JPH0569339A - Water permeable cup type grinding wheel - Google Patents
Water permeable cup type grinding wheelInfo
- Publication number
- JPH0569339A JPH0569339A JP3152038A JP15203891A JPH0569339A JP H0569339 A JPH0569339 A JP H0569339A JP 3152038 A JP3152038 A JP 3152038A JP 15203891 A JP15203891 A JP 15203891A JP H0569339 A JPH0569339 A JP H0569339A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- grinding wheel
- base body
- wheel base
- abrasive grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種被削材の平面研削
等に使用されるカップ型砥石に係わり、特に、砥粒層の
目詰まりや過熱を防ぐための改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cup type grindstone used for surface grinding of various work materials, and more particularly to improvement for preventing clogging of an abrasive grain layer and overheating.
【0002】[0002]
【従来の技術】一般的なカップ型砥石は、カップ型の台
金(砥石基体)の周壁部の端面に一定厚さの砥粒層を形成
したものであり、前記台金の中心孔に研削盤の回転軸を
固定し、回転させることにより、砥粒層の端面で被削材
を研削する。2. Description of the Related Art A general cup-shaped grindstone is a cup-shaped base metal (grinding stone base) with an abrasive grain layer of a certain thickness formed on the end surface of the peripheral wall. By fixing and rotating the rotating shaft of the board, the work material is ground by the end surface of the abrasive grain layer.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記のような
カップ型砥石では、研削につれ砥粒層が目詰まりするこ
とが避けられず、一定量の被削材を処理する毎に研削盤
を停止して、砥粒層の目詰まりを治すためのドレッシン
グを行なわねばならず、その分手間がかかる欠点を有し
ていた。また、重研削を行なう場合には、砥粒層が過熱
して被削材に焼き付く等の支障が生じることがあった。However, with the above-mentioned cup type grindstone, it is inevitable that the abrasive grain layer becomes clogged during grinding, and the grinder is stopped every time a certain amount of work material is processed. Then, dressing must be performed to cure the clogging of the abrasive grain layer, which is a labor-intensive problem. Further, when heavy grinding is performed, the abrasive grain layer may be overheated, causing problems such as seizure on the work material.
【0004】[0004]
【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、カップ型の砥石基体と、こ
の砥石基体の周壁部端面に設けられた通水性を有する多
孔性砥粒層とを具備し、前記砥石基体の内部には空洞部
が形成されるとともに、砥石基体の外面にはこの空洞部
に連通する開口部が形成され、この開口部内には砥石基
体の回転につれ外部の空気を吸い込み空洞部内に導入す
る吸入羽根構造が設けられ、さらに、空洞部に連通し前
記砥石基体の端面に開口するとともにその途中で砥石基
体の内側に供給される研削液を前記空気と合流させ前記
端面から導出するガス通路が形成されていることを特徴
とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is a cup-shaped grindstone base and a porous abrasive grain having water permeability provided on an end surface of a peripheral wall portion of the grindstone base. A layer is formed inside the grindstone base, and a cavity is formed inside the grindstone base, and an opening communicating with the cavity is formed on the outer surface of the grindstone base. Is provided with a suction vane structure for sucking in the air into the cavity, and further, the grinding fluid that is communicated with the cavity and opens at the end face of the grindstone base and is supplied to the inside of the grindstone base in the middle merges with the air. A gas passage leading from the end face is formed.
【0005】なお、前記砥石基体の端面と、前記多孔性
砥粒層との間には、通水性を有する研削液分散層が設け
られていてもよい。A grinding liquid dispersion layer having water permeability may be provided between the end surface of the grindstone base and the porous abrasive grain layer.
【0006】[0006]
【作用】本発明の通水性カップ型砥石では、砥石の回転
につれ砥石基体の外面に設けられた吸入羽根構造が外部
の空気を吸い込み、空洞部に導入する。導入された空気
は次にガス通路を通じて砥石基体の端面から導出される
が、その途中で、回転軸を通して砥石内側に供給される
研削液が前記空気と合流し、この空気とともに砥石基体
の端面から多孔性砥粒層に供給される。供給された研削
液および空気は多孔性砥粒層の内部を分散しつつ進行
し、研削面から放出されるため、その過程で多孔性砥粒
層は研削液および空気で冷却され、過熱が防止されると
ともに、研削面に付着する切粉が洗い流されて目詰まり
が防止できる。さらに、強制的に充分な量の研削液が研
削点に供給されるため、研削液による良好な潤滑状態が
形成され、研削抵抗の低減が図れ、深切込み等の重研削
が可能となるのみならず、良好な仕上げ面粗さが得られ
る。In the water-permeable cup type grindstone of the present invention, as the grindstone rotates, the suction blade structure provided on the outer surface of the grindstone base sucks in the outside air and introduces it into the cavity. The introduced air is then led out from the end surface of the grindstone base through the gas passage, and in the middle, the grinding liquid supplied to the inside of the grindstone through the rotating shaft merges with the air, and together with this air, from the end surface of the grindstone base. It is supplied to the porous abrasive grain layer. The supplied grinding fluid and air are dispersed in the inside of the porous abrasive grain layer and are discharged and released from the grinding surface, so the porous abrasive grain layer is cooled by the grinding fluid and air in the process, preventing overheating. At the same time, the chips adhering to the ground surface are washed away and clogging can be prevented. Furthermore, since a sufficient amount of grinding fluid is forcibly supplied to the grinding point, a good lubrication state is formed by the grinding fluid, grinding resistance can be reduced, and heavy grinding such as deep cutting can be achieved. In addition, good finished surface roughness can be obtained.
