JPH0570242B2 - - Google Patents

Info

Publication number
JPH0570242B2
JPH0570242B2 JP60128456A JP12845685A JPH0570242B2 JP H0570242 B2 JPH0570242 B2 JP H0570242B2 JP 60128456 A JP60128456 A JP 60128456A JP 12845685 A JP12845685 A JP 12845685A JP H0570242 B2 JPH0570242 B2 JP H0570242B2
Authority
JP
Japan
Prior art keywords
thin film
pbtio
solution
dielectric
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60128456A
Other languages
Japanese (ja)
Other versions
JPS61285609A (en
Inventor
Akira Ariizumi
Ishio Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP12845685A priority Critical patent/JPS61285609A/en
Publication of JPS61285609A publication Critical patent/JPS61285609A/en
Publication of JPH0570242B2 publication Critical patent/JPH0570242B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、チタン酸鉛(PbTiO3)強誘電体薄
膜に係り、さらに詳しくは、組成としてMnO2
La2O3及び必要によりSiO2からなる金属酸化物を
含有するチタン酸鉛強誘電体薄膜およびその塗布
焼成法による製造方法に関する。 本発明のチタン酸鉛強誘電体薄膜は、薄膜コン
デンサー、薄膜焦電素子等として有用である。 〔従来の技術〕 従来、強誘電体を用いた熱形の焦電素子とし
て、セラミツクス粉焼結体や単結晶を用いたもの
が既に実用化されている。 一方、実用的な絶縁耐圧の得られる薄膜コンデ
ンサー用の誘電体として、Ta2O3、Si3N4等がIC
等に使用されている。 焦電素子を目的として、スパツタリング法によ
り製造した、La2O3またはMnO2を添加した
PbTiO3薄膜が、特開昭59−14127号公報および
特開昭59−138004号公報に記載されている。 また、本出願人は、鉛含有複合オキシアルコキ
シドの均一な溶液を使用する、塗布焼成法による
PbTiO3薄膜の製造方法を、先に提案した。(特
開昭58−13869号公報参照) 〔発明が解決しようとする問題点〕 焦電素子は、薄いほど熱容量が下がり感度が増
加するため、薄膜焦電素子が要望されている。 従来、焦電素子に使用されている単結晶やセラ
ミツクス粉焼結体では、加工性に問題があつてあ
まり薄くすることはできない。 一方、薄膜コンデンサーとして、IC等に使用
されているTa2O3、Si3N4等は、比誘電率:εが
約20以下と小さく実用的でない。 また、積層コンデンサーに使用されている高ε
の多成分系セラミツクス粉焼結体では、前記焦電
素子の場合と同様に加工性に問題があり、薄膜を
形成することが極めて困難である。BaTiO3
SrTiO3系では、焼結温度が高く、セラミツクス
と同等のεを持つ薄膜を作ることは困難である。 PbTiO3は、キユーリー点が約500℃と高く、
εも強誘電体の中では約200と比較的に小さく、
焦電材料として優れている。また、PbTiO3は成
分が単純であり、焼結温度もBaTiO3、SrTiO3
比べ低い。 したがつて、PbTiO3は、セラミツクス粉焼結
体と同等のεを持ち、かつ、セラミツクス以上の
絶縁耐性を持つ薄膜が得られれば、焦電素子とし
ても、また、薄膜コンデンサー用の誘電体として
も極めて有用である。 特性の良いPbTiO3薄膜を得るために、ストイ
キオメトリ制御が重要であるが、スパツタリング
法、真空蒸着法によるPbTiO3薄膜の製造におい
ては、その制御が極めて困難である。 また、前記引用した公報には、スパツタリング
法において特性を向上させるために、PbTiO3
膜に、La2O3またはMnO2のいずれかを添加物と
して加える方法を提案しているが、比抵抗、絶縁
耐圧および誘電損失の全てについて満足できる値
を持つ薄膜は得られていない。 一方、本出願人の提案した塗布焼成法は、溶液
法であり、かつ、低温焼成が可能であるため、ス
トイキオメトリ制御が容易であり、セラミツクス
粉焼結体と同等の比抵抗、絶縁耐性等の特性を持
つPbTiO3薄膜を製造することができる。しかし
ながら、これらの値は、誘電体薄膜としての実用
化に充分な値ではなく、また、焼成中にクラツク
が入り易い等の問題があつた。 このように、PbTiO3純組成では、実用的な良
