなわち、従来の熱間圧延においては、イ
ンヒビターとしてのBNを均一微細に析出させることが
極めて困難であり、BNのインヒビターとしての抑制力
を十分に発揮できなかった。上記実験で良好な結果を得
たコイル記号A−1では、熱間圧延でのBNの析出を極
力抑制し、その後の冷間圧延工程における熱延板焼鈍の
昇温過程で極めて微細なBNを析出させ、これが強いイ
ンヒビターの抑制作用をもたらすものであることを見出
した。
That is, in the conventional hot rolling, it is extremely difficult to uniformly and finely precipitate BN as an inhibitor, and it has been impossible to sufficiently exert the inhibitory power of BN as an inhibitor. In the coil symbol A-1, in which good results were obtained in the above experiment, the precipitation of BN in hot rolling was suppressed as much as possible, and extremely fine BN was removed during the temperature rise process of hot-rolled sheet annealing in the subsequent cold rolling process. It has been found that this causes a strong inhibitory action of the inhibitor.

【0024】この熱延板焼鈍の昇温過程においてBNが
微細析出する過程を詳細に調査したところ、熱延板中に
すでに多数の超微細析出物が存在していて、これらがB
N析出の核となっていることがわかった。そして、この
超微細析出物はMnS, CuS等の硫化物や、MnSe, CuSe等の
セレン化物およびこれらの複合析出物からなり、熱間仕
上げ圧延温度が適正な範囲において極めて微細に析出す
ることがわかった。すなわち、鋼中に転位等の加工によ
る欠陥が高密度に存在する状態でBNの析出を抑制でき
ればよいことがわかった。ここで、熱間仕上げ圧延が、
適正温度よりも高い場合には、鋼中に存在する欠陥の密
度が低下し、十分に高い析出密度が得られず、逆に適正
温度より低い場合は、析出が不十分となり、ともに超微
細析出部の析出密度は低下する。また、これらの析出物
は超微細であるため、0.003 wt%以上のわずかな量で十
分であるが、Sおよび/またはSeを鋼中に含有させてお
くことが必要になる。
A detailed examination of the process of fine precipitation of BN during the heating process of the hot-rolled sheet revealed that a large number of ultra-fine precipitates already existed in the hot-rolled sheet.
It turned out to be the core of N precipitation. This ultrafine precipitate is composed of sulfides such as MnS and CuS, selenides such as MnSe and CuSe, and composite precipitates thereof, and can be extremely finely precipitated in a range where the hot finish rolling temperature is appropriate. all right. That is, it has been found that it is only necessary to suppress the precipitation of BN in a state where defects due to processing such as dislocation exist in the steel at high density. Here, hot finish rolling
If the temperature is higher than the appropriate temperature, the density of defects existing in the steel decreases, and a sufficiently high precipitation density cannot be obtained. The precipitation density of the part decreases. Since these precipitates are ultrafine, a small amount of 0.003 wt% or more is sufficient, but it is necessary to contain S and / or Se in the steel.

【0025】かかる技術において留意すべき点は、第1
に析出させたBNの再固溶やオストワルド成長が起こら
ないように熱延板焼鈍温度を低温にすることである。こ
の発明における適正焼鈍温度についてその下限値は、こ
の焼鈍が焼鈍後の結晶組織のサイズを適正にすることを
目的とするものであることから、焼鈍温度が過度に低い
場合、圧延後の再結晶組織において2次再結晶の核とな
る(110)粒の強度が不足し、良好な方位の2次再結
晶組織が得られなくなる。そこで(110)粒の十分な
強度を得るためには、焼鈍後の結晶組織を一定サイズ以
上に粗大化する必要があり、このためには900 ℃以上の
温度まで昇温することが不可欠である。一方、熱延板焼
鈍温度の上限値は、上記したように昇温過程で微細に析
出したBNの再固溶およびオストワルド成長をさせない
ことがもっとも肝要な点となる。このためには、1150℃
以下の温度でかつ150 秒間以内の均熱時間の焼鈍とする
ことが必要である。
The points to be noted in this technique are as follows.
Is to lower the annealing temperature of the hot-rolled sheet so as not to cause the re-solid solution and ostwald growth of BN deposited on the steel sheet. The lower limit of the proper annealing temperature in the present invention is intended to optimize the size of the crystal structure after annealing, so if the annealing temperature is excessively low, recrystallization after rolling is performed. In the structure, the strength of the (110) grains serving as nuclei for secondary recrystallization is insufficient, and a secondary recrystallized structure having a good orientation cannot be obtained. Therefore, in order to obtain sufficient strength of the (110) grains, it is necessary to coarsen the crystal structure after annealing to a certain size or more. For this purpose, it is essential to raise the temperature to 900 ° C. or more. . On the other hand, the most important point of the upper limit of the annealing temperature of the hot-rolled sheet is to prevent the BN finely precipitated during the heating process from re-dissolving and Ostwald growing. For this, 1150 ° C
It is necessary to perform annealing at the following temperature and for a soaking time of 150 seconds or less.

【0026】熱延板焼鈍昇温時のBNの析出現象は、ほ
ぼ800 ℃の温度までに終了するが、昇温速度によって、
析出物のサイズや分布が変化するので昇温速度を制御す
ることも重要である。すなわち、昇温速度が5℃/sよ
り遅いと粗大析出しやすく、逆に25℃/sより速いとB
Nの析出量が不十分となる。
The precipitation phenomenon of BN at the time of raising the temperature of the hot-rolled sheet annealing ends at a temperature of about 800 ° C.
Since the size and distribution of the precipitates change, it is also important to control the rate of temperature rise. That is, if the heating rate is lower than 5 ° C./s, coarse precipitation is likely to occur, and if the heating rate is higher than 25 ° C./s, B
The precipitation amount of N becomes insufficient.

【0027】焼鈍後の冷却条件については特に必要な条
件はないが、急冷処理を施すことは鋼中の固溶Cを増加
させ1次再結晶集合組織を良好にし、さらに急冷処理に
組合せて低温保持し微細カーバイドを析出させる処理は
1次再結晶集合組織をさらに良好にするので、これらの
処理はこの発明に適用して有効である。また、焼鈍時に
鋼板表層部の脱炭を行うことは、さらに好ましい結果を
得ることができる。
Although there is no particular requirement for the cooling conditions after annealing, the quenching treatment increases the solid solution C in the steel, improves the primary recrystallization texture, and combines with the quenching treatment to reduce the low temperature. Since the treatment for retaining and precipitating fine carbide further improves the primary recrystallization texture, these treatments are effective when applied to the present invention. Further, performing decarburization of the surface layer of the steel sheet during annealing can obtain more preferable results.

【0028】第2には、熱延板焼鈍の昇温過程で微細な
BNを析出させる手法を効果的に活用するための必須条
件として、熱間圧延工程においてBNを極力析出させな
いことである。仮に、熱間圧延工程においてBNが析出
したとすると、熱延板焼鈍の昇温過程においてすでに析
出しているBNを析出核として大量に析出するため、少
数の粗大な析出BNが形成され抑制力が劣化することに
なる。
Secondly, as an essential condition for effectively utilizing the technique of precipitating fine BN in the process of raising the temperature of hot-rolled sheet annealing, BN is not precipitated as much as possible in the hot rolling step. If BN precipitates in the hot rolling step, a large amount of BN that has already precipitated as precipitation nuclei is precipitated as a precipitation nucleus in the temperature rising process of hot-rolled sheet annealing, so that a small number of coarse precipitated BN is formed and the suppressing power is reduced. Will deteriorate.

【0029】熱間圧延工程において、BNの析出を防ぐ
ポイントは3点あり、その1点は、熱間圧延終了温度を
高温としてBNを過飽和固溶状態で鋼中に存在させるこ
とである。BNの析出温度は、Si含有量やB含有量によ
って変化することが知られているので、これらの含有量
に合わせて熱間圧延終了温度を変えることが重要であ
る。熱間圧延終了温度が低い場合、熱間圧延工程でBN
が析出してしまう。上記の実験において、熱延板焼鈍を
高温として再固溶、再析出させたコイル記号B−2の製
品はともかくとして、熱延板焼鈍が低温のコイル記号B
−1の製品では少数の粗大なBNが析出した状態とな
り、抑制力が低下して2次再結晶不良となりよって磁気
特性が劣化している。
In the hot rolling step, there are three points for preventing the precipitation of BN. One of the points is that BN is present in the steel in a supersaturated solid solution state at a high hot rolling end temperature. Since it is known that the precipitation temperature of BN changes depending on the Si content and the B content, it is important to change the hot rolling end temperature in accordance with these contents. If the hot rolling end temperature is low, BN
Precipitates. In the above experiment, the product of coil symbol B-2 re-dissolved and re-precipitated with hot rolled sheet annealing at a high temperature, aside from coil symbol B with hot rolled sheet annealing at a low temperature
In the case of the product of -1, a small number of coarse BNs are precipitated, the suppressing power is reduced, and the secondary recrystallization is poor, so that the magnetic properties are deteriorated.

【0030】他の1点は、熱間圧延終了後の鋼板の冷却
を急冷にする点である。すなわち、この急冷により過飽
和状態のままBを鋼中に凍結することが可能になり、逆
に冷却速度が遅い場合には冷却過程でBNが析出しやす
くなる。このBNの析出防止のために必要とされる冷却
速度は20℃/s以上である。
Another point is that the cooling of the steel sheet after the completion of hot rolling is rapidly cooled. That is, the rapid cooling makes it possible to freeze B in the steel in a supersaturated state. Conversely, when the cooling rate is low, BN tends to precipitate in the cooling process. The cooling rate required to prevent the precipitation of BN is 20 ° C./s or more.

【0031】残る1点は、熱間圧延終了後のコイル巻取
り温度を低温とする点であり、コイルは長時間巻取り温
度近傍に保持されるため、その温度が高いとやはりBN
の析出を招く結果となる。BNの析出を防止するために
はコイル巻取り温度は670 ℃以下とすることが必須の条
件となる。
One remaining point is that the coil winding temperature after the completion of hot rolling is lowered. Since the coil is kept close to the winding temperature for a long time, if the temperature is high, the BN is also increased.
Is caused. In order to prevent the precipitation of BN, it is essential that the coil winding temperature be 670 ° C. or lower.