【0007】[0007]
【実施例】以下、本発明に係わる通水性カップ型砥石を
具体的に説明する。図1ないし図3は本発明の一実施例
を示す図であり、図中符号1はカップ型の砥石基体、2
は砥石基体1の周壁部端面に固定された研削液分散層、
4は研削液分散層2の端面に固定された多孔性砥粒層で
ある。EXAMPLES The water-permeable cup type grindstone according to the present invention will be described in detail below. 1 to 3 are views showing an embodiment of the present invention, in which reference numeral 1 denotes a cup-shaped grindstone base, 2
Is a grinding fluid dispersion layer fixed to the end face of the peripheral wall of the grindstone base 1,
Reference numeral 4 is a porous abrasive grain layer fixed to the end surface of the grinding fluid dispersion layer 2.
【0008】砥石基体1の肩部の内部には、砥石基体1
の全周に亙って延びる円環状の空洞部6が形成されると
ともに、肩部の外周面には、空洞部6に連通する開口部
8が全周に亙って円環状に形成され、さらにこの開口部
8内には、周方向一定間隔毎に、板状の羽根10が砥石
基体1と一体的に多数形成されている。Inside the shoulder of the grindstone base 1, the grindstone base 1
An annular cavity 6 extending over the entire circumference of is formed, and an opening 8 communicating with the cavity 6 is formed in an annular shape on the outer peripheral surface of the shoulder, Further, in the opening 8, a large number of plate-shaped blades 10 are integrally formed with the grindstone base 1 at regular intervals in the circumferential direction.
【0009】これら羽根10は、図3に示すように、全
て周壁部外周面の接線方向に対して一定角度づつ傾斜し
ており、図示の矢印方向へ砥石基体1が回転すると、砥
石基体1の内側に供給される研削液を吸い込んで空洞部
6内に強制的に導入するようになっている。As shown in FIG. 3, all of these blades 10 are inclined at a constant angle with respect to the tangential direction of the outer peripheral surface of the peripheral wall portion, and when the grindstone base 1 rotates in the direction of the arrow shown in FIG. The grinding liquid supplied to the inside is sucked and forcedly introduced into the cavity 6.
【0010】また、砥石基体1の内部には、空洞部6か
ら肩部の内面に達するガス導入路(ガス通路の一部)12
が、周方向一定間隔毎に多数形成されている。さらに砥
石基体1の周壁部内には、砥石基体1の内周面に一端が
開口し、他端が周壁部の端面に開口するガス導出路(ガ
ス通路の一部)14が、図2に示すように周方向一定間
隔毎に多数形成されている。このガス導出路14の周壁
部内周面における開口位置は、回転軸Sの研削液噴出孔
Hから噴出される研削液の吹き付けられる位置に設定さ
れる。In addition, inside the grindstone base 1, a gas introduction path (a part of the gas passage) 12 that extends from the hollow portion 6 to the inner surface of the shoulder portion 12 is formed.
However, a large number are formed at regular intervals in the circumferential direction. Further, in the peripheral wall portion of the grindstone base 1, a gas outlet path (a part of the gas passage) 14 having one end open to the inner peripheral surface of the grindstone base 1 and the other end opening to the end face of the peripheral wall portion is shown in FIG. Thus, a large number are formed at regular intervals in the circumferential direction. The opening position on the inner peripheral surface of the peripheral wall portion of the gas outlet passage 14 is set to a position where the grinding liquid ejected from the grinding liquid ejection hole H of the rotary shaft S is sprayed.
【0011】この実施例における研削液分散層2は、図
4に示すように、内部に3次元網目構造をなす連通気孔
30が無方向的に形成された一定厚さの金属層である。
各連通気孔30は研削液分散層2の両面でそれぞれ開口
しており、これら連通気孔30を通じて無方向的に流体
を通すことができる。As shown in FIG. 4, the grinding fluid dispersion layer 2 in this embodiment is a metal layer having a constant thickness in which the continuous ventilation holes 30 having a three-dimensional mesh structure are formed in a non-directional manner.
The communication holes 30 are open on both sides of the grinding liquid dispersion layer 2, and fluid can be passed through these communication holes 30 in a non-directional manner.