い特性を持つ薄膜は得られていない。 本発明は、焼成中のクラツク発生を防止し、比
抵抗、絶縁耐性を向上させた、実用に供しうる
PbTiO3強誘電体薄膜を提供することを目的とす
る。 〔問題点を解決するための手段〕 本発明は、組成式〔1〕 〔1−(x+y+z)〕PbTiO3 +xMnO2+yLa2O3+zSiO2 ……(1) (ただし、x、yおよびzは、0〜0.01であり、 かつ、x+y+zは、0.001〜0.01である。但
し、x及びyは0でない。) で表される組成を有するチタン酸鉛強誘電体薄膜
および塗布焼成法による該強誘電体薄膜の製造方
法である。 本発明において、強誘電体薄膜は、MnO2
La2O3及び必要によりSiO2からなる金属酸化物を
含有する前記〔1〕で表される組成を有する
PbTiO3薄膜である。 該薄膜は、通常、耐熱性基板上、特に、電極と
して使用可能な導電性金属酸化物、金属等の基板
上に多層形成されたミクロン・オーダーの膜厚
の、導通のない、すなわち、クラツク、ピンホー
ル等の欠陥のない、かつ、誘電体として実用可能
な諸特性値を有する薄膜である。 本発明において、強誘電体薄膜は、加熱焼成に
より、前記組成式〔1〕で表される組成を有する
酸化物を生成する前駆体化合物または混合物の溶
液を、耐熱性基板表面に一様な厚さに塗布し、加
熱焼成することにより製造する。 該製造方法において、原料として、有機溶剤溶
解性の当該金属化合物、たとえば、アルコキシド
類、カルボン酸塩類、キレート錯体、硝酸塩類等
の混合溶液またはそれらを反応させた前駆体化合
物の溶液を使用することができる。 前駆体化合物または混合物溶液の、耐熱性基板
への塗布法は、均一な厚さの塗膜の得られる方法
であれば、特に制限はない。たとえば、デイツピ
ング法、スプレー法、スピンナー法、刷毛塗り法
等を採用することができる。 前駆体化合物または混合物の塗布および加熱焼
成を繰り返し、所望の膜厚の誘電体薄膜を製造す
る。 〔作用〕 本発明において、PbTiO3薄膜に存在する前記
金属酸化物は、薄膜欠陥、特に、加熱焼成時に発
生し易いクラツクの発生を防止し、欠陥のない良
好なPbTiO3薄膜を形成する。 さらに、MnO2の存在は、PbTiO3薄膜の主と
して比抵抗、絶縁耐圧を向上し、また、La2O3
存在は、該薄膜の主として誘電損失を低下させ
る。 また、SiO2の存在は、加熱焼成時のクラツク
発生の防止効果が大きい。 これらの効果は、一般式〔1〕中の(x+y+
z)の値が、0.001あれば発現する。 一方、その値が、0.01を越えると、PbTiO3
しての誘電体特性が低下する。 本発明において、前記した如く、PbTiO3の製
造方法として塗布焼成法を採用する。 塗布焼成法においては、ストイツキオメトリ制
御が容易であり、化学量論的な組成のPbTiO3
膜が得られる。 また、該方法において、原料溶液の塗布、焼成
を繰り返して薄膜を形成するが、繰り返しのない
1回の塗布、焼成では、極めて膜厚の薄いものし
か得られず、また、厚膜を得ようとすれば、クラ
ツク、ピンホール等の薄膜欠陥を生じる。 したがつて、塗布、焼成の繰り返しにより、所
望の膜厚の薄膜が得られ、薄膜層を積み重ねるこ
とにより、各薄膜層に存在する欠陥が補修され
る。 〔実施例〕 本発明を、実施例により、さらに詳細に説明す
る。 ただし、本発明の範囲は、下記実施例により、
何等限定されるものではない。 (1) 前駆体溶液の調製 当モルの酸化鉛:PbOおよびテトラブトキシ
チタン:Ti(OC4H94をアセチルアセトンに溶
解し、さらに、マンガンアセチルアセトナー
ト:Mn(OAcAc)2、酢酸ランタン:La
(OAc)3および/またはテトラエトキシシラ
ン:Si(OC2H54の所定量を添加し、80〜90℃
の温度に加熱して反応させ、金属酸化物換算濃
度が、7.5%の均一な前駆体溶液を調製した。 この前駆体溶液を加熱焼成して得られる組成
物中のMnO2、La2O3およびSiO2のモル比、
x、yおよびzの値を、第1表中に示す。 (2) PbTiO3薄膜強誘電体の製造 2000ÅのITO(スズをドープした酸化インジ
ウム)膜をコートしたパイレツクスガラス板ま
たは白金板に、前記調製した前駆体溶液をスピ
ンナー法またはデイツピング法により一様な厚
さに塗布して乾燥した後、電気炉中で550℃の
温度に20min保持して加熱焼成した。 前記前駆体溶液の塗布、乾燥および加熱焼成
を繰り返し、PbTiO3の透明な薄膜体を得た。 (3) 電気特性の測定 電気特性測定のため、得られたPbTiO3薄膜
の表面に、2mm×2mmの金電極をスパツタリン
グ法により形成した。 ついで、下記の諸電気特性を測定した。 比誘電率:ε 誘電損失:tanδ 比抵抗:ρ 絶縁耐圧:EB.D. 残留分極:Pr 焦電係数:dPr/dT(100KV/
cm直流、100℃、10分印加) 諸電気特性の測定結果を、第1表中に示す。 また、比較として、前記方法と同様の方法で製
造したPbTiO3純組成の薄膜について測定した電
気特性値を、第1表中に示す。