【0032】つぎに、熱間圧延終了温度の適正範囲を調
査する実験を行った。Si含有量とB含有量を意図的に変
化させた以外は上記実験とほぼ同一の成分組成の方向性
電磁鋼板用の250 mm厚の各種スラブを用い、熱間圧延終
了温度を変化させた以外は上記実験のコイル記号A−1
と同一の条件でそれぞれ製品とし、得られた各製品の磁
束密度B8 /Bs (Bs は飽和磁束密度)の値を調査し
た。
Next, an experiment was conducted to investigate an appropriate range of the hot rolling end temperature. Except that the content of Si and B were intentionally changed, various 250 mm thick slabs for grain-oriented electrical steel sheets having almost the same composition as in the above experiment were used, except that the hot rolling end temperature was changed. Is the coil symbol A-1 in the above experiment.
Under the same conditions as above, each product was manufactured, and the value of the magnetic flux density B 8 / B s (B s is the saturation magnetic flux density) of each obtained product was examined.

【0033】図1は、磁束密度B8 /Bs に及ぼす素材
のSiおよびB含有量ならびに熱間圧延終了温度の影響を
示すグラフである。この図1より、B8 /Bs が0.95以
上と極めて高い値をうるための熱間圧延終了温度は、Si
(%)をXおよびB(ppm )をYであらわす式745 +35
X+3Y以上の値でかつ950 ℃以上の温度を必要とし、
また、900 +35X+3Y以下の値でかつ1150℃以下の温
度であることを必要とすることがわかる。これらは、熱
間圧延終了温度が上記範囲より低い場合、BNが熱間圧
延過程で大部分析出し、高い場合は高温域での圧延とな
り、熱延板のバンド組織の幅が増大し2次再結晶の成長
を妨害するようになることによる。
FIG. 1 is a graph showing the effects of the contents of Si and B of the material and the hot rolling end temperature on the magnetic flux density B 8 / B s . From FIG. 1, the hot-rolling end temperature for obtaining an extremely high value of B 8 / B s of 0.95 or more is expressed by Si
Formula 745 + 35 where (%) is represented by X and B (ppm) is represented by Y
It requires a value of X + 3Y or more and a temperature of 950 ° C. or more,
It is also found that the temperature needs to be 900 + 35X + 3Y or less and 1150 ° C. or less. When the hot-rolling end temperature is lower than the above range, BN is mostly precipitated during the hot-rolling process, and when the temperature is high, BN is rolled in a high-temperature region, and the width of the band structure of the hot-rolled sheet increases, and The reason is that they hinder the growth of recrystallization.

【0034】第3には、熱延板焼鈍温度を低温化とする
ことにより2次再結晶粒の結晶粒径が細粒化する点であ
る。この理由は明らかでないが、焼鈍温度を低温化する
ことによりγ変態量が減少して圧延前の結晶粒径が実質
的に増加し、圧延1次再結晶組織において(110)粒
の核生成頻度が増加したためではないかと推察される。
Third, the crystal grain size of the secondary recrystallized grains is reduced by lowering the annealing temperature of the hot-rolled sheet. The reason for this is not clear, but by lowering the annealing temperature, the amount of γ transformation is reduced and the crystal grain size before rolling is substantially increased, and the nucleation frequency of (110) grains in the primary recrystallized structure of rolling is reduced. It is speculated that this may have been due to an increase in

【0035】1次再結晶組織において(110)粒が増
加した場合、2次再結晶粒が細粒化することはよく知ら
れた現象であるが、この場合、従来より磁束密度の低下
も招くことが常であった。しかし、この発明において
は、強いインヒビターの抑制作用のため2次再結晶粒の
細粒化と同時に磁束密度の向上効果も得られたものと推
定される。
It is a well-known phenomenon that when the number of (110) grains increases in the primary recrystallized structure, the secondary recrystallized grains become finer. In this case, however, the magnetic flux density is reduced as compared with the conventional case. This was always the case. However, in the present invention, it is presumed that the effect of suppressing the strong inhibitor was obtained, and at the same time, the effect of improving the magnetic flux density was obtained at the same time as the secondary recrystallized grains were refined.

【0036】冷間圧延工程については、熱延板焼鈍を施
したのち1回の冷間圧延を行う1回冷間圧延法、熱延板
焼鈍を施したのち第1回目の冷間圧延後中間焼鈍を施し
てから第2回目の冷間圧延を行う2回冷間圧延法、ある
いは、熱延板焼鈍を省略して第1回目の冷間圧延後中間
焼鈍を施したのち第2回目の冷間圧延を行う2回冷間圧
延法のいずれもが採用できる。この冷間圧延工程で行う
最初の焼鈍(熱延板焼鈍または中間焼鈍)では、その昇
温過程でBNを析出させるとともに析出したBNのオス
トワルド成長、再固溶・再析出を防止するよう留意する
こと、熱延板焼鈍と中間焼鈍とを行う場合の2回目の焼
鈍(中間焼鈍)でも析出したBNのオストワルド成長、
再固溶・再析出を防止するよう留意することが肝要であ
る。
In the cold rolling step, a one-time cold rolling method in which a hot-rolled sheet is annealed and then a single cold-rolling is performed, and a hot-rolled sheet is annealed and then a first cold-rolling is performed. The second cold rolling method in which annealing is performed and then the second cold rolling is performed, or the second cold rolling is performed after the first cold rolling and the intermediate annealing after the first cold rolling is omitted. Any of the two cold rolling methods in which cold rolling is performed can be employed. In the first annealing (hot-rolled sheet annealing or intermediate annealing) performed in this cold rolling step, BN is precipitated during the temperature raising process, and attention is paid to prevent Ostwald growth, re-solid solution and re-precipitation of the precipitated BN. That is, Ostwald growth of BN precipitated in the second annealing (intermediate annealing) in the case of performing hot-rolled sheet annealing and intermediate annealing,
It is important to take care to prevent re-dissolution and re-precipitation.

【0037】また冷間圧延圧下率は、従来より公知のよ
うに最終圧延の圧下率を80〜95%とすることが必要であ
る。最終圧延の圧下率が80%未満の場合、方位の優れた
2次再結晶粒に核が成長するための結晶組織が不十分で
磁束密度の低下を招き、逆に95%を超える場合は2次再
結晶の核の密度が低下して2次再結晶不良となりやす
い。
The rolling reduction of the cold rolling requires that the rolling reduction of the final rolling be 80 to 95% as conventionally known. When the rolling reduction in the final rolling is less than 80%, the crystal structure for growing nuclei in secondary recrystallized grains having excellent orientation is insufficient, leading to a decrease in magnetic flux density. The density of the nuclei of the secondary recrystallization is reduced, and secondary recrystallization is likely to be defective.

【0038】実験2 実験2として最終仕上げ焼鈍条件についての調査を行っ
た。C:0.08%、Si:3.38%、Mn:0.07%、Al:0.008
%、Se:0.020 %、Sb:0.035 %、B:0.0025%および
N:0.008 %を含み残部は実質的にFeからなる250mm厚
の方向性電磁鋼板用のスラブ10本を、それぞれ1420℃の
温度に加熱し、1270℃の温度で板厚:45mmとする粗圧延
終了後、1020℃の温度で板厚:2.2 mmとする仕上げ圧延
を終了したのち、大量の冷却水を噴射して65℃/sの冷
却速度で急冷し、550 ℃の温度でコイルに巻取った。
Experiment 2 As Experiment 2, an investigation was made on the final finish annealing conditions. C: 0.08%, Si: 3.38%, Mn: 0.07%, Al: 0.008
%, Se: 0.020%, Sb: 0.035%, B: 0.0025% and N: 0.008%, the balance being substantially Fe and 10 slabs for a 250 mm thick grain-oriented electrical steel sheet, each at a temperature of 1420 ° C. After finishing the rough rolling at a temperature of 1270 ° C. and a plate thickness of 45 mm, finishing the finishing rolling at a temperature of 1020 ° C. and a plate thickness of 2.2 mm, a large amount of cooling water was injected to 65 ° C. / s, and wound on a coil at a temperature of 550 ° C.

【0039】これらの熱延板に昇温速度:9.5 ℃/sで
昇温して1080℃・30秒間の熱延板焼鈍を施したのち、酸
洗し、ゼンジマ圧延機により120 〜190 ℃の温度域での
温間圧延を施し最終冷延板厚:0.30mmに仕上げ、脱脂処
理後、それぞれ850 ℃・2分間の脱炭・1次再結晶焼鈍
を施した。
These hot-rolled sheets were heated at a heating rate of 9.5 ° C./s, subjected to hot-rolled sheet annealing at 1080 ° C. for 30 seconds, pickled, and pickled at 120 to 190 ° C. by a Sendzima rolling mill. The steel sheet was warm-rolled in a temperature range, finished to a final cold-rolled sheet thickness: 0.30 mm, and after degreasing, each was subjected to decarburization and primary recrystallization annealing at 850 ° C. for 2 minutes.

【0040】ついで、これらの脱炭焼鈍板に、それぞれ
表2に示す焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を、1180℃の温度まで30℃/sの昇温速度で昇温し7時
間保持したのち降温するヒートパターンで、昇温時400
℃の温度まではN2 雰囲気中で、その後は表2に示す雰
囲気中でそれぞれ行った。
Next, after applying an annealing separator shown in Table 2 to each of these decarburized annealed sheets, the final finish annealing was performed at a temperature increasing rate of 30 ° C./s to a temperature of 1180 ° C. A heat pattern that keeps the temperature for a while and then cools down.
The test was performed in an N 2 atmosphere up to a temperature of ° C., and thereafter in an atmosphere shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】その後、各鋼板について、それぞれ未反応
焼鈍分離剤を除去したのち、50%のコロイダルシリカを
含有するりん酸マグネシウムを主成分とする絶縁コーテ
ィングを塗布し、800 ℃の温度で焼付け製品とした。
Then, after removing the unreacted annealing separator for each steel sheet, an insulating coating mainly containing magnesium phosphate containing 50% of colloidal silica was applied, and the product was baked at a temperature of 800 ° C. did.