【0012】各連通気孔30の内壁面は、全面に亙って
耐熱被覆32により構成されている。この耐熱被覆32
は、Ni,Co,Cu等の比較的高融点の金属や合金、
あるいはアルミナ,マグネシア等のセラミックスで形成
されている。The inner wall surface of each communicating hole 30 is formed with a heat resistant coating 32 over the entire surface. This heat resistant coating 32
Is a metal or alloy having a relatively high melting point such as Ni, Co or Cu,
Alternatively, it is made of ceramics such as alumina and magnesia.
【0013】各耐熱被覆32の周囲には、耐熱被覆32
より低融点の充填金属(あるいは樹脂)34が全域に亙
って満たされ、強度が確保されている。充填金属34の
材質としては、Al合金,Sn合金,Cu合金等が挙げ
られるが、融点および軽量化の点から特にAl合金が好
ましい。また充填樹脂34としてはポリイミド、エポキ
シ、フェノール等の樹脂が使用可能である。Around the heat resistant coating 32, the heat resistant coating 32 is provided.
Filling metal (or resin) 34 having a lower melting point is filled over the entire area to secure the strength. Examples of the material of the filling metal 34 include Al alloys, Sn alloys, Cu alloys and the like, but Al alloys are particularly preferable from the viewpoint of melting point and weight reduction. Further, as the filling resin 34, resins such as polyimide, epoxy and phenol can be used.
【0014】なお、耐熱被覆32が、NiあるいはNi
合金等のように酸に溶解しやすい金属からなり、充填金
属34がAl合金等の酸に溶けにくい金属で構成されて
いる場合には、連通気孔30内に硝酸などを通して耐熱
被覆32のみを溶解除去し、連通気孔30の内径を拡大
してもよい。The heat resistant coating 32 is made of Ni or Ni.
When the filling metal 34 is made of a metal such as an alloy that is easily dissolved in acid and the filling metal 34 is made of a metal that is difficult to dissolve in an acid, such as an Al alloy, nitric acid or the like is passed through the communication holes 30 to dissolve only the heat-resistant coating 32. It may be removed and the inner diameter of the continuous ventilation hole 30 may be enlarged.
【0015】一方、多孔性砥粒層4は、ダイヤモンドま
たはCBN等の超砥粒36を、Ni,Co,Cu等の金
属めっき相38中に多層状に分散して固定したものであ
る。超砥粒36の平均粒径と砥粒含有率、並びに多孔性
砥粒層4の厚さは、砥石用途に応じて適宜決定される。On the other hand, the porous abrasive grain layer 4 is formed by dispersing and fixing superabrasive grains 36 such as diamond or CBN in a metal plating phase 38 such as Ni, Co or Cu in a multilayer form. The average grain size of the superabrasive grains 36, the abrasive grain content rate, and the thickness of the porous abrasive grain layer 4 are appropriately determined according to the purpose of the grindstone.
【0016】多孔性砥粒層4の内部には垂直な給液孔4
0が間隔を空けて多数形成され、個々の給液孔40の一
端は各連通気孔30のそれぞれと連通するとともに、他
端は多孔性砥粒層4の表面(研削面)で開口している。Inside the porous abrasive grain layer 4, a vertical liquid supply hole 4 is provided.
A large number of 0s are formed at intervals, one end of each liquid supply hole 40 communicates with each of the continuous air holes 30, and the other end is open at the surface (ground surface) of the porous abrasive grain layer 4. ..
【0017】なお、上記の研削液分散層2および多孔性
砥粒層4を形成するには、次のような方法が可能であ
る。まず、図5に示すような樹脂多孔質体42を用意す
る。この樹脂多孔質体42は、発泡剤を用いて樹脂を高
度に発泡させたもので、個々の繊維が無方向性の3次元
網目構造をなしている。In order to form the grinding liquid dispersion layer 2 and the porous abrasive grain layer 4 described above, the following method is possible. First, a resin porous body 42 as shown in FIG. 5 is prepared. The resin porous body 42 is a highly foamed resin using a foaming agent, and each fiber has a non-directional three-dimensional network structure.
【0018】次に、樹脂多孔質体42の繊維の全面に亙
って、耐熱被覆32をほぼ一定の厚さに形成する。耐熱
被覆32をNi,Co,Cu等からなる高融点金属また
はその合金で形成する場合には、無電解めっき法が容易
である。Next, the heat resistant coating 32 is formed over the entire surface of the fibers of the porous resin body 42 to have a substantially constant thickness. When the heat-resistant coating 32 is formed of a refractory metal such as Ni, Co, or Cu or its alloy, the electroless plating method is easy.
【0019】一方、耐熱被覆32として、アルミナ,マ
グネシア,カルシア等のセラミックスを使用する場合に
は、これらの微粉末を水ガラス等に分散させ、この分散
液を樹脂多孔質体42に塗布し、乾燥固化する。この作
業を繰り返した後、焼結することにより、樹脂多孔質体
42が熱分解して除去されるととにもに、連通気孔30
が形成される。On the other hand, when ceramics such as alumina, magnesia, and calcia are used as the heat-resistant coating 32, these fine powders are dispersed in water glass or the like, and this dispersion is applied to the resin porous body 42. Dry to solidify. By repeating this operation and then sintering, the resin porous body 42 is thermally decomposed and removed, and at the same time, the communication holes 30 are formed.