[Industrial Application Field] The present invention relates to a lead titanate (PbTiO 3 ) ferroelectric thin film, and more specifically, the present invention relates to a lead titanate (PbTiO 3 ) ferroelectric thin film.
The present invention relates to a lead titanate ferroelectric thin film containing a metal oxide of La 2 O 3 and optionally SiO 2 and a method for manufacturing the same by coating and firing. The lead titanate ferroelectric thin film of the present invention is useful as a thin film capacitor, a thin film pyroelectric element, and the like. [Prior Art] Conventionally, as a thermal type pyroelectric element using a ferroelectric substance, one using a ceramic powder sintered body or a single crystal has already been put into practical use. On the other hand, Ta 2 O 3 , Si 3 N 4 , etc. are used as dielectric materials for thin film capacitors that provide practical dielectric strength.
etc. is used. Added La 2 O 3 or MnO 2 , manufactured by sputtering method, for the purpose of pyroelectric elements
PbTiO 3 thin films are described in JP-A-59-14127 and JP-A-59-138004. The applicant has also proposed a coating-baking method using a uniform solution of lead-containing composite oxyalkoxide.
A method for manufacturing PbTiO 3 thin films was previously proposed. (Refer to Japanese Unexamined Patent Publication No. 13869/1983) [Problems to be Solved by the Invention] Since the thinner the pyroelectric element is, the lower the heat capacity and the higher the sensitivity, a thin film pyroelectric element is desired. Conventionally, single crystals and ceramic powder sintered bodies used in pyroelectric elements have problems with workability and cannot be made very thin. On the other hand, thin film capacitors such as Ta 2 O 3 and Si 3 N 4 used in ICs and the like have a dielectric constant: ε of about 20 or less, which is not practical. In addition, high ε used in multilayer capacitors
The multi-component ceramic powder sintered body has problems in processability, as in the case of the pyroelectric element, and it is extremely difficult to form a thin film. BaTiO3 ,
With SrTiO 3 , the sintering temperature is high, making it difficult to create a thin film with an ε equivalent to that of ceramics. PbTiO 3 has a high Curie point of approximately 500℃.