【0043】かくして得られた各製品より、圧延直角方
向に沿って圧延方向を長辺としたエプスタインサイズの
試験片を切り出し800 ℃の温度で3時間の歪取り焼鈍を
施したのち、1.7 Tの磁束密度における鉄損(
W17/50 )および磁束密度(B8)をそれぞれ測定すると
ともに、各製品の平均結晶粒径も測定した。これらの測
定結果を表3にまとめて示す。
From each of the products thus obtained, a test piece of Epstein size having a long side extending in the rolling direction along the direction perpendicular to the rolling direction was cut out, subjected to strain relief annealing at a temperature of 800 ° C. for 3 hours, and then subjected to 1.7 T for 1.7 T. Iron loss in magnetic flux density (
W 17/50 ) and magnetic flux density (B 8 ) were measured, and the average crystal grain size of each product was also measured. Table 3 summarizes the measurement results.

【0044】[0044]

【表3】 [Table 3]

【0045】表3から明らかなように、最終仕上げ焼鈍
において高温までN2 単味の雰囲気で処理した条件記号
AおよびBの製品は磁気特性が劣化している。また、焼
鈍分離剤に含有させるべき成分として、Ca,BおよびTi
が磁気特性のさらなる向上に有利な成分であることも理
解できる。これは脱炭焼鈍時に鋼板表層に生成したSiO2
と焼鈍分離剤の主成分であるMgO とが最終仕上げ焼鈍時
に反応してフォルステライト(Mg2SiO4) を主成分とする
被膜を鋼板表面に形成しているが、焼鈍分離剤にCa, B
およびTiなどの成分を添加することによって、被膜中に
これらの窒化物または酸化物が形成して被膜の強化作用
が高められ被膜の張力効果が増大する結果、磁気特性を
向上させたものと考えられる。
As is evident from Table 3, the magnetic properties of the products of the condition symbols A and B, which were treated in the final finish annealing to a high temperature in an atmosphere of plain N 2, were deteriorated. In addition, as components to be contained in the annealing separator, Ca, B and Ti
Can be understood to be a component that is advantageous for further improving the magnetic properties. This is due to the SiO 2 formed on the surface of the steel sheet during decarburization annealing.
And MgO, which is the main component of the annealing separator, react during the final annealing to form a coating mainly composed of forsterite (Mg 2 SiO 4 ) on the steel sheet surface.
It is thought that by adding components such as and Ti, these nitrides or oxides are formed in the coating to enhance the strengthening effect of the coating and increase the tensile effect of the coating, resulting in improved magnetic properties. Can be

【0046】最終仕上げ焼鈍の雰囲気はかかる被膜中の
酸化物や窒化物の形成に重要な働きをしており、焼鈍の
中期から後期にかけて特に還元性を強めておくことで、
さらに良好な効果が得られたものと推定される。
The atmosphere of the final finish annealing plays an important role in the formation of oxides and nitrides in such a film, and by increasing the reducibility particularly in the middle to late stages of the annealing,
It is presumed that a better effect was obtained.

【0047】以上これらの実験・調査をもとに鋭意研究
の結果、この発明を完成させたものである。
The present invention has been completed as a result of intensive studies based on these experiments and investigations.

【0048】つぎに、この発明の方向性電磁鋼板の成分
組成や製造方法について、この発明の効果を得るための
要件とその範囲および作用について詳述する。まず、成
分組成について述べる。
Next, with respect to the component composition and the production method of the grain-oriented electrical steel sheet of the present invention, the requirements for obtaining the effects of the present invention, the range thereof, and the operation will be described in detail. First, the component composition will be described.

【0049】C:0.025 〜0.095 % Cは、含有量が0.095 %を超えるとγ変態量が過剰とな
り、熱間圧延中のAlの分布が不均一となって熱延板焼鈍
や中間焼鈍の昇温過程で析出するBNの分布の均一性を
阻害し、また、脱炭焼鈍の負荷も増大して脱炭不良が発
生しやすくなる。一方、0.025 %未満では、組織改善効
果が得られず2次再結晶が不完全となり磁気特性が劣化
する。したがって、その含有量は0.025 〜0.095 %の範
囲とする。
C: 0.025 to 0.095% If the content of C exceeds 0.095%, the amount of γ transformation becomes excessive, the distribution of Al during hot rolling becomes uneven, and the rise of hot-rolled sheet annealing and intermediate annealing increases. The uniformity of distribution of BN precipitated during the temperature process is impaired, and the load of decarburization annealing is increased, so that poor decarburization is likely to occur. On the other hand, if it is less than 0.025%, the effect of improving the structure cannot be obtained, and the secondary recrystallization becomes incomplete and the magnetic properties deteriorate. Therefore, its content is in the range of 0.025 to 0.095%.

【0050】Si:1.5 〜7.0 % Siは、電気抵抗を増加させ鉄損を低減させるために必須
の成分であり、このためには1.5 %以上含有させること
が必要であるが、7.0 %を超えて含有させると加工性が
劣化し製品の製造や製品の加工が極めて困難になる。し
たがって、その含有量は1.5 〜7.0 %の範囲とする。
Si: 1.5 to 7.0% Si is an essential component for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 1.5% or more. If it is contained, the processability deteriorates, and it becomes extremely difficult to manufacture and process the product. Therefore, its content is in the range of 1.5 to 7.0%.

【0051】Mn:0.03〜2.5 % Mnは、Siと同様に電気抵抗を高め、また製造時の熱間加
工性を向上させるので重要な成分である。この目的のた
めには0.03%以上含有させることが必要であるが、2.5
%を超えて含有させるとγ変態を誘起して磁気特性が劣
化する。したがって、その含有量は0.03〜2.5 %の範囲
とする。
Mn: 0.03 to 2.5% Mn is an important component because it increases the electric resistance and improves the hot workability at the time of manufacturing like Si. For this purpose, it is necessary to contain 0.03% or more.
%, Magnetic properties are deteriorated by inducing γ transformation. Therefore, its content is in the range of 0.03 to 2.5%.

【0052】鋼中にはこれらの成分のほかに、2次再結
晶を誘起させるためのインヒビターが必要で、インヒビ
ター成分としてBおよびNを含有させることが必要であ
る。
In addition to these components, an inhibitor for inducing secondary recrystallization is required in the steel, and it is necessary to contain B and N as inhibitor components.

【0053】B:0.0008〜0.0085% Bは、含有量が0.0008%未満では、熱延板焼鈍や中間焼
鈍の昇温過程で析出するBNの量が不足し良好な2次再
結晶を得ることができない。逆に0.0085%を超える場
合、BNの析出温度が高くなり、通常の熱間圧延ではB
Nの析出を抑制することができなくなる。したがって、
その含有量は0.0008〜0.0085%の範囲とする。
B: 0.0008% to 0.0085% If the B content is less than 0.0008%, the amount of BN precipitated in the process of increasing the temperature of hot-rolled sheet annealing or intermediate annealing is insufficient, and good secondary recrystallization can be obtained. Can not. On the other hand, when the content exceeds 0.0085%, the precipitation temperature of BN becomes high, and in normal hot rolling, B
The precipitation of N cannot be suppressed. Therefore,
Its content is in the range of 0.0008 to 0.0085%.

【0054】N:0.0030〜0.0100% Nは、含有量が0.0030%未満の場合は熱延板焼鈍や中間
焼鈍の昇温過程で析出するBN量が不足し良好な2次再
結晶を得ることができなく、逆に0.0100%を超える場合
は鋼中でフクレなどの欠陥をもたらす。したがって、そ
の含有量は0.0030〜0.0100%の範囲とする。
N: 0.0030 to 0.0100% When the content of N is less than 0.0030%, the amount of BN precipitated during the heating process of hot-rolled sheet annealing or intermediate annealing is insufficient, and good secondary recrystallization can be obtained. If it is not possible, on the contrary, if it exceeds 0.0100%, defects such as blisters will be caused in the steel. Therefore, the content is in the range of 0.0030 to 0.0100%.

【0055】さらに、これらの成分のほかに若干量のS
および/またはSeを含有させることを必要とする。
Further, in addition to these components, a small amount of S
And / or Se must be contained.

【0056】SもしくはSeのうちの1種または2種の合
計:0.003 〜0.040 % Sおよび/またはSeは、鋼中にMn化合物もしくはCu化合
物として析出するが、これらにはインヒビターとしての
作用はほとんどなく、熱延板焼鈍の昇温過程において析
出するBNの析出核として機能する。微細高密度分散の
核生成のための析出物量としては少量で十分であるの
で、この機能の発現のためには、それぞれ単独あるいは
両者複合で0.003 %以上含有させれば十分である。一
方、過剰に含有する場合も過剰分が粗大析出するだけで
あるのでさして有害とはならないが、0.040 %を超えて
含有する場合は粒界に析出して熱間圧延時の加工性を阻
害する。したがって、それぞれ単独あるいは両者複合の
場合の合計の含有量は0.003 〜0.040 %の範囲とする。
One or two of S or Se: 0.003 to 0.040% S and / or Se precipitate as Mn compounds or Cu compounds in steel, but these have almost no action as inhibitors. In addition, it functions as nuclei for precipitation of BN precipitated during the temperature rising process of hot-rolled sheet annealing. Since a small amount of precipitates is sufficient for the formation of nuclei for fine and high-density dispersion, 0.003% or more of each alone or in combination of both is sufficient for the expression of this function. On the other hand, if it is contained excessively, it will not be harmful because the excess will only coarsely precipitate, but if it exceeds 0.040%, it will precipitate at grain boundaries and impede the workability during hot rolling. . Therefore, the total content in the case of each alone or in the case of a combination of both is in the range of 0.003 to 0.040%.

【0057】また、Sb,Sn,Bi, Te, Ge, P,Pb, Zn,
InおよびCrなどはインヒビターとして抑制力を強化する
補助的働きを有するので鋼中に随時添加することが好ま
しい。これらの好適含有量はそれぞれ0.0010〜0.30%の
範囲である。その他の添加成分については、例えば、N
i, CoおよびMoなどは鋼板の表面性状を改善する効果が
あるので適宜含有させることは可能である。
Further, Sb, Sn, Bi, Te, Ge, P, Pb, Zn,
Since In, Cr, and the like have an auxiliary function of reinforcing the inhibitory power as inhibitors, they are preferably added to steel as needed. Their preferred contents are each in the range of 0.0010 to 0.30%. For other additive components, for example, N
Since i, Co, Mo, and the like have an effect of improving the surface properties of the steel sheet, they can be appropriately contained.