Is formed.
【0020】耐熱被覆32を形成した樹脂多孔質体42
に、充填金属34の溶湯を充填する。溶湯が十分に固化
したら、この板材の両面を研削し、連通気孔30の端部
を開口させ、研削液分散層2とする。A resin porous body 42 having a heat resistant coating 32 formed thereon.
Then, the molten metal 34 is filled. When the molten metal is sufficiently solidified, both sides of this plate material are ground to open the end portions of the continuous ventilation holes 30 to form the grinding liquid dispersion layer 2.
【0021】次いで、この研削液分散層2をめっき液に
浸漬し、裏面側から一定圧力で空気を流しつつ、研削液
分散層2の表面上に多孔性砥粒層4を形成する。する
と、めっき中には各連通気孔30の開口部から常に気泡
が発生するから、この気泡の通り道では金属析出が阻止
され、給液孔40が形成される。Next, the grinding liquid dispersion layer 2 is immersed in a plating liquid, and a porous abrasive grain layer 4 is formed on the surface of the grinding liquid dispersion layer 2 while flowing air at a constant pressure from the back surface side. Then, during plating, bubbles are always generated from the openings of the communication holes 30, so that metal deposition is prevented in the passage of the bubbles and the liquid supply hole 40 is formed.
【0022】上記構成からなる通水性カップ型砥石を使
用するには、図1に示すように給液手段を有する回転軸
Sに砥石基体1をナットNで固定する。この回転軸Sの
中心には給液路Kが形成されるとともに、砥石基体1の
内側に配置されるフランジ部Fには、給液路Kから放射
状に延びてフランジ部Fの外周面に開口する研削液噴出
孔Hが多数形成されている。In order to use the water-permeable cup type grindstone having the above structure, as shown in FIG. 1, the grindstone base 1 is fixed to the rotary shaft S having the liquid supply means by the nut N. A liquid supply passage K is formed at the center of the rotating shaft S, and a flange portion F disposed inside the grindstone base 1 extends radially from the liquid supply passage K and opens on the outer peripheral surface of the flange portion F. A large number of grinding fluid ejection holes H are formed.
【0023】次に、回転軸Sを回転させ、給液路Kを通
じて研削液噴出孔Hから研削液を噴出させつつ、砥粒層
4を被削材に当ててこれを研削する。すると、砥石基体
1の回転につれ、羽根10が外部の空気あるいは/およ
び研削液を吸い込み、空洞部6およびガス導入路12を
経て砥石基体1の内側に供給される。多孔性砥粒層4が
その全周に亙って被削材と接触するか、あるいはこれら
の間隙が僅かであれば、砥石基体1の内側は加圧され
て、空気はガス導出路14に流入する。この時、回転軸
Sを通じて研削液噴出孔Hから噴出する研削液の一部が
空気と合流してガス導出路14に流入し、研削液分散層
2に供給される。このため、研削液および空気は分散層
2の各連通気孔30を通じて平面方向にも広がりつつ、
さらに多孔性砥粒層4に導入され、その給液孔40を通
じて研削面から放出される。Next, while rotating the rotary shaft S and ejecting the grinding liquid from the grinding liquid ejection hole H through the liquid supply passage K, the abrasive grain layer 4 is applied to the work material and ground. Then, as the grindstone base 1 rotates, the blade 10 sucks the external air or / and the grinding liquid, and the air is supplied to the inner side of the grindstone base 1 through the cavity 6 and the gas introduction passage 12. If the porous abrasive grain layer 4 is in contact with the work material over the entire circumference thereof or if there is a small gap between them, the inside of the grindstone base 1 is pressurized and the air is guided to the gas outlet passage 14. Inflow. At this time, a part of the grinding fluid ejected from the grinding fluid ejection hole H through the rotary shaft S merges with the air, flows into the gas outlet passage 14, and is supplied to the grinding fluid dispersion layer 2. Therefore, the grinding fluid and the air spread in the plane direction through the respective communication holes 30 of the dispersion layer 2,
Further, it is introduced into the porous abrasive grain layer 4 and discharged from the grinding surface through the liquid supply hole 40.