ε is also relatively small at about 200 among ferroelectric materials,
Excellent as a pyroelectric material. Furthermore, PbTiO 3 has simple components and its sintering temperature is lower than that of BaTiO 3 and SrTiO 3 . Therefore, PbTiO 3 can be used as a pyroelectric element or as a dielectric material for thin film capacitors if a thin film with ε equivalent to that of ceramic powder sintered body and insulation resistance higher than that of ceramics can be obtained. is also extremely useful. In order to obtain a PbTiO 3 thin film with good properties, stoichiometry control is important, but it is extremely difficult to control when producing a PbTiO 3 thin film by sputtering or vacuum evaporation. In addition, the above-cited publication proposes a method of adding either La 2 O 3 or MnO 2 as an additive to a PbTiO 3 thin film in order to improve the properties in the sputtering method, but the specific resistance, A thin film with satisfactory values for both dielectric strength and dielectric loss has not been obtained. On the other hand, the coating and firing method proposed by the present applicant is a solution method and can be fired at low temperatures, so it is easy to control stoichiometry, and the resistivity and insulation resistance are equivalent to those of ceramic powder sintered bodies. It is possible to produce PbTiO 3 thin films with the following characteristics. However, these values are not sufficient for practical use as dielectric thin films, and there are also problems such as the tendency for cracks to occur during firing. In this way, a thin film with good practical properties has not been obtained with a pure PbTiO 3 composition. The present invention prevents the occurrence of cracks during firing, improves specific resistance and insulation resistance, and can be put to practical use.
The purpose is to provide a PbTiO3 ferroelectric thin film. [Means for Solving the Problems] The present invention provides a composition formula [1] [1-(x+y+z)]PbTiO 3 +xMnO 2 +yLa 2 O 3 +zSiO 2 ...(1) (where x, y and z are , 0 to 0.01, and x+y+z is 0.001 to 0.01.However, x and y are not 0.) This is a method for producing a body thin film. In the present invention, the ferroelectric thin film is made of MnO 2 ,
Having the composition represented by [1] above, containing a metal oxide consisting of La 2 O 3 and SiO 2 if necessary
It is a PbTiO3 thin film. The thin film is usually a non-conductive film with a film thickness on the order of microns, which is formed in multiple layers on a heat-resistant substrate, especially a conductive metal oxide, metal, etc. substrate that can be used as an electrode. The thin film is free from defects such as pinholes and has various characteristic values that allow it to be used as a practical dielectric. In the present invention, the ferroelectric thin film is produced by applying a solution of a precursor compound or mixture that produces an oxide having the composition represented by the above composition formula [1] by heating and baking to a uniform thickness on the surface of a heat-resistant substrate. It is manufactured by applying the coating to the surface and heating and baking it. In the production method, as a raw material, a mixed solution of the metal compound soluble in an organic solvent, such as alkoxides, carboxylates, chelate complexes, nitrates, etc., or a solution of a precursor compound obtained by reacting them is used. I can do it. The method of applying the precursor compound or mixture solution to the heat-resistant substrate is not particularly limited as long as it provides a coating film of uniform thickness. For example, a dipping method, a spray method, a spinner method, a brush coating method, etc. can be employed. Application of the precursor compound or mixture and heating and baking are repeated to produce a dielectric thin film with a desired thickness. [Function] In the present invention, the metal oxide present in the PbTiO 3 thin film prevents the occurrence of thin film defects, particularly cracks that are likely to occur during heating and firing, and forms a good defect-free PbTiO 3 thin film. Furthermore, the presence of MnO 2 mainly improves the resistivity and dielectric strength of the PbTiO 3 thin film, and the presence of La 2 O 3 mainly reduces the dielectric loss of the thin film. Furthermore, the presence of SiO 2 has a great effect of preventing cracks from occurring during heating and firing. These effects are expressed by (x+y+
It occurs if the value of z) is 0.001. On the other hand, if the value exceeds 0.01, the dielectric properties of PbTiO 3 deteriorate. In the present invention, as described above, the coating and firing method is employed as a method for producing PbTiO 3 . In the coating and firing method, stoichiometry control is easy and a PbTiO 3 thin film with a stoichiometric composition can be obtained. In addition, in this method, a thin film is formed by repeating the application and firing of the raw material solution, but a single application and firing without repetition can only yield an extremely thin film, and it is difficult to obtain a thick film. If so, thin film defects such as cracks and pinholes will occur. Therefore, by repeating coating and baking, a thin film with a desired thickness can be obtained, and by stacking the thin film layers, defects in each thin film layer can be repaired. [Example] The present invention will be explained in more detail with reference to Examples. However, the scope of the present invention is determined by the following examples.
