JPH0569101A - Production of steel material - Google Patents

Production of steel material

Info

Publication number
JPH0569101A
JPH0569101A JP23517491A JP23517491A JPH0569101A JP H0569101 A JPH0569101 A JP H0569101A JP 23517491 A JP23517491 A JP 23517491A JP 23517491 A JP23517491 A JP 23517491A JP H0569101 A JPH0569101 A JP H0569101A
Authority
JP
Japan
Prior art keywords
cast
oxides
slab
steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23517491A
Other languages
Japanese (ja)
Inventor
Hironori Goto
裕規 後藤
Shigeaki Ogibayashi
成章 荻林
Kenichi Miyazawa
憲一 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23517491A priority Critical patent/JPH0569101A/en
Publication of JPH0569101A publication Critical patent/JPH0569101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide the above method to produce the steel material with which fine oxides in Al less killed steel can be uniformly dispersed in said steel material. CONSTITUTION:In the cast of casting the poor deoxidized steel having <=0.005% Al with continuous casting, by adding and dipping an iron wire containing 0.0005-0.005wt.% iron oxide in terms of oxygen per unit amount of molten cast steel into a mold from mold meniscus to the deep part so that the melting reaction position of the added wire becomes >=30% and <70% of the total thickness of a cast slab to the solidified thickness in the cast slab, many fine oxides of <=10mum are uniformly dispersed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱酸材としてAl合金を
ほとんど用いない低炭素鋼材の製造方法に関するもの
で、この鋼材の主たる用途は厚板またはUOパイプであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low carbon steel material which hardly uses an Al alloy as a deoxidizing material, and the main application of this steel material is a thick plate or UO pipe.

【0002】[0002]

【従来の技術】近年、海洋構造物、船舶、ラインパイプ
等の材質特性に対する要求は厳しさを増しており、特に
溶接部における低温靱性の抜本的改善が望まれていた。
これに対して、Tiを主成分とした微小な酸化物(酸化
物粒径≦10μm)を鋼材中に均一分散させることによ
り、溶接後の冷却過程において、これらを核にしてオー
ステナイト粒内に数多くの微小なフェライト(以下、粒
内フェライトと記す)が生成し、溶接熱影響部の結晶粒
を実質的に微細化することにより優れた靱性を得てい
る。しかして、この鋼材の溶製方法は特開昭60−70
15号公報に開示されている。
2. Description of the Related Art In recent years, the demands on the material characteristics of marine structures, ships, line pipes, etc. have become more severe, and in particular, a drastic improvement in the low temperature toughness at the welded portion has been desired.
On the other hand, by finely dispersing minute oxides (oxide particle size ≤ 10 μm) containing Ti as a main component in the steel material, a large number of austenite particles are formed in the austenite grains in the cooling process after welding. Of minute ferrite (hereinafter referred to as intragranular ferrite) is generated, and excellent toughness is obtained by substantially refining the crystal grains in the heat-affected zone of welding. Thus, the method of melting this steel material is disclosed in JP-A-60-70.
No. 15 publication.

【0003】しかしながら、特開昭60−7015号公
報の製造方法では、連続鋳造鋳片で微小な酸化物個数が
鋳片厚み方向で大きく変化していることが判明した。即
ち、冷却速度が大きい鋳片表層近傍では酸化物個数は多
いが、冷却速度の小さい鋳片中心部で個数は減少してい
る。鋼材の材質をより均一化させるには、粒内フェライ
トの核となる微小な酸化物の鋳片厚み方向の個数減少を
抑制する必要がある。
However, in the manufacturing method disclosed in Japanese Patent Laid-Open No. 60-7015, it was found that the number of minute oxides in the continuously cast slab greatly changed in the thickness direction of the slab. That is, the number of oxides is large in the vicinity of the surface layer of the slab where the cooling rate is high, but the number decreases at the center of the slab where the cooling rate is low. In order to make the material of the steel material more uniform, it is necessary to suppress the decrease in the number of minute oxides that serve as nuclei for intragranular ferrite in the thickness direction of the cast piece.