【0024】この過程で多孔性砥粒層4は研削液および
空気で冷却され、過熱が防止されるとともに、研削面に
付着した切粉が常に洗い流されて目詰まりが防止でき
る。したがって、目詰まりを解消するために研削を停止
する回数が少なくて済み、砥粒層4の過熱による被削材
との焼き付きも生じないし、砥粒層4の熱膨張による研
削精度の低下も防ぐことができる。また、強制的に充分
な量の研削液が研削点に供給されるため、研削液による
良好な潤滑状態が形成され、研削抵抗の低減が図れ、深
切込み等の重研削が可能になるのみならず、被削材の仕
上げ面粗さを向上できる。In this process, the porous abrasive grain layer 4 is cooled with the grinding liquid and air to prevent overheating, and the chips adhering to the grinding surface are constantly washed away to prevent clogging. Therefore, the number of times grinding is stopped to eliminate clogging is reduced, seizure with the work material due to overheating of the abrasive layer 4 does not occur, and deterioration of grinding accuracy due to thermal expansion of the abrasive layer 4 is prevented. be able to. Moreover, since a sufficient amount of grinding fluid is forcibly supplied to the grinding point, a good lubrication state is formed by the grinding fluid, the grinding resistance can be reduced, and heavy grinding such as deep cutting can be performed. Therefore, the finished surface roughness of the work material can be improved.
【0025】また、この実施例では、個々の給液孔40
の内径が多孔性砥粒層4の厚さ方向に亙って一定である
から、研削につれて多孔性砥粒層4が摩耗しても給液孔
40の口径は変化しない。このため、給液流量が変わっ
て研削条件に影響を与えるおそれがない。Further, in this embodiment, the individual liquid supply holes 40
Since the inner diameter of the porous abrasive grain layer 4 is constant in the thickness direction of the porous abrasive grain layer 4, the diameter of the liquid supply hole 40 does not change even if the porous abrasive grain layer 4 wears during grinding. Therefore, there is no possibility that the flow rate of the liquid supply changes and the grinding conditions are affected.
【0026】また、研削液分散層2の内部に、3次元網
目構造をなす連通気孔30がくまなく形成されているた
め、研削液分散層2がクッション性を有する。よって多
孔性砥粒層4の被削材への当たりが柔らかで、被削材へ
の超砥粒36の過剰な食い込みを防いで、仕上げ面粗さ
が向上できる。Further, since the ventilation holes 30 having a three-dimensional mesh structure are formed all over the inside of the grinding liquid dispersion layer 2, the grinding liquid dispersion layer 2 has a cushioning property. Therefore, the porous abrasive grain layer 4 is softly contacted with the work material, the excessive cutting of the super abrasive grain 36 into the work material is prevented, and the finished surface roughness can be improved.
【0027】なお、多孔性砥粒層4としては、図6ある
いは図7に示すような構造も可能である。The porous abrasive grain layer 4 may have the structure shown in FIG. 6 or 7.
【0028】図6の例では、図5に示した樹脂多孔質体
42の内部に砥粒36を分散させつつ金属めっき層38
を析出させ、樹脂多孔質体42の内部に満たした後、全
体を加熱して多孔質体42を除去し、その除去跡に連通
気孔30を形成したものである。この例では、砥粒層4
の内部に3次元網目状構造をなす連通気孔30が全域に
亙って無方向的に形成されるため、内周側から砥粒層4
に供給された研削液は砥粒層4の内部で分散されつつ研
削面に達する。したがって、前記実施例のような研削液
分散層2を設けなくてもよく、図6に示すように砥石基
体1の外周面に直接形成してもよい。In the example of FIG. 6, the metal plating layer 38 is formed while the abrasive grains 36 are dispersed inside the resin porous body 42 shown in FIG.
Is deposited and filled in the inside of the resin porous body 42, the entire body is heated to remove the porous body 42, and the communication holes 30 are formed in the removal traces. In this example, the abrasive layer 4
Since the continuous ventilation hole 30 having a three-dimensional mesh structure is formed in the inside of the non-directionally over the entire area, the abrasive grain layer 4 is formed from the inner peripheral side.
The grinding liquid supplied to the inner surface of the abrasive grain layer 4 reaches the grinding surface while being dispersed inside the abrasive grain layer 4. Therefore, it is not necessary to provide the grinding liquid dispersion layer 2 as in the above embodiment, and it may be directly formed on the outer peripheral surface of the grindstone base 1 as shown in FIG.
【0029】一方、図7の例は、樹脂多孔質体42の表
面に無電解めっき法により金属被覆層を形成した後、こ
の金属被覆層を陰極に接続して、砥粒36を分散させた
めっき液内で対向配置した陽極との間で通電し、電解め
っきを行うことにより、各金属被覆層の表面に、金属め
っき相38により砥粒36を固着させたものである。こ
の例によれば、砥粒層4に形成される連通気孔30が大
きく、気孔率が極めて大きいため、前記各実施例よりも
いっそう目詰まりや過熱が生じにくい。On the other hand, in the example of FIG. 7, after forming a metal coating layer on the surface of the porous resin body 42 by electroless plating, the metal coating layer was connected to the cathode to disperse the abrasive grains 36. The abrasive grains 36 are fixed to the surface of each metal coating layer by the metal plating phase 38 by applying electric current between the anodes facing each other in the plating solution and performing electrolytic plating. According to this example, since the continuous air holes 30 formed in the abrasive grain layer 4 are large and the porosity is extremely large, clogging and overheating are less likely to occur than in the above-described respective examples.