【0058】つづいて、この発明の製造方法について述
べる。上記の成分組成に調整された方向性電磁鋼板用ス
ラブは、従来より公知のいかなる方法によっても製造す
ることができる。
Next, the manufacturing method of the present invention will be described. The slab for a grain-oriented electrical steel sheet adjusted to the above component composition can be manufactured by any conventionally known method.

【0059】該スラブは、通常のスラブ加熱に供された
のち、熱間圧延により熱延板コイルとされるが、このと
きスラブ加熱温度を1350℃以上とすることがこの発明の
重要な構成要件の一つである。このスラブ加熱温度が13
50℃未満であるとインヒビターの固溶が十分でなく、そ
の後の焼鈍工程でのBNの微細かつ均一な分散析出状態
が得られなくなる。また、熱間圧延に際しては、スラブ
加熱前後において組織の均一化のための厚み低減処理や
幅圧下処理など公知の技術を随時加えることは可能であ
る。
The slab is subjected to ordinary slab heating and then hot-rolled to form a hot-rolled sheet coil. At this time, it is important that the slab heating temperature be 1350 ° C. or higher. one of. This slab heating temperature is 13
When the temperature is lower than 50 ° C., the solid solution of the inhibitor is not sufficient, and a fine and uniform dispersed precipitation state of BN in the subsequent annealing step cannot be obtained. In the hot rolling, a known technique such as a thickness reduction process or a width reduction process for homogenizing the structure before and after the slab heating can be added as needed.

【0060】この熱間圧延においては、以下に列記する
4要件が必須となる。第1に、仕上げ圧延での累積圧下
率を85〜99%の範囲とすることである。これは、累積圧
下率が85%未満の場合熱延板でのバンド組織の間隔が大
きくなり、2次再結晶に有害となり、逆に99%を超える
と熱延板に再結晶粒が存在するようになり、冷間圧延工
程でのBNの分散析出状態が粗くなることによる。
In this hot rolling, the following four requirements are indispensable. First, the cumulative rolling reduction in finish rolling is to be in the range of 85 to 99%. This is because if the cumulative rolling reduction is less than 85%, the interval of the band structure in the hot-rolled sheet becomes large and it becomes harmful to the secondary recrystallization, and if it exceeds 99%, recrystallized grains are present in the hot-rolled sheet. And the BN dispersed precipitation state in the cold rolling step becomes coarse.

【0061】第2に、仕上げ圧延温度:T(℃)を、95
0 ℃から1150℃までの温度範囲とし、かつ、Si(%):
XおよびB(ppm):Yに応じ、下記式(1) を満たす範囲
にすることが必要である。 745 +35X+3Y≦T≦900 +35X+3Y ----(1) これは、仕上げ圧延温度が上記下限値を下回るとBNが
圧延中に析出するようになり、熱延板焼鈍や中間焼鈍に
おけるBNの微細均一な析出物が得られず所望の磁気特
性が得られなくなる。逆に上限値を上回る場合は、高温
域での圧延となり鋼中の欠陥の密度が低減しBN析出の
核となる超微細な硫化物やセレン化物の高密度の析出が
抑制され、BNの微細均一分散が阻害され磁気特性が劣
化することによる。
Second, the finishing rolling temperature: T (° C.) is set to 95
Temperature range from 0 ° C to 1150 ° C and Si (%):
X and B (ppm): It is necessary to make the range satisfying the following formula (1) according to Y. 745 + 35X + 3Y≤T≤900 + 35X + 3Y --- (1) This is because if the finishing rolling temperature is lower than the above lower limit, BN will precipitate during rolling, and the BN fine uniformity in hot-rolled sheet annealing and intermediate annealing Precipitates cannot be obtained, and desired magnetic properties cannot be obtained. On the other hand, when the value exceeds the upper limit, rolling is performed in a high-temperature region, the density of defects in the steel is reduced, and high-density precipitation of ultra-fine sulfides and selenides which are nuclei of BN precipitation is suppressed, and BN fineness This is because uniform dispersion is hindered and magnetic properties deteriorate.

【0062】第3に、熱間圧延終了後20℃/s以上の冷
却速度で急冷することが必要である。すなわち、急冷に
より過飽和状態からのBNの析出を抑制し、熱延板焼鈍
や中間焼鈍における昇温過程でのBN析出のための駆動
力を高めることになる。
Third, it is necessary to rapidly cool at a cooling rate of 20 ° C./s or more after hot rolling is completed. That is, quenching suppresses the precipitation of BN from the supersaturated state, and increases the driving force for BN precipitation during the temperature rise process in hot-rolled sheet annealing or intermediate annealing.

【0063】第4に、コイル巻取り温度を670 ℃以下と
することである。これは、巻取り温度が670 ℃を超える
場合は、過飽和状態からのBNが析出してしまいインヒ
ビターの抑制力が劣化し所望の磁気特性が得られなくな
ることによる。
Fourth, the coil winding temperature must be 670 ° C. or less. This is because if the winding temperature exceeds 670 ° C., BN is precipitated from the supersaturated state, and the inhibitory power of the inhibitor is deteriorated, so that desired magnetic properties cannot be obtained.

【0064】冷間圧延工程においては、熱延板焼鈍後の
1回冷間圧延法、熱延板焼鈍後に中間焼鈍を挟む2回冷
間圧延法または熱延板焼鈍を省略した中間焼鈍を挟む2
回冷間圧延法のいずれもが採用できる。この冷間圧延工
程における最初の焼鈍(熱延板焼鈍または中間焼鈍)で
は、その昇温過程でこの発明の骨子とするBNの微細析
出処理を行い、その後の焼鈍過程および2回目の焼鈍
(中間焼鈍)では析出したBNのオストワルド成長や再
固溶・再析出を防止するように留意することが極めて重
要である。
In the cold rolling step, a one-time cold rolling method after hot-rolled sheet annealing, a two-time cold rolling method with hot-rolled sheet annealing followed by an intermediate annealing, or an intermediate annealing without hot-rolled sheet annealing is sandwiched. 2
Any of the cold rolling methods can be adopted. In the first annealing (hot-rolled sheet annealing or intermediate annealing) in the cold rolling step, a fine precipitation treatment of BN, which is the essence of the present invention, is performed in the temperature raising step, and the subsequent annealing step and the second annealing (intermediate step) In annealing, it is extremely important to take care to prevent Ostwald ripening of the deposited BN and re-solid solution / precipitation.

【0065】この冷間圧延工程にて最初に行う焼鈍、す
なわち、熱延板焼鈍を施す1回冷間圧延法および2回冷
間圧延法においては熱延板焼鈍、熱延板焼鈍を省略する
2回冷間圧延法においては中間焼鈍での昇温過程でBN
を微細析出させるためには、その昇温過程にて、800 ℃
の温度までの昇温速度を5〜25℃/sの範囲とすること
が必要である。これは、昇温速度が5℃/s未満では析
出物が粗大に析出し、インヒヒターとしての強い抑制力
が得られず、逆に25℃/sを超える場合は析出物の析出
量が不十分となり、同じくインヒビターとしての強い抑
制力が得られなくなるためである。
In the first cold rolling method and the second cold rolling method in which the first annealing is performed in the cold rolling step, that is, the hot rolling sheet annealing, the hot rolling sheet annealing and the hot rolling sheet annealing are omitted. In the twice cold rolling method, BN
In order to finely precipitate
Is required to be in the range of 5 to 25 ° C./s. This is because if the heating rate is less than 5 ° C./s, the precipitates are coarsely deposited, and a strong inhibitory force as an inhibitor cannot be obtained. Conversely, if the temperature exceeds 25 ° C./s, the amount of the deposited precipitates is insufficient. This is also because it becomes impossible to obtain a strong inhibitory force as an inhibitor.

【0066】さらに、この焼鈍は900 〜1150℃の温度範
囲で150 秒間以下の保持時間とすることが必要である。
すなわち、焼鈍温度が過度に低い場合、圧延後の再結晶
組織において2次再結晶の核となる(110)粒の強度
が不足し良好な方位の2次再結晶組織が得られなくなる
ことから、(110)粒の十分な強度を得るためにこの
焼鈍後の結晶組織を一定サイズ以上に粗大化しておく必
要がある。このためには900 ℃以上の温度で焼鈍するこ
とが不可欠となる。また、焼鈍温度の上限については、
昇温過程で微細に析出させたBNをオストワルド成長も
しくは再固溶させないことがもっとも肝要な点となる。
このためには1150℃以下の焼鈍温度としかつ保持時間を
150 秒間以下とすることが必要とされる。このように焼
鈍温度を低温化することにこの発明の特徴があり、かく
して、1次再結晶粒の組織中に(110)粒の強度を増
加させることが可能となり、結果として高磁束密度でか
つ細粒組織の2次再結晶を得ることができる。
Further, it is necessary that the annealing be performed at a temperature of 900 to 1150 ° C. for a holding time of 150 seconds or less.
That is, if the annealing temperature is excessively low, the strength of the (110) grains serving as nuclei for secondary recrystallization in the recrystallized structure after rolling is insufficient, and a secondary recrystallized structure having a good orientation cannot be obtained. In order to obtain sufficient strength of the (110) grains, it is necessary that the crystal structure after annealing is coarsened to a certain size or more. For this purpose, annealing at a temperature of 900 ° C. or more is indispensable. Also, regarding the upper limit of the annealing temperature,
The most important point is not to grow Ostwald or re-dissolve the BN finely precipitated during the heating process.
For this purpose, set the annealing temperature to 1150 ° C or less and set the holding time
It must be less than 150 seconds. As described above, the present invention is characterized by lowering the annealing temperature. Thus, it becomes possible to increase the strength of the (110) grains in the structure of the primary recrystallized grains. Secondary recrystallization of a fine grain structure can be obtained.

【0067】また、かかる焼鈍の冷却過程については、
特に必要とされる点はないが、焼鈍後の鋼中の固溶Cを
増加させる急冷処理を行ったり、鋼中に微細カーバイド
を析出させるための急冷処理と、それに続く低温保持処
理を行ったりすることは、製品の磁気特性を向上させる
ので有効である。ここで、急冷処理とは、自然放冷より
も早い冷却速度となるように気体および/または液体を
冷却媒として鋼板に吹きつける処理で、例えばN2 ガス
を吹きつけたり、ミスト水やジェット水を吹きつけ鋼板
を冷却させる処理のことである。
Further, regarding the cooling process of the annealing,
Although not particularly required, quenching treatment to increase solid solution C in the steel after annealing, quenching treatment to precipitate fine carbide in the steel, and subsequent low-temperature holding treatment Doing so is effective because it improves the magnetic properties of the product. Here, the quenching process is a process of blowing a gas and / or a liquid as a cooling medium onto a steel sheet so as to have a cooling rate faster than natural cooling, for example, blowing N 2 gas, or spraying mist water or jet water. This is the process of cooling the sprayed steel plate.