【0004】[0004]

【発明が解決しようとする課題】本発明は連続鋳造に際
して、鋼材中の厚み方向の微小な酸化物個数減少を低減
する方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for reducing a minute decrease in the number of oxides in a steel material in the thickness direction during continuous casting.

【0005】[0005]

【課題を解決するための手段】微小な酸化物の生成機構
を調査解析すると、冷却速度と溶存酸素含有量に支配さ
れていることが判った。即ち、冷却速度が大きいと鋳片
内部では酸化物を晶出するための駆動力が大きく、かつ
凝固時間が短いために、晶出した酸化物同志の衝突によ
る凝集、合体が生ずる頻度も減少し、酸化物個数も増加
する。また、溶存酸素含有量が高いと酸化物生成の絶対
量が増加する。
[Means for Solving the Problems] An investigation and analysis of the formation mechanism of minute oxides have revealed that the cooling rate and the dissolved oxygen content are governed. That is, if the cooling rate is high, the driving force for crystallizing the oxide inside the cast piece is large, and the solidification time is short, so the frequency of aggregation and coalescence due to the collision of the crystallized oxides decreases. The number of oxides also increases. Also, if the dissolved oxygen content is high, the absolute amount of oxide formation increases.

【0006】連続鋳造設備の二次冷却水量の増加による
鋳片内部の冷却速度の上昇は凝固した鋳片内の熱移動が
律速しており、鋳片厚みの影響が大きく効率的な冷却を
得ることは難しく、過剰な冷却は表面割れ等の品質欠陥
の原因となる。また、鋳造前の溶鋼段階で酸素量を増大
させると、減少している鋳片中心部のみならず全体の酸
化物個数が増加し、溶鋼清浄性が悪化する。そこで、よ
り効率的に、減少している鋳片内部の酸化物個数を増加
させるために、酸化材である酸化鉄を直接溶鋼内部に添
加し、反応させて酸化物個数を増加させる。具体的に
は、モールド内溶鋼へ酸化鉄を含有させた鉄ワイヤーを
供給し、溶鋼内部で鉄ワイヤーを溶解させ、酸化鉄と溶
鋼を反応させ、内部の酸化物個数を上昇させるものであ
る。この内部への酸化物添加により、併せて冷却速度の
上昇も図られ、晶出する酸化物個数の増加と凝固時間の
短縮により酸化物の凝集成長をも抑制することができ
る。
The increase in the cooling rate inside the slab due to the increase in the amount of secondary cooling water in the continuous casting equipment is due to the heat transfer within the solidified slab, and the effect of the thickness of the slab is significant to obtain efficient cooling. However, excessive cooling causes quality defects such as surface cracks. Further, if the amount of oxygen is increased in the molten steel stage before casting, not only the decreasing central portion of the cast slab but also the total number of oxides increases, and the cleanliness of molten steel deteriorates. Therefore, in order to more efficiently increase the number of oxides in the slab that is decreasing, iron oxide, which is an oxidant, is directly added into the molten steel and reacted to increase the number of oxides. Specifically, an iron wire containing iron oxide is supplied to the molten steel in the mold, the iron wire is melted inside the molten steel, the iron oxide reacts with the molten steel, and the number of oxides inside is increased. By adding the oxide to the inside, the cooling rate is also increased, and the aggregate growth of the oxide can be suppressed by increasing the number of crystallized oxides and shortening the solidification time.

【0007】酸化鉄を含有させた鉄ワイヤーの溶解位置
は、鋳片厚み方向で個数減少が顕著となる位置が望まし
く、モールドメニスカスから深部まで添加浸漬させる。
具体的には、鋳片凝固厚みが全鋳片厚みの30%以上と
なる位置で溶解し、鋳片内部の冷却速度を上昇させて酸
化物個数を鋳片内部で増加させる。しかしながら、溶解
位置が深すぎると未凝固部分が少なくなるためにワイヤ
ー未溶解が生じるので、溶解位置は限定される。これま
での実験結果からワイヤー未溶解が生じないための溶解
位置は、鋳片凝固厚みが全鋳片厚みの70%未満である
ことが判った。
The melting position of the iron wire containing iron oxide is desired to be a position where the number decreases remarkably in the thickness direction of the cast piece, and the iron wire is added and immersed from the mold meniscus to a deep portion.
Specifically, the slab is melted at a position where the solidified thickness is 30% or more of the total slab thickness, and the cooling rate inside the slab is increased to increase the number of oxides inside the slab. However, if the melting position is too deep, the uncoagulated portion is reduced and unmelting of the wire occurs. Therefore, the melting position is limited. From the results of the experiments so far, it was found that the melting position at which the unmelting of the wire did not occur was such that the cast solidification thickness was less than 70% of the total cast thickness.