【0030】さらに、図8は本発明の他の実施例を示す
縦断面図である。この例では、砥石基体1の周壁部内に
円環状の空洞部16が形成され、この空洞部16から周
壁部端面に達するガス通路18が周方向一定間隔毎に多
数形成されている。また、砥石基体1の周壁部の内周面
には、前記空洞部16に達する研削液導入孔20が周方
向一定間隔毎に多数形成されている。Further, FIG. 8 is a vertical sectional view showing another embodiment of the present invention. In this example, an annular cavity portion 16 is formed in the peripheral wall portion of the grindstone base 1, and a large number of gas passages 18 reaching the end face of the peripheral wall portion from the cavity portion 16 are formed at regular intervals in the circumferential direction. Further, a large number of grinding fluid introduction holes 20 reaching the cavity 16 are formed on the inner peripheral surface of the peripheral wall portion of the grindstone base 1 at regular intervals in the circumferential direction.
【0031】これら研削液導入孔20は、空洞部16内
におけるガスの流れ方向に対して鋭角をなすように形成
されることが望ましく、これにより回転軸Sを通じて研
削液噴出孔Hから噴出する研削液の一部は、空洞部16
内で空気と合流してガス通路18に流入し、多孔性砥粒
層4に供給される。なお、この例では研削液分散層を設
けていない。These grinding liquid introducing holes 20 are preferably formed so as to form an acute angle with respect to the gas flow direction in the hollow portion 16, and as a result, the grinding liquid ejecting holes H are ejected through the rotary shaft S. Part of the liquid is the cavity 16
Inside, it merges with air, flows into the gas passage 18, and is supplied to the porous abrasive grain layer 4. In this example, the grinding liquid dispersion layer is not provided.
【0032】この例によっても前記実施例と同様の効果
が得られるうえ、回転中に砥石基体1の肩部に研削液を
吹きかけることにより、回転軸Sからではなしに外部か
ら直接、研削液を多孔性砥粒層4に供給することもでき
る。In this example as well, the same effect as in the above-mentioned example can be obtained, and by spraying the grinding liquid onto the shoulder portion of the grindstone base 1 during rotation, the grinding liquid is directly supplied from the outside, not from the rotating shaft S. It can also be supplied to the porous abrasive grain layer 4.
【0033】なお、本発明は上記実施例にのみ限定され
るものではなく、例えば砥石基体1の形状や羽根10の
形状等は必要に応じて適宜変更してよい。また、多孔性
砥粒層4としては、前述した構造のものに限らず、予め
金属めっきした超砥粒を使用して通常の電着を行なうこ
とにより、砥粒同士の間に互いに一部連通する気孔を形
成した砥粒層も使用できる。The present invention is not limited to the above embodiment, and the shape of the grindstone base 1, the shape of the blades 10 and the like may be changed as necessary. Further, the porous abrasive grain layer 4 is not limited to the one having the above-described structure, and superabrasive grains which are metal-plated in advance are used to perform normal electrodeposition to partially communicate the abrasive grains with each other. It is also possible to use an abrasive grain layer having pores formed therein.
【0034】[0034]
【発明の効果】以上説明したように、本発明に係わる通
水性カップ型砥石によれば、砥石の回転につれ砥石基体
の外周面に設けられた吸入羽根構造が砥石外部の空気を
吸い込み、空洞部に導入する。導入された空気は次にガ
ス通路を通じて砥石基体の端面から導出されるが、その
途中で、回転軸を通して砥石内側に供給される研削液が
前記空気と合流し、この空気とともに砥石基体の端面か
ら多孔性砥粒層に供給される。供給された研削液および
空気は多孔性砥粒層の内部を分散しつつ進行し、研削面
から放出されるため、その過程で多孔性砥粒層は研削液
および空気で冷却され、過熱が防止されるとともに、研
削面に付着する切粉が洗い流されて目詰まりが防止でき
る。また、研削点に充分な量の研削液が強制的に供給さ
れるため、重研削が可能となる他に、被削材の仕上げ面
粗さの向上も可能となる。As described above, according to the water-permeable cup type grindstone according to the present invention, as the grindstone rotates, the suction vane structure provided on the outer peripheral surface of the grindstone base sucks in air outside the grindstone to form a cavity. To introduce. The introduced air is then led out from the end face of the grindstone base through the gas passage, and in the middle of that, the grinding liquid supplied to the inside of the grindstone through the rotary shaft merges with the air, and together with this air, from the end face of the grindstone base. It is supplied to the porous abrasive grain layer. The supplied grinding fluid and air travel while dispersing inside the porous abrasive grain layer and are released from the grinding surface, so the porous abrasive grain layer is cooled by the grinding fluid and air in the process, and overheating is prevented. At the same time, the chips adhering to the ground surface are washed away and clogging can be prevented. Further, since a sufficient amount of the grinding liquid is forcibly supplied to the grinding point, it becomes possible to perform heavy grinding and improve the finished surface roughness of the work material.