【0068】さらに、焼鈍雰囲気の酸化性を高めて、鋼
板表層部を脱炭する公知の手段も有効に作用する。この
最終冷間圧延前の熱延板焼鈍や、中間焼鈍での脱炭量は
0.005 〜0.025 %の範囲とすることがよい。かかる脱炭
処理によって鋼板表層部のC含有量が低下し、焼鈍時の
γ変態量が低減するため、2次再結晶の核が生成する板
厚表層部のインヒビターの抑制力が強化され、より好ま
しい2次再結晶を得ることができる。この効果を得るた
めには、鋼板のC含有量を0.005 %以上低減することが
よい。しかし、0.025 %を超えて低減した場合、1次再
結晶組織を劣化させるので好ましくない。
Further, a known means for increasing the oxidizing property of the annealing atmosphere and decarburizing the surface layer of the steel sheet also works effectively. The amount of decarburization in hot-rolled sheet annealing and intermediate annealing before this final cold rolling is
It is better to be in the range of 0.005 to 0.025%. Due to such decarburization treatment, the C content of the surface layer of the steel sheet is reduced, and the amount of γ transformation during annealing is reduced, so that the inhibitory force of the inhibitor on the surface layer of the sheet thickness at which nuclei for secondary recrystallization is generated is enhanced, Preferred secondary recrystallization can be obtained. To obtain this effect, the C content of the steel sheet is preferably reduced by 0.005% or more. However, if the content is reduced beyond 0.025%, the primary recrystallized structure is deteriorated, which is not preferable.

【0069】なお、熱延板焼鈍後2回冷間圧延法の2番
目の焼鈍(中間焼鈍)についても、微細析出したBNの
状態を保つためおよび結晶組織の調整のために最初の焼
鈍と同様に900 〜1150℃の温度範囲で150 秒間以下の焼
鈍とする。
The second annealing (intermediate annealing) of the cold rolling twice after the hot-rolled sheet annealing is the same as the first annealing for maintaining the state of finely precipitated BN and adjusting the crystal structure. Annealing at a temperature in the range of 900 to 1150 ° C for 150 seconds or less.

【0070】冷間圧延の圧下率については、従来から公
知のように、最終冷間圧延の圧下率を80〜95%の範囲と
することが必要である。これは、圧下率が95%を超える
と2次再結晶が困難となり、80%未満ては良好な2次再
結晶粒の方位が得られず、ともに製品での磁束密度が劣
化することによる。
Regarding the rolling reduction of the cold rolling, it is necessary that the rolling reduction of the final cold rolling be in the range of 80 to 95% as conventionally known. This is because when the rolling reduction exceeds 95%, secondary recrystallization becomes difficult, and when the rolling reduction is less than 80%, a good orientation of secondary recrystallized grains cannot be obtained, and the magnetic flux density of the product deteriorates.

【0071】また、2回冷間圧延法の第1回目の圧延圧
下率は15〜60%の範囲とする。これは、圧下率が15%未
満の場合は圧延再結晶の機構が作用せず結晶組織の均一
化が得られず、逆に60%を超えると結晶組織の集積化が
起り第2回目の圧延の効果が得られなくなるためであ
る。
The rolling reduction in the first rolling of the two-time cold rolling is in the range of 15 to 60%. If the rolling reduction is less than 15%, the mechanism of rolling recrystallization does not work and the crystal structure cannot be homogenized. Conversely, if it exceeds 60%, the crystal structure is integrated and the second rolling is performed. This is because the effect of (1) cannot be obtained.

【0072】さらに、最終冷間圧延においては、公知の
ように90〜350 ℃の温度範囲での温間圧延を行うこと
や、100 〜300 ℃の温度範囲で10〜60分間の時間範囲の
パス間時効処理を行うことは、1次再結晶集合組織を改
善する効果を有しより好ましい結果が得られるので、こ
の発明に適用することは有意である。
Further, in the final cold rolling, it is possible to carry out warm rolling in a temperature range of 90 to 350 ° C. in a known manner, or to pass in a time range of 10 to 60 minutes at a temperature range of 100 to 300 ° C. Performing the intermediate aging treatment has the effect of improving the primary recrystallized texture and more preferable results are obtained, and therefore, it is significant to apply the present invention to the present invention.

【0073】なお、最終冷間圧延後に、公知のように磁
区細分化のため鋼板表面に線状の溝を設けることもよ
い。
After the final cold rolling, a linear groove may be provided on the surface of the steel sheet for magnetic domain refinement as is known.

【0074】かかる方法により最終冷延板厚とした鋼板
は、公知の手法による1次再結晶焼鈍を施したのち、Mg
O を主成分とする焼鈍分離剤を鋼板表面に塗布してから
最終仕上げ焼鈍に供されるが、焼鈍分離剤にTi化合物を
添加したりCaやBを含有させることは磁気特性をさらに
向上させる効果を有するので好ましい。
The steel sheet having the final cold-rolled thickness obtained by the above method is subjected to primary recrystallization annealing by a known method,
An annealing separator containing O 2 as a main component is applied to the steel sheet surface and then subjected to final finish annealing.Adding a Ti compound or adding Ca or B to the annealing separator further improves the magnetic properties It is preferable because it has an effect.

【0075】最終仕上げ焼鈍においては、昇温途中の少
なくとも900 ℃以上の温度からはH 2 を含有する雰囲気
中で昇温することが必要である。すなわち、高温までN
2 雰囲気中で焼鈍すると、その最終仕上げ焼鈍中に鋼板
の窒化が進行し方位の劣る結晶粒が2次再結晶し磁束密
度の劣化を招く。したがって最終仕上げ焼鈍の雰囲気は
少なくとも900 ℃以上の温度においてH2 を通入するこ
とが必要である。また、H2 を含む雰囲気とすること
は、被膜張力の向上効果が期待できる被膜中のTi,Caお
よびBなどの酸化物や窒化物の形成に重要な働きをして
おり、そのためには、900 ℃以上の温度の焼鈍中期から
後期にかけて特に還元性を強めておくことが重要である
と考えられる。
In the final finish annealing, a small amount of
H from at least 900 ° C TwoAtmosphere containing
It is necessary to raise the temperature inside. That is, N
TwoAnnealing in the atmosphere, during the final annealing
Nitriding progresses, crystal grains with poor orientation recrystallize secondarily, and magnetic flux density increases
Deterioration of degree. Therefore, the final finish annealing atmosphere is
H at least over 900 ° CTwoThrough
Is necessary. Also, HTwoAtmosphere including
Means that Ti, Ca and
And plays an important role in the formation of oxides and nitrides such as B
For this purpose, from the middle stage of annealing at a temperature of 900 ℃ or more
It is important to enhance the reducibility especially in the latter period
it is conceivable that.

【0076】この最終仕上げ焼鈍後は、未反応焼鈍分離
剤を除去したのち、鋼板表面に絶縁コーティングを塗布
して製品とするが、必要に応じてコーティング塗布前に
鋼板表面を鏡面化してもよいし、絶縁コーティングとし
て張力コーティングを用いてもよく、また、コーティン
グの塗布焼付け処理を平坦化処理と兼ねてもよい。
After the final annealing, after removing the unreacted annealing separating agent, an insulating coating is applied to the surface of the steel sheet to obtain a product. If necessary, the surface of the steel sheet may be mirror-finished before coating. In addition, a tension coating may be used as the insulating coating, and the coating baking process may also serve as a planarization process.

【0077】さらに、2次再結晶後の鋼板には鉄損の低
減をはかるため、公知の磁区細分化処理としてプラズマ
ジェットやレーザ照射を線状に施したり、突起ロールに
よる線状のへこみを設けたりする処理を施すこともでき
る。
Further, in order to reduce iron loss, the steel sheet after the secondary recrystallization is subjected to a plasma jet or laser irradiation as a well-known magnetic domain refining treatment, or a linear dent is formed by a projection roll. Or other processing can be performed.

【0078】[0078]

【実施例】【Example】

実施例1 C:0.08%、Si:3.32%、Mn:0.07%、Al:0.008 %、
S:0.003 %、Sb:0.02%、Se:0.015 %、B:0.0035
%およびN:0.008 %を含有し、残部はFeおよび不可避
的不純物からなる組成のスラブを、1420℃の温度に加熱
し、圧延終了温度:1230℃で板厚:45mmのシートバーと
する粗圧延後、圧延終了温度:1020℃で板厚:2.2 mmと
する仕上げ圧延を施したのち、冷却水を噴射させて25℃
/sの冷却速度で冷却し600 ℃の温度でコイル状に巻取
り熱延板コイルとした。
Example 1 C: 0.08%, Si: 3.32%, Mn: 0.07%, Al: 0.008%,
S: 0.003%, Sb: 0.02%, Se: 0.015%, B: 0.0035
% And N: 0.008%, the remainder being a slab having a composition consisting of Fe and unavoidable impurities, heated to a temperature of 1420 ° C. to obtain a sheet bar having a rolling end temperature of 1230 ° C. and a sheet thickness of 45 mm. After finishing the rolling at a rolling end temperature of 1020 ° C. and a thickness of 2.2 mm, the cooling water is sprayed at 25 ° C.
/ S and cooled at a temperature of 600 ° C. into a coil to obtain a hot-rolled coil.