【0008】添加する酸化物量は少なすぎると酸化物生
成量が不足して効果が小さく、多すぎると数十μm以上
の未溶解の酸化物が残存し、不均一な鋼材となる。従っ
て、具体的には添加酸素量は、後述の0.0005〜
0.005wt%と制限される。
If the amount of oxide added is too small, the amount of oxide produced is insufficient and the effect is small. If it is too large, undissolved oxide of several tens of μm or more remains, resulting in a non-uniform steel material. Therefore, specifically, the added oxygen amount is 0.0005 to
It is limited to 0.005 wt%.

【0009】[0009]

【作用】モールド内へ、酸化鉄を含有させた鉄ワイヤー
を添加しない従来方法による鋳片内酸化物個数分布と、
モールド内へ、酸化鉄を含有させた鉄ワイヤーを添加し
た場合の鋳片内酸化物個数分布を図を用いて比較する。
従来方法による鋳片厚み方向の酸化物個数は図1に示す
ように、鋳片表層近傍では70〜100個/mm2 であ
るが、鋳片内部では減少し、中心部では15個/mm2
程度である。一方、モールド内へ、酸化鉄を含有させた
鉄ワイヤーを添加し、ワイヤー溶解位置を凝固厚みが全
鋳片厚みの約35%に制御して酸化鉄を反応させた場合
の結果を図2に示す。鋳片表層近傍では、酸化物個数が
80〜90個/mm2 で、ほぼ従来法と同程度である
が、鋳片内部では酸化物個数の減少が従来方法と比較し
て小さく、中心部では60個/mm2 程度を確保でき
た。
[Function] The number distribution of oxides in cast slab according to the conventional method in which the iron wire containing iron oxide is not added to the mold,
The distribution of the number of oxides in a cast piece when an iron wire containing iron oxide is added to the mold is compared using the drawings.
As shown in FIG. 1, the number of oxides in the thickness direction of the cast piece by the conventional method is 70 to 100 pieces / mm 2 in the vicinity of the surface layer of the cast piece, but decreases in the inside of the cast piece, and 15 pieces / mm 2 in the central portion.
It is a degree. On the other hand, Fig. 2 shows the result when iron wire containing iron oxide was added to the mold and the iron melting point was controlled so that the solidification thickness was about 35% of the total slab thickness and the iron oxide was reacted. Show. In the vicinity of the surface layer of the slab, the number of oxides was 80 to 90 / mm 2 , which was almost the same as that of the conventional method, but the decrease in the number of oxides inside the slab was smaller than that of the conventional method, and About 60 pieces / mm 2 could be secured.

【0010】ワイヤー溶解位置が浅すぎると、例えばワ
イヤー溶解位置を凝固厚みが全鋳片厚みの約15%とし
た場合は、図3に示すとおり表層から60mmまでの酸
化物個数は若干増加するが、中心部での酸化物個数増加
は認められない。ワイヤー溶解位置が深すぎると、例え
ばワイヤー溶解位置を凝固厚みが全鋳片厚みの約75%
を目標にすると、ワイヤーが未溶解のままで残り、効果
を得ることができないだけでなく、品質上不均一な鋼材
となった。従って、ワイヤー溶解位置は鋳片の凝固厚み
が全鋳片厚みの30%以上、70%未満が適正範囲であ
る。
If the wire melting position is too shallow, for example, if the solidification thickness of the wire melting position is about 15% of the total slab thickness, the number of oxides from the surface layer to 60 mm increases slightly as shown in FIG. No increase in the number of oxides in the central part was observed. If the wire melting position is too deep, for example, the solidification thickness at the wire melting position is about 75% of the total cast piece thickness.
When the target was set, the wire remained unmelted, the effect could not be obtained, and the quality became uneven. Therefore, in the wire melting position, the solidified thickness of the cast piece is 30% or more and less than 70% of the total cast piece thickness within the proper range.