It is not limited in any way. (1) Preparation of precursor solution Equivalent moles of lead oxide: PbO and tetrabutoxytitanium: Ti(OC 4 H 9 ) 4 are dissolved in acetylacetone, and further, manganese acetylacetonate: Mn (OAcAc) 2 and lanthanum acetate: La
(OAc) 3 and/or tetraethoxysilane: Si(OC 2 H 5 ) 4 and heated to 80-90 °C.
A uniform precursor solution having a metal oxide equivalent concentration of 7.5% was prepared by heating to a temperature of . The molar ratio of MnO 2 , La 2 O 3 and SiO 2 in the composition obtained by heating and baking this precursor solution,
The values of x, y and z are shown in Table 1. (2) Production of PbTiO 3 thin film ferroelectric The precursor solution prepared above is uniformly applied to a Pyrex glass plate or platinum plate coated with a 2000 Å ITO (tin-doped indium oxide) film by a spinner method or dipping method. After coating to a certain thickness and drying, it was heated and fired in an electric furnace at a temperature of 550°C for 20 minutes. Application of the precursor solution, drying, and heating and baking were repeated to obtain a transparent thin film body of PbTiO 3 . (3) Measurement of electrical properties To measure electrical properties, a 2 mm x 2 mm gold electrode was formed on the surface of the obtained PbTiO 3 thin film by sputtering. Then, the following electrical properties were measured. Relative permittivity: ε Dielectric loss: tanδ Resistivity: ρ Dielectric strength: E BD residual polarization: Pr Pyroelectric coefficient: dPr/dT (100KV/
cm DC, 100°C, applied for 10 minutes) The measurement results of various electrical properties are shown in Table 1. For comparison, Table 1 shows electrical property values measured for a thin film having a pure composition of PbTiO 3 manufactured by a method similar to the above method.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明において、実施例の結果を示す第1表に
示す如く、MnO2の存在は、比抵抗、絶縁耐圧お
よび容積抵抗積を向上させる効果が大きい。 また、La2O3の存在は、比抵抗および絶縁耐圧
を向上させる効果も有するが、特に誘電損失を低
下させる効果が大きい。 本発明は、比抵抗および絶縁耐圧が大きく、誘
電損失の小さい、かつ、クラツク等の薄膜欠陥の
皆無な実用に供しうる優れたチタン酸鉛強誘電体
薄膜およびその製造方法を提供するものであり、
その産業的意義は極めて大きい。
In the present invention, as shown in Table 1 showing the results of Examples, the presence of MnO 2 has a large effect of improving specific resistance, dielectric strength voltage, and volume resistance area. Furthermore, the presence of La 2 O 3 has the effect of improving resistivity and dielectric strength, and has a particularly large effect of reducing dielectric loss. The present invention provides an excellent lead titanate ferroelectric thin film that has high specific resistance and dielectric strength, low dielectric loss, and has no thin film defects such as cracks and can be used in practical use, and a method for manufacturing the same. ,
Its industrial significance is extremely large.

Claims (1)

【特許請求の範囲】 1 組成式 〔1−(x+y+z)〕PbTiO3 +xMnO2+yLa2O3+zSiO2 ……(1) (但し、x、y及びzは、0〜0.01であり、か
つ、x+y+zは、0.001〜0.01である。但し、
x及びyは0でない。) で表される組成を有するチタン酸鉛強誘電体薄
膜。 2 加熱焼成により、組成式 〔1−(x+y+z)〕PbTiO3 +xMnO2+yLa2O3+zSiO2 ……(1) (但し、x、y及びzは、0〜0.01であり、か
つ、x+y+zは、0.001〜0.01である。但し、
x及びyは0でない。) で表される組成を有する酸化物を生成する前駆体
化合物又は混合物の溶液を、耐熱性基板に塗布
し、加熱焼成することを特徴とするチタン酸鉛強
誘電体薄膜の製造方法。
[Claims] 1 Compositional formula [1-(x+y+z)] PbTiO 3 +xMnO 2 +yLa 2 O 3 +zSiO 2 ...(1) (However, x, y and z are 0 to 0.01, and x+y+z is 0.001 to 0.01. However,
x and y are not 0. ) A lead titanate ferroelectric thin film having a composition expressed by: 2 By heating and firing, the composition formula [1-(x+y+z)]PbTiO 3 +xMnO 2 +yLa 2 O 3 +zSiO 2 ...(1) (However, x, y and z are 0 to 0.01, and x+y+z is, 0.001 to 0.01.However,
x and y are not 0. 1. A method for producing a lead titanate ferroelectric thin film, which comprises applying a solution of a precursor compound or a mixture that produces an oxide having the composition represented by the following formula onto a heat-resistant substrate, and heating and baking the solution.