【0079】この熱延板を1100℃の温度まで15.5℃/s
の昇温速度で昇温し30秒間保持する熱延板焼鈍を施した
のち酸洗し、板厚:1.5 mmに冷間圧延した。ついで、こ
の冷延板コイルを2等分し、露点:40℃のH2雰囲気中で
の中間焼鈍を施し、C含有量を0.06%まで低減したが、
その際、一方のコイルをこの発明の適合例として1080℃
・50秒間の焼鈍条件、他方のコイルを比較例として1200
℃・50秒間の焼鈍条件とした。これらの中間焼鈍板をそ
れぞれ鋼板温度:220 ℃での温間圧延により最終冷延板
厚:0.22mmに仕上げた。
This hot-rolled sheet was heated to a temperature of 1100 ° C. at 15.5 ° C./s.
The steel sheet was annealed at a temperature rising rate of 30 ° C. and kept for 30 seconds, followed by pickling and cold rolling to a sheet thickness of 1.5 mm. Next, the cold-rolled sheet coil was divided into two equal parts, and subjected to intermediate annealing in an H 2 atmosphere at a dew point of 40 ° C. to reduce the C content to 0.06%.
At this time, one coil is set at 1080 ° C.
・ Annealing condition for 50 seconds, 1200 for the other coil as a comparative example
An annealing condition of 50 ° C. for 50 seconds was set. These intermediate annealed sheets were each finished to a final cold-rolled sheet thickness: 0.22 mm by warm rolling at a steel sheet temperature of 220 ° C.

【0080】その後、これらの冷延板を脱脂処理し、85
0 ℃・2分間の脱炭・1次再結晶焼鈍を施したのち、0.
5 %のCaと0.09%のBを含有するMgO にTiO2を5%添加
した焼鈍分離剤を塗布してから、最終仕上げ焼鈍とし
て、N2雰囲気中で800 ℃の温度までを30℃/hの昇温速
度で、N2:25%、H2:75%の混合雰囲気中で800 ℃から
1050℃の温度までを12.5℃/hの昇温速度で昇温し、つ
づいてH2雰囲気中で1200℃の温度まで25℃/hの昇温速
度で昇温してこの温度で6時間保持したのち降温した。
このとき600 ℃の温度までをH2雰囲気、600 ℃からはN
2 雰囲気で降温する処理をそれぞれ施した。
Thereafter, these cold-rolled sheets were degreased, and
After decarburization and primary recrystallization annealing at 0 ° C for 2 minutes,
After applying an annealing separator containing 5% of TiO 2 to MgO containing 5% of Ca and 0.09% of B, the final finishing annealing is performed at a temperature of 800 ° C. in an N 2 atmosphere at a temperature of 30 ° C./h. At a heating rate of 800 ° C in a mixed atmosphere of N 2 : 25% and H 2 : 75%
The temperature was raised to a temperature of 1050 ° C at a temperature rising rate of 12.5 ° C / h, and then heated to a temperature of 1200 ° C in a H 2 atmosphere at a temperature rising rate of 25 ° C / h and held at this temperature for 6 hours. After that, the temperature dropped.
At this time, up to a temperature of 600 ° C. in an H 2 atmosphere,
Each treatment was performed to lower the temperature in two atmospheres.

【0081】最終仕上げ焼鈍後は、未反応の焼鈍分離剤
を除去したのち、50%のコロイダルシリカを含有するり
ん酸マグネシウムを張力コーティングとして塗布して80
0 ℃の温度で焼付けたのち、磁区細分化処理としてプラ
ズマジェットを6mmピッチで照射しそれぞれ製品とし
た。
After the final annealing, the unreacted annealing separator is removed, and then magnesium phosphate containing 50% of colloidal silica is applied as a tension coating to form a coating.
After baking at a temperature of 0 ° C., a plasma jet was applied at a pitch of 6 mm as a magnetic domain refining treatment to obtain each product.

【0082】これらの製品について調査した磁気特性の
測定結果は以下の通りである。 磁気密度B8(T) 鉄損W17/50(W/kg) 適合例 1.964 0.678 比較例 1.902 0.938
The measurement results of the magnetic properties examined for these products are as follows. Magnetic density B 8 (T) Iron loss W 17/50 (W / kg) Applicable example 1.964 0.678 Comparative example 1.902 0.938

【0083】上記結果から明らかなように、中間焼鈍温
度がこの発明の限定範囲を外れて高い比較例に比し、こ
の発明の適合例は極めて優れる磁気特性を示している。
As is apparent from the above results, the intermediate examples are out of the limited range of the present invention and are higher than the comparative examples, and the conforming examples of the present invention show extremely excellent magnetic properties.

【0084】実施例2 表4に示す種々の成分組成になる各スラブを、それぞれ
1430℃の温度に加熱したのち、板厚:50mmのシートバー
に1250℃の温度で粗圧延後、仕上げ圧延終了温度を、記
号I〜VII およびXの鋼については1000℃、記号VIII、
XI、XII およびXIV の鋼については1020℃、その他の鋼
については1100℃としてそれぞれ板厚:2.6 mmに仕上げ
圧延し、ジェット水を噴射して35〜55℃/sの冷却速度
で冷却して550 ℃の温度でコイル状に巻取り熱延板コイ
ルとした。
Example 2 Each slab having various component compositions shown in Table 4 was
After heating to a temperature of 1430 ° C., after rough rolling at a temperature of 1250 ° C. on a sheet bar having a thickness of 50 mm, the finish rolling end temperature was set to 1000 ° C. for symbols I to VII and X, and symbol VIII,
XI, XII, and XIV steels are rolled to 1020 ° C, and the other steels are rolled to a thickness of 2.6 mm at 1100 ° C, jetted with water, and cooled at a cooling rate of 35 to 55 ° C / s. It was wound into a coil at a temperature of 550 ° C. to obtain a hot-rolled coil.

【0085】[0085]

【表4】 [Table 4]

【0086】これらの熱延板を酸洗し、板厚:1.8 mmに
冷間圧延後、15℃/sの昇温速度で1080℃まで昇温し露
点:50℃のH2雰囲気中50秒間保持する中間焼鈍を施した
のち、230 ℃の鋼板温度での温間圧延により最終冷延板
厚:0.26mmに仕上げた。これらの冷延板に脱脂処理を施
し、850 ℃・2分間の脱炭・1次再結晶焼鈍を施したの
ち、MgO に8%のTiO2と2%のSr (OH)2とを添加した焼
鈍分離剤を塗布しコイル状に巻き取ってから、最終仕上
げ焼鈍として、N2雰囲気中で850 ℃の温度までを30℃/
hの昇温速度で昇温してこの温度で25時間保持したの
ち、N2:25%、H2:75%の混合雰囲気中で850 ℃から15
℃/hの昇温速度で1200℃の温度まで昇温し、この温度
にH2雰囲気中で5時間保持後降温した。
These hot-rolled sheets were pickled, cold-rolled to a thickness of 1.8 mm, and then heated to 1080 ° C. at a rate of 15 ° C./s for 50 seconds in an H 2 atmosphere at a dew point of 50 ° C. After the holding intermediate annealing, the final cold-rolled sheet thickness: 0.26 mm was completed by warm rolling at a steel sheet temperature of 230 ° C. These cold-rolled sheets were degreased, decarburized at 850 ° C. for 2 minutes and subjected to primary recrystallization annealing, and then 8% TiO 2 and 2% Sr (OH) 2 were added to MgO. after winding the annealing separator to the coated shaped coil, as a final finish annealing, to a temperature of 850 ° C. in a N 2 atmosphere 30 ° C. /
h, and the temperature was maintained at this temperature for 25 hours. Then, the temperature was raised from 850 ° C. to 15% in a mixed atmosphere of N 2 : 25% and H 2 : 75%.
° C. / at a Atsushi Nobori rate was raised to a temperature of 1200 ° C. of h, the temperature was lowered after 5 hours maintained in an H 2 atmosphere in this temperature.

【0087】その後、未反応焼鈍分離剤を除去したの
ち、60%のコロイダルシリカを含有する張力コーティン
グを塗布し焼付けて製品とした。これらの製品について
調査した磁気特性の測定結果を表5にまとめて示す。
After removing the unreacted annealing separator, a tension coating containing 60% colloidal silica was applied and baked to obtain a product. Table 5 summarizes the measurement results of the magnetic properties investigated for these products.

【0088】[0088]

【表5】 [Table 5]

【0089】表5から明らかなように、成分組成がこの
発明の限定範囲を外れる比較例に比し、この発明の適合
例はいずれも良好な磁気特性を示している。
As is clear from Table 5, all of the applicable examples of the present invention show good magnetic properties as compared with the comparative examples in which the component compositions are out of the limited range of the present invention.

【0090】実施例3 C:0.075 %、Si:3.05%、Mn:0.07%、Al:0.012
%、S:0.015 %、Sb:0.02%、B:0.0010%および
N:0.0075%を含有し、残部はFeおよび不可避的不純物
からなる組成のスラブ(a) 、C:0.078 %、Si:3.37
%、Mn:0.07%、Al:0.010 %、S:0.016 %、Sb:0.
02%、B:0.0038%およびN:0.0077%を含有し、残部
はFeおよび不可避的不純物からなる組成のスラブ(b) 、
C:0.068 %、Si:3.49%、Mn:0.07%、Al:0.011
%、S:0.0016%、Sb:0.02%、B:0.0043%および
N:0.0075%を含有し、残部はFeおよび不可避的不純物
からなる組成のスラブ(c) およびC:0.074 %、Si:3.
23%、Mn:0.07%、Al:0.009 %、S:0.004 %、Sb:
0.02%、B:0.0022%およびN:0.0075%を含有し、残
部はFeおよび不可避的不純物からなる組成のスラブ(d)
の各2本づつを、1390℃の温度に加熱して、板厚:35mm
のシートバーに粗圧延し、仕上げ圧延終了温度を965 ℃
と1055℃の2種類として板厚:2.2 mmに圧延したのち、
ジェット水を噴射して50℃/sの冷却速度で急冷して57
0 ℃の温度でコイル状に巻取りそれぞれ熱延板とした。
Example 3 C: 0.075%, Si: 3.05%, Mn: 0.07%, Al: 0.012
%, S: 0.015%, Sb: 0.02%, B: 0.0010% and N: 0.0075%, with the balance being a slab (a) composed of Fe and unavoidable impurities, C: 0.078%, Si: 3.37
%, Mn: 0.07%, Al: 0.010%, S: 0.016%, Sb: 0.
A slab (b) having a composition of 02%, B: 0.0038% and N: 0.0077%, with the balance being Fe and unavoidable impurities;
C: 0.068%, Si: 3.49%, Mn: 0.07%, Al: 0.011
%, S: 0.0016%, Sb: 0.02%, B: 0.0043%, and N: 0.0075%, with the balance being slab (c) composed of Fe and unavoidable impurities and C: 0.074%, Si: 3.
23%, Mn: 0.07%, Al: 0.009%, S: 0.004%, Sb:
Slab containing 0.02%, B: 0.0022% and N: 0.0075%, with the balance being Fe and unavoidable impurities (d)
Each of the two is heated to a temperature of 1390 ℃, the thickness of the plate: 35mm
Rough rolling on sheet bar, finish rolling temperature 965 ℃
And 1055 ° C, rolled to a thickness of 2.2 mm,
Jet water is sprayed to rapidly cool at a cooling rate of 50 ° C / s.
It was wound into a coil at a temperature of 0 ° C. to form a hot rolled sheet.