【0011】添加する酸化物量を変化させて酸化物個数
の上昇分を調査した結果を図4に示す。酸化物中の含有
酸素量が鋳造溶鋼量あたり0.0005wt%未満では
顕著な増加効果は認められない。0.0005〜0.0
05wt%では酸化物個数の増加効果が認められるが、
0.005wt%を超えると未溶解の酸化鉄が残存し、
微小な酸化物増加の効果は減少するとともに、未溶解酸
化鉄が存在して不均質な鋼材となった。従って、添加す
る酸化物量は0.0005〜0.005wt%が適正な
範囲である。
FIG. 4 shows the results of investigating the increase in the number of oxides by changing the amount of oxides added. If the amount of oxygen contained in the oxide is less than 0.0005 wt% with respect to the amount of molten steel cast, no remarkable increase effect is observed. 0.0005-0.0
Although the effect of increasing the number of oxides is recognized at 05 wt%,
If it exceeds 0.005 wt%, undissolved iron oxide remains,
The effect of increasing small oxides diminished, and undissolved iron oxide was present, resulting in a heterogeneous steel material. Therefore, 0.0005 to 0.005 wt% is an appropriate range for the amount of oxide to be added.

【0012】材質への効果であるが、図5に示すとお
り、酸化鉄を含有したワイヤーを酸素相当量0.001
5wt%で、溶解反応位置を凝固厚みが全鋳片厚みの約
35%に制御して鋳片内部の冷却速度の向上を図り酸化
物個数を増加させると、材質を支配する粒内フェライト
の面積率が増加していることが判る。
As for the effect on the material, as shown in FIG. 5, a wire containing iron oxide was used in an amount of 0.001 equivalent to oxygen.
If the solidification thickness is controlled to about 35% of the total slab thickness at 5 wt% and the cooling rate inside the slab is increased to increase the number of oxides, the area of intragranular ferrite that governs the material You can see that the rate is increasing.

【0013】[0013]

【実施例】表1の成分の溶鋼を240mm厚みの2スト
ランドの連続鋳造機にて鋳造し、1ストランド側のモー
ルドでは酸化鉄を含有させた鉄ワイヤーの添加を、酸化
鉄含有量と溶解位置を変更させて実施し、2ストランド
側のモールドでは鉄ワイヤー添加を行わない、比較鋳造
試験を実施した。その鋳片の酸化物個数測定結果を表2
に示す。
[Examples] Molten steel having the components shown in Table 1 was cast by a two-strand continuous casting machine having a thickness of 240 mm, and the iron wire containing iron oxide was added to the mold on the one-strand side by adding the iron oxide content and the melting position. Was changed, and a comparative casting test was performed in which the iron wire was not added in the mold on the 2 strand side. Table 2 shows the results of measuring the number of oxides in the cast piece
Shown in.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上の如く、本発明に従って連続鋳造に
て鋳造時にモールド内に鉄ワイヤーを添加し、鋳片内部
の冷却速度を上昇させることによって微小な酸化物を鋳
片内部まで多数均一分散させることで、粒内フェライト
の生成量を増大させ、靱性及び溶接性の優れた鋼材を製
造することが可能である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, iron wires are added into the mold during casting in continuous casting to increase the cooling rate inside the slab to uniformly disperse a large number of fine oxides into the slab. By doing so, it is possible to increase the amount of intragranular ferrite produced and manufacture a steel material having excellent toughness and weldability.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の鋳片内の酸化物分布を示す図である。FIG. 1 is a diagram showing an oxide distribution in a conventional cast slab.

【図2】酸化鉄を含有させた鉄ワイヤー添加による(本
発明範囲の溶解位置)鋳片内の酸化物分布を示す図であ
る。
FIG. 2 is a view showing an oxide distribution in a cast piece by adding an iron wire containing iron oxide (melting position within the range of the present invention).

【図3】鉄ワイヤー添加による(本発明範囲以外の溶解
位置)鋳片内の酸化物分布を示す図である。
FIG. 3 is a diagram showing an oxide distribution in a cast slab by adding an iron wire (a melting position outside the range of the present invention).

【図4】添加酸化鉄量と鋳片中心部の酸化物個数増加の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of added iron oxide and the increase in the number of oxides in the center of the cast slab.

【図5】酸化物個数と粒内フェライト生成率の関係を示
す図である。
FIG. 5 is a diagram showing the relationship between the number of oxides and the intragranular ferrite production rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al:0.005%以下の弱脱酸鋼を連
続鋳造設備にて鋳造するにあたり、モールド内に、鋳造
溶鋼量あたり0.0005〜0.005wt%の酸素量
相当の酸化鉄を含有した鉄ワイヤーを、添加ワイヤーの
溶解反応位置が鋳片凝固厚みが全鋳片厚みの30%以上
70%未満となるようにモールドメニスカスから深部ま
で添加浸漬させることによって、10μm以下の微小な
酸化物を多数均一分散させることを特徴とする鋼材の製
造方法。
1. Al: 0.005% or less of weakly deoxidized steel is cast in a continuous casting facility, and iron oxide corresponding to an oxygen content of 0.0005 to 0.005 wt% per cast molten steel is cast in a mold. 10 μm or less by adding and immersing the iron wire containing the iron wire from the mold meniscus to the deep part so that the melting reaction position of the addition wire is 30% or more and less than 70% of the total thickness of the slab. A method for producing a steel material, which comprises uniformly dispersing a large number of oxides.
JP23517491A 1991-09-13 1991-09-13 Production of steel material Withdrawn JPH0569101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517491A JPH0569101A (en) 1991-09-13 1991-09-13 Production of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517491A JPH0569101A (en) 1991-09-13 1991-09-13 Production of steel material

Publications (1)

Publication Number Publication Date
JPH0569101A true JPH0569101A (en) 1993-03-23

Family

ID=16982166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517491A Withdrawn JPH0569101A (en) 1991-09-13 1991-09-13 Production of steel material

Country Status (1)

Country Link
JP (1) JPH0569101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021271A (en) * 2009-09-18 2011-04-20 鞍钢股份有限公司 Intermediate for adding superfine oxide into steel and preparation method
KR20200063903A (en) * 2018-11-28 2020-06-05 주식회사 포스코 Manufacturing method of ferritic stainless steel with improved surface quality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021271A (en) * 2009-09-18 2011-04-20 鞍钢股份有限公司 Intermediate for adding superfine oxide into steel and preparation method
KR20200063903A (en) * 2018-11-28 2020-06-05 주식회사 포스코 Manufacturing method of ferritic stainless steel with improved surface quality

Similar Documents

Publication Publication Date Title
JP2999671B2 (en) Melting method of Ca-added steel
JP2020011261A (en) Method and device for producing fine oxide-dispersed metal lump
JP4873921B2 (en) Method for producing ultra-low carbon steel sheet and ultra-low carbon cast slab excellent in surface properties, workability and formability
KR100889686B1 (en) Method for manufacturing the ferritic stainless steel improved the equiaxed structure ratio thereof
JPH0569101A (en) Production of steel material
JPH0464766B2 (en)
JP4289205B2 (en) Continuous casting method and continuous cast slab
JPH10183295A (en) Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production
JPH05169214A (en) Production of steel material by continuous casting
JPH11293391A (en) Low carbon free cutting steel excellent in chip treatability, and its production
JP2866147B2 (en) Method for producing steel in which fine oxides are dispersed
JP4555505B2 (en) Mass dispersion method for fine oxides in molten steel
JP2613699B2 (en) Steel material excellent in low-temperature toughness and method for producing the same
JPH04294848A (en) Method for controlling oxide
JP3953626B2 (en) Ferritic stainless steel excellent in drawing workability and manufacturing method thereof
JP3870743B2 (en) Steel continuous casting method
JP3322806B2 (en) Fine dispersion method of oxides in steel
JPH10152755A (en) Steel for steel sheet for can few in defect and its production
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JPH07238344A (en) High cleanliness steel and production thereof
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic
JPH08238544A (en) Production of steel excellent in toughness at welding heat affected zone
JP2692061B2 (en) Method for producing austenitic stainless steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
JP4081218B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203