JP12845685A 1985-06-13 1985-06-13 Lead titanate ferrodielectric thin film and manufacture thereof Granted JPS61285609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12845685A JPS61285609A (en) 1985-06-13 1985-06-13 Lead titanate ferrodielectric thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12845685A JPS61285609A (en) 1985-06-13 1985-06-13 Lead titanate ferrodielectric thin film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61285609A JPS61285609A (en) 1986-12-16
JPH0570242B2 true JPH0570242B2 (en) 1993-10-04

Family

ID=14985155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12845685A Granted JPS61285609A (en) 1985-06-13 1985-06-13 Lead titanate ferrodielectric thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61285609A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239150A (en) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd Production of superconductive ceramic thin film
JP2622362B2 (en) * 1993-12-01 1997-06-18 松下電器産業株式会社 Ferroelectric thin film and method of manufacturing the same
KR0147245B1 (en) * 1993-12-01 1998-09-15 모리시타 요이찌 Fero electric thin film and manufacture thereof
JP2642876B2 (en) * 1994-08-11 1997-08-20 工業技術院長 Lead titanate-based dielectric thin film
JP3193302B2 (en) 1996-06-26 2001-07-30 ティーディーケイ株式会社 Film structure, electronic device, recording medium, and method of manufacturing ferroelectric thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138004A (en) * 1983-01-27 1984-08-08 松下電器産業株式会社 Ferrodielectric thin film
JPS59141427A (en) * 1983-02-01 1984-08-14 Matsushita Electric Ind Co Ltd Thin film of ferroelectric material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138004A (en) * 1983-01-27 1984-08-08 松下電器産業株式会社 Ferrodielectric thin film
JPS59141427A (en) * 1983-02-01 1984-08-14 Matsushita Electric Ind Co Ltd Thin film of ferroelectric material

Also Published As

Publication number Publication date
JPS61285609A (en) 1986-12-16

Similar Documents

Publication Publication Date Title
US4642732A (en) Dielectric ceramic composition and method of producing same, and a monolithic capacitor
WO2005102958A1 (en) Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device
JP3146967B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
KR20050092438A (en) Composition for thin film capacitance element, insulating film of high dielectric constant, thin film capacitance element, thin film laminated capacitor and method for manufacturing thin film capacitance element
JP2023114296A (en) Dielectric composition and electronic component
US5244691A (en) Process for depositing a thin layer of a ceramic composition and a product obtained thereby
JP4654478B2 (en) Dielectric composition and ceramic capacitor using the same
KR920007019B1 (en) Dielectric ceramic composition
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JP3129175B2 (en) Method for manufacturing (Ba, Sr) TiO3 thin film capacitor
JPH0570242B2 (en)
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JPS6249977B2 (en)
JP2022111642A (en) Dielectric composition and electronic component
JPH0416884B2 (en)
JP2676775B2 (en) Thin film dielectric and method of manufacturing the same
JPS6042277A (en) Ceramic composition
JP3116428B2 (en) Thin film dielectric and manufacturing method thereof
JP2955293B2 (en) Manufacturing method of dielectric thin film
JP2023045881A (en) Dielectric composition and electronic component
JP2023046256A (en) Dielectric composition and electronic component
JPS6128208B2 (en)
JPS6217368B2 (en)
JPH03218964A (en) Semiconductor porcelain and production thereof
JPH04328817A (en) Manufacture of ceramic thin film with electrode