【0091】これらの熱延板にそれぞれ15℃/sの昇温
速度で1100℃まで昇温し30秒間保持する熱延板焼鈍を施
したのち、酸洗し、中間板厚:1.5 mmとする冷間圧延
後、中間焼鈍を施した。この中間焼鈍では、1080℃の温
度で60秒間保持したのち、ミスト水を噴射して40℃/s
の冷却速度で急冷し350 ℃の温度で30秒間保持するカー
バイドの析出処理を行った。
Each of these hot-rolled sheets was subjected to hot-rolled sheet annealing at a heating rate of 15 ° C./s to 1100 ° C. and holding for 30 seconds, followed by pickling to make the intermediate sheet thickness: 1.5 mm. After cold rolling, intermediate annealing was performed. In this intermediate annealing, after holding at a temperature of 1080 ° C. for 60 seconds, mist water is sprayed and 40 ° C./s
Quenching was performed at a cooling rate of 350 ° C., and a precipitation treatment of carbide was carried out at a temperature of 350 ° C. for 30 seconds.

【0092】その後、各鋼板はゼンジマー圧延機によっ
て150 〜230 ℃の温度範囲で10〜30分間の範囲のパス間
時効処理を施しながら、それぞれ最終冷延板厚:0.22mm
に圧延した。これらの冷延板に脱脂処理を施したのち、
磁区細分化処理として50μm の幅で深さ20μm の溝を鋼
板幅方向から15度の角度の線状に4mmのピッチで設けた
のち、850 ℃・2分間の脱炭・1次再結晶焼鈍を施し、
0.22%のCaおよび0.08%のBを含有するMgO に7.5 %の
TiO2および3%のSnO2を添加した焼鈍分離剤を塗布しコ
イル状に巻き取ってから、最終仕上げ焼鈍として、N2
囲気中で850 ℃の温度まで30℃/hの昇温速度で昇温し
この温度に25時間保持後、N2:25、H2:75%の混合雰囲
気中で1150℃の温度まで昇温速度:15℃/hで昇温し、
H2雰囲気中でこの温度に5時間保持したのち降温する処
理をそれぞれ施した。
Thereafter, each steel sheet was subjected to an inter-pass aging treatment in a temperature range of 150 to 230 ° C. for a period of 10 to 30 minutes by a Sendzimer rolling mill, and a final cold-rolled sheet thickness: 0.22 mm, respectively.
Rolled. After degreasing these cold rolled sheets,
As a magnetic domain refining process, grooves with a width of 50 μm and a depth of 20 μm are provided linearly at a pitch of 4 mm at an angle of 15 degrees from the width direction of the steel sheet, and then decarburization and primary recrystallization annealing at 850 ° C. for 2 minutes. Alms,
7.5% MgO containing 0.22% Ca and 0.08% B
After applying an annealing separator containing TiO 2 and 3% SnO 2 and winding it into a coil, the final finishing annealing is performed in a N 2 atmosphere to a temperature of 850 ° C. at a rate of 30 ° C./h. After heating and maintaining at this temperature for 25 hours, the temperature was raised to a temperature of 1150 ° C. in a mixed atmosphere of N 2 : 25, H 2 : 75% at a heating rate of 15 ° C./h,
After maintaining at this temperature for 5 hours in an H 2 atmosphere, a treatment for lowering the temperature was performed.

【0093】その後、未反応焼鈍分離剤を除去したの
ち、50%のコロイダルシリカを含有する張力コーティン
グを塗布し焼付けてそれぞれ製品とした。これらの製品
について調査した磁気特性の測定結果を表6にまとめて
示す。
After removing the unreacted annealing separator, a tension coating containing 50% of colloidal silica was applied and baked to obtain respective products. Table 6 summarizes the measurement results of the magnetic properties investigated for these products.

【0094】[0094]

【表6】 [Table 6]

【0095】表6から明らかなように、熱間仕上げ圧延
温度(T) が745 +35X+3Y≦T≦900 +35X+3Yを
満足するこの発明の適合例は、いずれも極めて低い鉄損
を示している。
As is clear from Table 6, all of the applicable examples of the present invention in which the hot finish rolling temperature (T) satisfies 745 + 35X + 3Y ≦ T ≦ 900 + 35X + 3Y show extremely low iron loss.

【0096】実施例4 前掲表4の記号VII の成分組成になるスラブ5本を、そ
れぞれ1400℃の温度に加熱して板厚:50mmのシートバー
に粗圧延後、仕上げ圧延終了温度:1030℃、板厚:2.7m
m とする圧延を施したのち、ジェット水を噴射して40℃
/sの速度で急冷し600 ℃の温度でコイル状に巻取りそ
れぞれ熱延板とした。
Example 4 Five slabs each having the component composition of the symbol VII in Table 4 above were each heated to a temperature of 1400 ° C., roughly rolled into a sheet bar having a thickness of 50 mm, and finished at a finish rolling temperature of 1030 ° C. , Board thickness: 2.7m
m, and then jet water to 40 ° C
Quenched at a rate of 600 ° C./s and wound into a coil at a temperature of 600 ° C. to form hot rolled sheets.

【0097】これらの熱延板に17℃/sの昇温速度で11
00℃の温度まで昇温し60秒間保持する熱延板焼鈍を施し
たのち、酸洗し、最終冷延板厚:0.30mmとする冷間圧延
後、脱脂処理を施し、850 ℃・2分間の脱炭・1次再結
晶焼鈍をそれぞれ施した。
These hot-rolled sheets were heated at a rate of 17 ° C./s for 11 hours.
After hot-rolled sheet annealing, which is heated to a temperature of 00 ° C and held for 60 seconds, is pickled, cold-rolled to a final cold-rolled sheet thickness of 0.30 mm, degreased, and 850 ° C for 2 minutes. , And primary recrystallization annealing.

【0098】その後、前掲表2に示したA〜Eの焼鈍分
離剤塗布と焼鈍雰囲気条件によってそれぞれ最終仕上げ
焼鈍を施した。この最終仕上げ焼鈍の他の条件として
は、400 ℃の温度まではN2雰囲気中とし、1200℃の温度
まで25℃/sの昇温速度で昇温し、1200℃の温度で8時
間保持したのち降温した。
Thereafter, the final finish annealing was performed according to the application of the annealing separators A to E and the annealing atmosphere conditions shown in Table 2 above. Other conditions for the final finish annealing were as follows: the temperature was 400 ° C. in an N 2 atmosphere, the temperature was raised to 1200 ° C. at a rate of 25 ° C./s, and the temperature was held at 1200 ° C. for 8 hours. Then the temperature dropped.

【0099】最終仕上げ焼鈍後は、未反応焼鈍分離剤を
除去したのち、50%のコロイダルシリカを含有するりん
酸アルミニウムを塗布し800 ℃の温度で焼き付けたの
ち、磁区細分化処理としてプラズマジェットを7mmピッ
チで線状に照射しそれぞれ製品とした。これらの製品に
ついて調査した磁気特性の測定結果を表7にまとめて示
す。
After the final annealing, the unreacted annealing separating agent is removed, aluminum phosphate containing 50% colloidal silica is applied and baked at a temperature of 800 ° C., and a plasma jet is applied as a magnetic domain refining treatment. Each product was irradiated linearly at a pitch of 7 mm. Table 7 summarizes the measurement results of the magnetic properties investigated for these products.

【0100】[0100]

【表7】 [Table 7]

【0101】表7から明らかなようにこの発明の適合例
は、いずれも極めて低い鉄損を示している。
As is apparent from Table 7, all of the applicable examples of the present invention show extremely low iron loss.

【0102】[0102]