【0035】一方、砥石基体と多孔性砥粒層との間に研
削液分散層を設けた場合には、この多孔性分散層によ
り、砥石基体の端面から流出する研削液を研削面と平行
な方向へ効果的に分散させ、砥粒層の広い範囲に研削液
を流通させることが可能である。On the other hand, when a grinding liquid dispersion layer is provided between the grindstone base and the porous abrasive grain layer, the porosity dispersion layer allows the grinding liquid flowing out from the end face of the grindstone base to be parallel to the grinding surface. It is possible to disperse the grinding fluid effectively in the direction, and to flow the grinding liquid in a wide range of the abrasive grain layer.
【図1】本発明に係わる通水性カップ型砥石の一実施例
を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of a water-permeable cup-type grindstone according to the present invention.
【図2】図1のII−II線視断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.
【図3】図1のIII−III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.
【図4】同砥石の砥粒層および研削液分散層の断面拡大
図である。FIG. 4 is an enlarged cross-sectional view of an abrasive grain layer and a grinding liquid dispersion layer of the whetstone.
【図5】同砥石の製造に使用される樹脂多孔質体を示す
拡大図である。FIG. 5 is an enlarged view showing a resin porous body used for manufacturing the whetstone.
【図6】本発明の第2実施例の多孔性砥粒層を示す断面
拡大図である。FIG. 6 is an enlarged cross-sectional view showing a porous abrasive grain layer according to a second embodiment of the present invention.
【図7】本発明の第3実施例の多孔性砥粒層を示す断面
拡大図である。FIG. 7 is an enlarged cross-sectional view showing a porous abrasive grain layer of a third embodiment of the present invention.
【図8】本発明の第4実施例の通水性カップ型砥石を示
す縦断面図である。FIG. 8 is a vertical sectional view showing a water-permeable cup-shaped grindstone according to a fourth embodiment of the present invention.
1 砥石基体 2 研削液分散層 4 多孔性砥粒層 6 空洞部 8 開口部 10 羽根(吸入羽根構造) 12 ガス導入路(ガス通路の一部) 14 ガス導出路(ガス通路の一部) 16 空洞部 18 ガス通路 20 研削液導入孔 30 連通気孔 32 耐熱被覆 34 金属充填層 36 超砥粒 38 金属めっき相 40 給液孔 42 樹脂多孔質体 1 Grindstone Base 2 Grinding Liquid Dispersion Layer 4 Porous Abrasive Grain Layer 6 Cavity 8 Opening 10 Blade (Suction Blade Structure) 12 Gas Inlet (Part of Gas Passage) 14 Gas Outlet (Part of Gas Passage) 16 Cavity 18 Gas passage 20 Grinding liquid introduction hole 30 Continuous ventilation hole 32 Heat resistant coating 34 Metal filling layer 36 Super abrasive grain 38 Metal plating phase 40 Liquid supply hole 42 Resin porous body
Claims (2)
周壁部端面に設けられた通水性を有する多孔性砥粒層と
を具備し、前記砥石基体の内部には空洞部が形成される
とともに、砥石基体の外面にはこの空洞部に連通する開
口部が形成され、この開口部内には砥石基体の回転につ
れ外部の空気を吸い込み空洞部内に導入する吸入羽根構
造が設けられ、さらに、空洞部に連通し前記砥石基体の
端面に開口するとともにその途中で砥石基体の内側に供
給される研削液を前記空気と合流させ前記端面から導出
するガス通路が形成されていることを特徴とする通水性
カップ型砥石。1. A grindstone base of cup type, and a porous abrasive grain layer having water permeability provided on an end surface of a peripheral wall portion of the grindstone base, wherein a cavity is formed inside the grindstone base. At the same time, an opening communicating with this cavity is formed on the outer surface of the grindstone base, and a suction vane structure is provided in this opening for sucking in outside air and introducing it into the cavity as the grindstone base rotates. And a gas passage that opens to the end face of the grindstone base and joins the grinding liquid supplied to the inside of the grindstone base with the air to lead out from the end face. Aqueous cup type grindstone.
層との間には、通水性を有する研削液分散層が設けられ
ていることを特徴とする請求項1記載の通水性カップ型
砥石。2. The water-permeable cup according to claim 1, wherein a grinding liquid dispersion layer having water permeability is provided between the end surface of the grindstone base and the porous abrasive grain layer. Type grindstone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152038A JP2924305B2 (en) | 1991-06-24 | 1991-06-24 | Water-permeable cup type whetstone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3152038A JP2924305B2 (en) | 1991-06-24 | 1991-06-24 | Water-permeable cup type whetstone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0569339A true JPH0569339A (en) | 1993-03-23 |
JP2924305B2 JP2924305B2 (en) | 1999-07-26 |
Family
ID=15531701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3152038A Expired - Lifetime JP2924305B2 (en) | 1991-06-24 | 1991-06-24 | Water-permeable cup type whetstone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2924305B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103469A (en) * | 2001-09-27 | 2003-04-08 | Noritake Super Abrasive:Kk | Straight cup grinding wheel |
JP2004167617A (en) * | 2002-11-19 | 2004-06-17 | Okamoto Machine Tool Works Ltd | Grinding head structure equipped with cup wheel type whetstone |
JP2006341326A (en) * | 2005-06-08 | 2006-12-21 | Shin Nippon Koki Co Ltd | Rotary tool |
US7527662B2 (en) | 2002-06-28 | 2009-05-05 | Noritake Co., Limited | Abrasive body and method of manufacturing the same |
JP2011093029A (en) * | 2009-10-28 | 2011-05-12 | Disco Abrasive Syst Ltd | Grinding device |
CN102909666A (en) * | 2012-11-20 | 2013-02-06 | 无锡威孚精密机械制造有限责任公司 | Forced cooling type vertical spring grinding machine grinding wheel device |
JP2015104762A (en) * | 2013-11-29 | 2015-06-08 | 株式会社ナノテム | Grindstone and grinding device using the same |
CN105563361A (en) * | 2015-12-09 | 2016-05-11 | 张嵩 | Grinding wheel |
CN109483418A (en) * | 2018-12-28 | 2019-03-19 | 西安增材制造国家研究院有限公司 | The production method of Metal Substrate micro lubricating grinding wheel and Metal Substrate micro lubricating grinding wheel |
-
1991
- 1991-06-24 JP JP3152038A patent/JP2924305B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103469A (en) * | 2001-09-27 | 2003-04-08 | Noritake Super Abrasive:Kk | Straight cup grinding wheel |
US7527662B2 (en) | 2002-06-28 | 2009-05-05 | Noritake Co., Limited | Abrasive body and method of manufacturing the same |
JP2004167617A (en) * | 2002-11-19 | 2004-06-17 | Okamoto Machine Tool Works Ltd | Grinding head structure equipped with cup wheel type whetstone |
JP2006341326A (en) * | 2005-06-08 | 2006-12-21 | Shin Nippon Koki Co Ltd | Rotary tool |
JP4699813B2 (en) * | 2005-06-08 | 2011-06-15 | 新日本工機株式会社 | Rotating tool |
JP2011093029A (en) * | 2009-10-28 | 2011-05-12 | Disco Abrasive Syst Ltd | Grinding device |
CN102909666A (en) * | 2012-11-20 | 2013-02-06 | 无锡威孚精密机械制造有限责任公司 | Forced cooling type vertical spring grinding machine grinding wheel device |
JP2015104762A (en) * | 2013-11-29 | 2015-06-08 | 株式会社ナノテム | Grindstone and grinding device using the same |
CN105563361A (en) * | 2015-12-09 | 2016-05-11 | 张嵩 | Grinding wheel |
CN109483418A (en) * | 2018-12-28 | 2019-03-19 | 西安增材制造国家研究院有限公司 | The production method of Metal Substrate micro lubricating grinding wheel and Metal Substrate micro lubricating grinding wheel |
CN109483418B (en) * | 2018-12-28 | 2023-11-17 | 西安增材制造国家研究院有限公司 | Metal-based micro-lubrication grinding wheel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2924305B2 (en) | 1999-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150290771A1 (en) | Abrasive article and method for making the same | |
WO1998014307A1 (en) | Superabrasive tool and method of its manufacture | |
JPH0569339A (en) | Water permeable cup type grinding wheel | |
US3918220A (en) | Method of grinding a surface of a workpiece and a tool for carrying out the method | |
US5127924A (en) | Hard particle coated grinding wheel | |
US20090130959A1 (en) | Blasting method and blasting machine | |
CN104736300B (en) | Grinding tool and the grinding-polishing device for having used the grinding tool | |
EP1100653B1 (en) | Rotary dressing tool containing brazed diamond layer | |
WO2007022016A2 (en) | Abrasive tool | |
JP4746007B2 (en) | Grinding tool, grinding method and grinding system | |
JPH0569338A (en) | Water permeable cup type grinding wheel | |
JP2929772B2 (en) | Water-permeable straight whetstone | |
JP2976502B2 (en) | Whetstone having liquid supply means and method of manufacturing the same | |
JPH09225827A (en) | Dresser and manufacture thereof | |
US20020173247A1 (en) | Machining device and methods | |
JPS63283866A (en) | Superabrasive grain cutting grindstone | |
JP2000084831A (en) | Dressing device, polishing device using it, and cmp device | |
JPS6228519A (en) | Ceramic bearing device | |
JP2000326234A (en) | Super-abrasive grain wheel for deburring | |
JP2004268238A (en) | Electrodeposition tool and its manufacturing method | |
JPS6332593B2 (en) | ||
JPH01236A (en) | Method for manufacturing fluid permeable castings | |
JP2765172B2 (en) | Porous multilayer electrodeposited grinding wheel and method for producing the same | |
JPH0531674A (en) | Water permeable grinding wheel and manufacture thereof | |
JP2004025344A (en) | Rotary cutter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990406 |