【発明の効果】この発明は、成分組成を限定した素材を
用い、熱間圧延条件、熱延板焼鈍条件および中間焼鈍条
件を特定して冷間圧延前焼鈍でBNの析出核を微細に析出
させて方向性電磁鋼板を製造するものであり、この発明
によれば、鉄損の極めて低い高磁束密度方向性電磁鋼板
を製造することができ、近年の鉄心材料の低鉄損化要請
に有利に対応できる。
The present invention uses a material having a limited composition, specifies hot rolling conditions, hot-rolled sheet annealing conditions and intermediate annealing conditions, and finely precipitates BN precipitate nuclei by annealing before cold rolling. According to the present invention, it is possible to manufacture a high magnetic flux density oriented magnetic steel sheet having extremely low iron loss, which is advantageous in recent years for reducing iron loss of iron core materials. Can respond to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁束密度B8/B3 に及ぼす素材のSiおよびB含有
量ならびに熱間圧延終了温度の影響を示すグラフであ
る。
FIG. 1 is a graph showing the influence of the Si and B contents of a material and the hot rolling end temperature on the magnetic flux density B 8 / B 3 .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.025 〜0.095 wt%、Si:1.5 〜7.
0 wt%、Mn:0.03〜2.5 wt%およびSもしくはSeのうち
の1種または2種の合計:0.003 〜0.040 wt%を含有す
る鋼スラブを素材として、該スラブを1350℃以上の温度
に加熱し、熱間圧延後熱延板焼鈍を施してから1回冷間
圧延法または熱間圧延後熱延板焼鈍を施してから中間焼
鈍を挟む2回冷間圧延法、もしくは、熱間圧延後中間焼
鈍を挟む2回冷間圧延法のうちのいずれかの冷間圧延に
より最終冷延板厚としたのち、1次再結晶焼鈍を施し、
その後、焼鈍分離剤を塗布してから最終仕上げ焼鈍を施
す一連の工程により方向性電磁鋼板を製造するにあた
り、 素材の成分組成にインヒビター成分として、B:0.0008
〜0.0085wt%およびN:0.0030〜0.0100wt%を含有させ
ること、 熱間圧延の仕上げ圧延圧下率を85〜99%の範囲とし、仕
上げ圧延終了温度を950 〜1150℃の範囲でかつ素材のSi
含有量とB含有量との関係から下記式(1) を満たす範囲
とする熱間圧延を行ったのち、20℃/s以上の冷却速度
で急冷して670℃以下の温度でコイルに巻取ること、 熱延板焼鈍および中間焼鈍をともに、800 ℃の温度まで
5〜25℃/sの範囲の昇温速度で昇温し、900 〜1150℃
の温度範囲で保持時間を150 秒間以下とする条件で行う
こと、 冷間圧延を、1回冷間圧延法により圧下率:80〜95%の
範囲で行い最終冷延板厚とするか、もしくは、2回冷間
圧延法により第1回目の圧延を圧下率:15〜60%の範囲
で行ったのち中間焼鈍後の第2回目の圧延を圧下率:80
〜95%の範囲で行い最終冷延板厚とすること、 最終仕上げ焼鈍の昇温途中の少なくとも900 ℃以上の温
度からはH2 を含有する雰囲気中で昇温すること、 との順次組合せになることを特徴とする極めて鉄損の低
い高磁束密度方向性電磁鋼板の製造方法。 〔記〕 745 +35X+3Y≦T≦900 +35X+3Y ----(1) ただし T:仕上げ圧延終了温度(℃) X:Si(wt%) Y:B(wtppm )
1. C: 0.025-0.095 wt%, Si: 1.5-7.
A steel slab containing 0 wt%, Mn: 0.03 to 2.5 wt%, and one or two of S or Se: 0.003 to 0.040 wt% is heated as a raw material to a temperature of 1350 ° C. or more. After hot rolling, hot-rolled sheet annealing and then cold rolling once, or hot rolling and hot-rolled sheet annealing followed by double cold rolling with intermediate annealing, or after hot rolling After making the final cold-rolled sheet thickness by cold rolling of any of the two cold rolling methods sandwiching intermediate annealing, primary recrystallization annealing is performed,
Thereafter, in producing a grain-oriented electrical steel sheet by a series of steps of applying an annealing separator and then performing a final finish annealing, the composition of the material was determined to be B: 0.0008 as an inhibitor component.
~ 0.0085wt% and N: 0.0030 ~ 0.0100wt%, the finish rolling reduction rate of hot rolling is in the range of 85 ~ 99%, the finish rolling end temperature is in the range of 950 ~ 1150 ℃ and the material Si
Based on the relationship between the content and the B content, hot rolling is performed so as to satisfy the following formula (1), then rapidly cooled at a cooling rate of 20 ° C./s or more, and wound around a coil at a temperature of 670 ° C. or less. In both hot-rolled sheet annealing and intermediate annealing, the temperature is raised to a temperature of 800 ° C at a heating rate in the range of 5 to 25 ° C / s, and 900 to 1150 ° C.
Cold rolling should be performed under the condition that the holding time is not more than 150 seconds within the temperature range described above. 2. The first rolling is performed in a range of 15 to 60% by a cold rolling method twice, and then the second rolling after the intermediate annealing is performed in a rolling reduction: 80.
To a final cold-rolled sheet thickness, in the range of 95%, from the final finish annealing of heating the course of at least 900 ° C. or higher temperatures increasing the temperature in an atmosphere containing H 2, a sequential combination of A method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss. [Note] 745 + 35X + 3Y≤T≤900 + 35X + 3Y ---- (1) T: Finish rolling end temperature (° C) X: Si (wt%) Y: B (wtppm)
【請求項2】 最終冷間圧延直前の熱延板焼鈍または中
間焼鈍での冷却を、鋼板内固溶C量を高めるための急冷
処理とする請求項1に記載の極めて鉄損の低い高磁束密
度方向性電磁鋼板の製造方法。
2. The high magnetic flux with extremely low iron loss according to claim 1, wherein the cooling in the hot-rolled sheet annealing or intermediate annealing immediately before the final cold rolling is a quenching treatment for increasing the amount of solid solution C in the steel sheet. Method for producing density-oriented electrical steel sheet.
【請求項3】 最終冷間圧延直前の熱延板焼鈍または中
間焼鈍で、0.005 〜0.025 wt%の脱炭を施すことを特徴
とする請求項1または2に記載の極めて鉄損の低い高磁
束密度方向性電磁鋼板の製造方法。
3. The high magnetic flux with extremely low iron loss according to claim 1 or 2, wherein decarburization of 0.005 to 0.025 wt% is performed by hot-rolled sheet annealing or intermediate annealing immediately before final cold rolling. Method for producing density-oriented electrical steel sheet.
【請求項4】 最終冷間圧延が、90〜350 ℃の温度範囲
での温間圧延か、もしくは、100 〜300 ℃の温度範囲で
10〜60分間の時間範囲のパス間時効処理を施すものであ
る請求項1,2または3に記載の極めて鉄損の低い高磁
束密度方向性電磁鋼板の製造方法。
4. The final cold rolling is performed at a temperature of 90 to 350 ° C. or at a temperature of 100 to 300 ° C.
4. The method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely low iron loss according to claim 1, wherein an inter-pass aging treatment is performed for a time range of 10 to 60 minutes.
JP30147496A 1996-10-11 1996-11-13 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss Expired - Fee Related JP3415377B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP30147496A JP3415377B2 (en) 1996-11-13 1996-11-13 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
US08/947,641 US5885371A (en) 1996-10-11 1997-10-09 Method of producing grain-oriented magnetic steel sheet
KR1019970052026A KR100352675B1 (en) 1996-10-11 1997-10-10 Method of producing grain-oriented magnetic steel sheet
EP97117614A EP0835944B1 (en) 1996-10-11 1997-10-10 Method of producing grain-oriented magnetic steel sheet
DE69705282T DE69705282T2 (en) 1996-10-11 1997-10-10 Process for producing grain-oriented electrical sheets
BR9707089A BR9707089A (en) 1996-10-11 1997-10-10 Production method of steel sheet for oriented granulation magnetic purposes
CN97126011A CN1094981C (en) 1996-10-11 1997-10-11 Method for manufacturing high magnetic flux density oriented electric steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30147496A JP3415377B2 (en) 1996-11-13 1996-11-13 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPH10140243A true JPH10140243A (en) 1998-05-26
JP3415377B2 JP3415377B2 (en) 2003-06-09

Family

ID=17897341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30147496A Expired - Fee Related JP3415377B2 (en) 1996-10-11 1996-11-13 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP3415377B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
WO2011007817A1 (en) * 2009-07-17 2011-01-20 新日本製鐵株式会社 Process for production of oriented electromagnetic steel sheet
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
WO2012096350A1 (en) * 2011-01-12 2012-07-19 新日本製鐵株式会社 Grain-oriented magnetic steel sheet and process for manufacturing same
RU2608258C1 (en) * 2012-12-28 2017-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Method of texturized electric steel sheet production
JP2018066040A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 HOT-ROLLED SHEET ANNEALING FACILITY OF Si-CONTAINING HOT-ROLLED STEEL SHEET, HOT-ROLLED SHEET ANNEALING METHOD AND DESCALING METHOD
WO2019146694A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
KR20200103826A (en) 2018-01-25 2020-09-02 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
CN113166823A (en) * 2018-12-27 2021-07-23 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
JP4709949B2 (en) * 2009-07-13 2011-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
US8366836B2 (en) 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
KR101351149B1 (en) * 2009-07-13 2014-01-14 신닛테츠스미킨 카부시키카이샤 Method for producing grain-oriented electromagnetic steel plate
KR101351712B1 (en) * 2009-07-17 2014-01-14 신닛테츠스미킨 카부시키카이샤 Process for production of oriented electromagnetic steel sheet
WO2011007817A1 (en) * 2009-07-17 2011-01-20 新日本製鐵株式会社 Process for production of oriented electromagnetic steel sheet
JP4709950B2 (en) * 2009-07-17 2011-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
CN102471819A (en) * 2009-07-17 2012-05-23 新日本制铁株式会社 Process for production of oriented electromagnetic steel sheet
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
RU2508411C2 (en) * 2009-07-17 2014-02-27 Ниппон Стил Корпорейшн Production method of grain-oriented magnetic plate steel
WO2012096350A1 (en) * 2011-01-12 2012-07-19 新日本製鐵株式会社 Grain-oriented magnetic steel sheet and process for manufacturing same
JP5224003B2 (en) * 2011-01-12 2013-07-03 新日鐵住金株式会社 Oriented electrical steel sheet and manufacturing method thereof
US10208372B2 (en) 2011-01-12 2019-02-19 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
RU2608258C1 (en) * 2012-12-28 2017-01-17 ДжФЕ СТИЛ КОРПОРЕЙШН Method of texturized electric steel sheet production
JP2018066040A (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 HOT-ROLLED SHEET ANNEALING FACILITY OF Si-CONTAINING HOT-ROLLED STEEL SHEET, HOT-ROLLED SHEET ANNEALING METHOD AND DESCALING METHOD
EP3530762B1 (en) 2016-10-19 2022-08-17 JFE Steel Corporation Method for annealing si containing hot rolled steel sheet for descaling.
US11788165B2 (en) 2016-10-19 2023-10-17 Jfe Steel Corporation Hot-band annealing equipment, hot-band annealing method and descaling method for Si-containing hot rolled steel sheet
WO2018074295A1 (en) * 2016-10-19 2018-04-26 Jfeスチール株式会社 HOT-ROLLED-SHEET ANNEALING EQUIPMENT FOR Si-CONTAINING HOT-ROLLED STEEL SHEET, METHOD FOR HOT-ROLLED-SHEET ANNEALING, AND DESCALING METHOD
US11466338B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
KR20200103826A (en) 2018-01-25 2020-09-02 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
KR20200097346A (en) 2018-01-25 2020-08-18 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
US11469017B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
WO2019146694A1 (en) 2018-01-25 2019-08-01 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN113166823A (en) * 2018-12-27 2021-07-23 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet
US11732319B2 (en) 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet
KR20210110681A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
US11952646B2 (en) 2019-01-16 2024-04-09 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating

Also Published As

Publication number Publication date
JP3415377B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
US6444051B2 (en) Method of manufacturing a grain-oriented electromagnetic steel sheet
KR100352675B1 (en) Method of producing grain-oriented magnetic steel sheet
KR100440994B1 (en) Directional electromagnetic steel sheet and manufacturing method thereof
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3456415B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH06145799A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
WO2023277169A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP3885391B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees