JP2020011261A - Method and device for producing fine oxide-dispersed metal lump - Google Patents

Method and device for producing fine oxide-dispersed metal lump Download PDF

Info

Publication number
JP2020011261A
JP2020011261A JP2018134842A JP2018134842A JP2020011261A JP 2020011261 A JP2020011261 A JP 2020011261A JP 2018134842 A JP2018134842 A JP 2018134842A JP 2018134842 A JP2018134842 A JP 2018134842A JP 2020011261 A JP2020011261 A JP 2020011261A
Authority
JP
Japan
Prior art keywords
molten metal
metal
solid electrolyte
oxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018134842A
Other languages
Japanese (ja)
Other versions
JP7135525B2 (en
Inventor
廣角 太朗
Taro Hirokado
太朗 廣角
塚口 友一
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134842A priority Critical patent/JP7135525B2/en
Publication of JP2020011261A publication Critical patent/JP2020011261A/en
Application granted granted Critical
Publication of JP7135525B2 publication Critical patent/JP7135525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

To provide a device and a method for producing a metal lump in which fine oxide based inclusions are largely dispersed so as to obtain sufficient HAZ toughness even upon high heat input welding.SOLUTION: A device for producing a fine oxide-dispersed metal lump comprises: a molten metal container 21 storing a molten metal 20; a refractory 22 in which at least a part is composed of a solid electrolyte 15; counter electrodes 17 in contact with the molten metal 20 stored in the molten metal container 21; and a direct current power source 9, in which a part of the refractory 22 is immersed into the molten metal 20, the refractory 22 is provided with a contact electrode 16, a positive electrode 18 of the direct current power source 9 is connected to the counter electrodes 17, and a negative electrode 19 is connected to the contact electrode 16, and a production method uses the device. When energization is performed using the direct current power source 9, oxygen is fed to the molten metal 20 via the solid electrolyte 15, and is reacted with a deoxidation material component in the molten metal, thus a metal lump in which fine oxide based inclusions are largely dispersed can be produced.SELECTED DRAWING: Figure 1

Description

本発明は、溶融金属を凝固させて金属塊を製造するにあたり、微細な酸化物系介在物が多量に分散した金属塊を製造することのできる、微細酸化物分散金属塊の製造装置及び微細酸化物分散金属塊の製造方法に関する。   The present invention relates to an apparatus and a method for manufacturing a fine oxide-dispersed metal lump, which can produce a metal lump in which a large amount of fine oxide-based inclusions are dispersed in solidifying a molten metal to produce a metal lump. The present invention relates to a method for manufacturing a metal lump dispersed with a substance.

本発明が対象とする金属材料はその種類を限定されるものではないが、以下に鉄鋼材料を例にとって説明する。   Although the kind of the metal material to which the present invention is applied is not limited, a steel material will be described below as an example.

近年、船舶や建造物など鋼材を用いた構造物は大型化する傾向にあり、鋼材の高強度化、厚肉化が強く求められている。鋼材は一般的に溶接により接合されるが、鋼材の厚肉化に伴い、鋼材に対して大きな熱量を加える大入熱溶接を行うことが効率の観点から求められている。しかし、大入熱溶接時には溶接熱影響部(以下HAZと称する)が鋼材の溶融温度に近い高温にさらされるとともに、高温からの冷却速度が小さくなるため、組織がきわめて粗大化しやすく、さらに上部マルテンサイトや島状マルテンサイトといった鋼材の靭性を低下させる要因となる組織の形成が促進される。そのため、大入熱溶接構造物においては、HAZ部の靱性が低下する問題が生じていた。   In recent years, structures using steel materials, such as ships and buildings, have been increasing in size, and there is a strong demand for higher strength and thicker steel materials. Steel materials are generally joined by welding, but as the thickness of steel materials increases, it is required from the viewpoint of efficiency to perform large heat input welding for applying a large amount of heat to the steel materials. However, at the time of large heat input welding, the heat affected zone (hereinafter referred to as HAZ) is exposed to a high temperature close to the melting temperature of steel, and the cooling rate from the high temperature is reduced. The formation of a structure that reduces the toughness of a steel material such as a site and island martensite is promoted. Therefore, in the large heat input welded structure, there has been a problem that the toughness of the HAZ portion is reduced.

HAZ部の靭性を改善する方法に関しては、微細なTiNを分散析出させることでこれらをピン止め粒子として用い、溶接時のオーステナイト粒粗大化を抑制する技術が広く知られている。しかし、入熱量50kJ/mmを超えるような大入熱溶接においては、HAZ部の温度が高温に達するため、鋼材内のTiNが固溶、消失してしまい、オーステナイト粒粗大化を食い止められないという問題がある。   With respect to a method of improving the toughness of the HAZ portion, a technique is widely known in which fine TiN is dispersed and precipitated and used as pinning particles to suppress austenite grain coarsening during welding. However, in large heat input welding in which the heat input exceeds 50 kJ / mm, the temperature of the HAZ reaches a high temperature, so that TiN in the steel material dissolves and disappears, and coarsening of austenite grains cannot be prevented. There's a problem.

このような大入熱溶接HAZ靭性の問題を解決するために、近年は高温下においても固溶しづらい酸化物系介在物を溶鋼段階で鋼材内に多量に分散させ、ピン止め粒子として有効活用する技術に注目が集まり、これまでに例えば特許文献1〜2に挙げられるような技術が提案されている。   In order to solve such a problem of high heat input welding HAZ toughness, in recent years, oxide inclusions, which are hard to form a solid solution even at a high temperature, are dispersed in a large amount in a steel material at a molten steel stage, and are effectively utilized as pinning particles. Attention has been focused on such techniques, and techniques such as those disclosed in Patent Documents 1 and 2 have been proposed.

特許文献1は、母材およびHAZ靭性に優れた鋼材およびその製造方法に関するものである。具体的には、鋼材に含まれる全Ti量のうち、2.0μmを超えるTi含有介在物として鋼材に含まれるTi量が0.010%以下であり、0.1μmを超えるTi含有介在物として鋼材に含まれる全Ti量を全Ti量から引いた値が鋼材中全Ti量に対し0.30〜0.70の割合にするというものであり、溶鋼段階におけるSi量の規定およびAl23含有介在物の個数を1mm2あたり10個以下としてから鋳造することで製造できるとしている。これにより、母材およびHAZの靱性改善をより精度良く実現できるとしている。 Patent Literature 1 relates to a base material and a steel material having excellent HAZ toughness and a method for producing the same. Specifically, of the total amount of Ti contained in the steel material, the amount of Ti contained in the steel material as a Ti-containing inclusion exceeding 2.0 μm is 0.010% or less, and as the Ti-containing inclusion exceeding 0.1 μm. is intended that a value obtained by subtracting from the total amount of Ti total Ti amount included in the steel material is the percentage of from 0.30 to 0.70 relative to the total Ti amount in the steel material, the amount of Si in the molten steel stage defines and Al 2 O (3) It is stated that it can be manufactured by casting after reducing the number of inclusions contained to 10 or less per 1 mm 2 . Thereby, it is stated that the toughness of the base material and the HAZ can be more accurately improved.

特許文献2は、母材靭性およびHAZ靭性に優れた高張力鋼板に関するものである。具体的には、最大径0.2〜2μm以下の酸化物が200個/mm2以上存在し、マルテンサイト組織を29体積%以上含有し残部がベイナイトであることを要点とする。これにより、母材靱性およびHAZ靱性にすぐれる高張力鋼板を提供できるとしている。 Patent Document 2 relates to a high-strength steel sheet excellent in base metal toughness and HAZ toughness. Specifically, the point is that oxides having a maximum diameter of 0.2 to 2 μm or less are present in an amount of 200 / mm 2 or more, a martensite structure is contained in an amount of 29% by volume or more, and the remainder is bainite. Thereby, a high-strength steel sheet excellent in base material toughness and HAZ toughness can be provided.

外部から加えられた電場によってイオン(帯電した物質)を移動させることができる物質として、固体電解質が知られている。酸素イオンを移動させることができるので、酸素イオン導電体とも呼ばれる。固体電解質として安定化ジルコニアが古くから使われている。外部からジルコニアに電圧を加えるとマイナス極側からプラス極側へ酸素イオンが移動するため酸素ポンプを構成することができ、雰囲気制御などに利用される(例えば非特許文献1参照)。特許文献3には、溶融金属と接する面を酸素イオン導電体で構成し、電圧を付加して酸素イオン導電体側から溶融金属側に電流を流すことにより、金属酸化物からなる付着物の形成を防止する方法が開示されている。   BACKGROUND ART A solid electrolyte is known as a substance capable of moving ions (charged substance) by an externally applied electric field. Since it can move oxygen ions, it is also called an oxygen ion conductor. Stabilized zirconia has long been used as a solid electrolyte. When a voltage is applied to zirconia from the outside, oxygen ions move from the negative electrode side to the positive electrode side, so that an oxygen pump can be configured and used for atmosphere control and the like (for example, see Non-Patent Document 1). In Patent Document 3, the surface in contact with the molten metal is formed of an oxygen ion conductor, and a current is applied from the oxygen ion conductor side to the molten metal side by applying a voltage to form a deposit formed of a metal oxide. A method of preventing this is disclosed.

特開2013−60631号公報JP 2013-60631 A 特開2014−9387号公報JP 2014-9387 A 特開2001−170761号公報JP-A-2001-170761

「固体電解質の冶金学への利用」日本金属学会会報10巻(1971)1号28−43頁“Utilization of Solid Electrolyte for Metallurgy” The Bulletin of the Japan Institute of Metals 10 (1971) No. 1 pp. 28-43

特許文献1および特許文献2はいずれも、溶接熱に起因するHAZ靭性の低下に対処する方法として、酸化物系介在物を鋼材内に多数分散させることによるHAZ靭性改善に言及している。しかし、これら方法では、鋼中に生成する酸化物系介在物の微細化が十分とは言えず、特に入熱量が大きい場合には十分なHAZ靭性が得られないという課題を有していた。   Patent Literature 1 and Patent Literature 2 both mention improvement of HAZ toughness by dispersing a large number of oxide-based inclusions in a steel material as a method for coping with a decrease in HAZ toughness due to welding heat. However, these methods have a problem that oxide-based inclusions generated in steel cannot be sufficiently refined, and sufficient HAZ toughness cannot be obtained particularly when the heat input is large.

本発明は上記のような事情に着目してなされたものであって、その目的は、大入熱溶接時にも十分なHAZ靭性を得られるような、微細な酸化物系介在物が多量に分散した金属塊を製造する方法を提供することである。   The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to disperse a large amount of fine oxide-based inclusions such that sufficient HAZ toughness can be obtained even during large heat input welding. It is to provide a method of manufacturing a metal lump which has been made.

即ち、本発明の要旨とするところは以下のとおりである。
(1)溶融金属を収容する溶融金属容器と、少なくとも一部が固体電解質で構成される耐火物と、溶融金属容器内に収容された溶融金属に接触する対極電極と、直流電源とを有し、前記耐火物は、前記溶融金属内に溶融金属を収容したときにその一部が溶融金属中に浸漬し、前記耐火物の溶融金属に接触しない部分に接触電極を設け、前記直流電源の正極が前記対極電極に接続され、直流電源の負極が前記接触電極に接続されていることを特徴とする、微細酸化物分散金属塊の製造装置。
(2)前記固体電解質で構成される耐火物が、ストッパーを形成する耐火物であることを特徴とする上記(1)に記載の微細酸化物分散金属塊の製造装置。
(3)上記(1)又は(2)に記載の微細酸化物分散金属塊の製造装置を用い、
前記溶融金属容器に溶融金属を収容し、前記直流電源を用いて通電し、前記溶融金属容器から溶融金属を鋳型に注入して金属塊を製造する際、
固体電解質と溶融金属との接触面における平均電流密度を0.05〜1.5A/cm2とすることを特徴とする、微細酸化物分散金属塊の製造方法。
(4)金属塊の内部に最大径1μm以下の酸化物介在物が350個/mm2以上存在することを特徴とする上記(3)に記載の微細酸化物分散金属塊の製造方法。
That is, the gist of the present invention is as follows.
(1) A molten metal container containing a molten metal, a refractory at least partially composed of a solid electrolyte, a counter electrode contacting the molten metal contained in the molten metal container, and a DC power supply A part of the refractory is immersed in the molten metal when the molten metal is accommodated in the molten metal, and a contact electrode is provided on a part of the refractory that does not come into contact with the molten metal; Is connected to the counter electrode, and the negative electrode of the DC power supply is connected to the contact electrode.
(2) The apparatus for producing a fine oxide-dispersed metal lump according to (1), wherein the refractory composed of the solid electrolyte is a refractory forming a stopper.
(3) Using the apparatus for producing a fine oxide-dispersed metal lump according to the above (1) or (2),
When the molten metal is accommodated in the molten metal container and energized by using the DC power supply, when the molten metal is poured into the mold from the molten metal container to produce a metal lump,
A method for producing a fine oxide-dispersed metal mass, characterized in that the average current density at the contact surface between the solid electrolyte and the molten metal is 0.05 to 1.5 A / cm 2 .
(4) The method for producing a fine metal oxide-dispersed metal lump as described in (3) above, wherein oxide inclusions having a maximum diameter of 1 μm or less are present in the metal lump at 350 or more / mm 2 or more.

本発明によれば、微細な酸化物系介在物が多量に分散した金属塊(鋳片または金属材料)を製造することができる。   According to the present invention, a metal lump (a slab or a metal material) in which a large amount of fine oxide-based inclusions are dispersed can be produced.

本発明を適用したタンディッシュ底部のストッパーおよび注入口の縦断面を模式的に示した図である。It is the figure which showed typically the stopper of the bottom part of the tundish to which this invention was applied, and the longitudinal cross section of an injection port. 本発明を適用したタンディッシュ底部のストッパーおよび注入口の縦断面を模式的に示した図である。It is the figure which showed typically the stopper of the bottom part of the tundish to which this invention was applied, and the longitudinal cross section of an injection port. 大気溶解炉を用いた実験の状況を示す図である。It is a figure showing the situation of the experiment using the atmospheric melting furnace.

鋼中の分散粒子による結晶粒成長のピンニングに関しては、基本的な式として、下の(a)式に示すZenerの式や、(b)式に示す修正Zenerの式がよく知られており、結晶粒径は分散粒子の径とその体積率で定式化されている。
D=(4/3)・(d/f) (a)
D=(8/3)・(d/f2/3) (b)
ここで、D:結晶粒径、d:分散粒子の半径、f:分散粒子の体積率である。すなわち、酸化物系介在物を用いてより大きなピンニング効果を得るためには、介在物の体積率が大きく、酸化物系介在物の径は小さいほど望ましいと考えられる。
Regarding the pinning of the crystal grain growth by the dispersed particles in the steel, as a basic formula, the Zener formula shown in the following formula (a) and the modified Zener formula shown in the formula (b) are well known. The crystal grain size is formulated by the diameter of the dispersed particles and the volume ratio thereof.
D = (4/3) · (d / f) (a)
D = (8/3) · (d / f 2/3 ) (b)
Here, D: crystal grain diameter, d: radius of dispersed particles, and f: volume ratio of dispersed particles. That is, in order to obtain a larger pinning effect using oxide-based inclusions, it is considered that the larger the volume ratio of the inclusions and the smaller the diameter of the oxide-based inclusions, the better.

微細な酸化物系介在物をより多く鋼中に分散させる方法として従来は、(1)酸素を多く含む溶鋼に脱酸剤を添加して酸化物系介在物を形成する、(2)脱酸剤成分を多く含む溶鋼に気体又は固体酸素源を添加して酸化物系介在物を形成する方法が知られている。しかし、これらの方法では、前述のように、十分に微細な酸化物を大量に形成することができなかった。本発明者らはそこで、一般的な製造方法により製造される鋳片より多量の酸化物系介在物を溶鋼中で形成し、かつそれらが微細かつ多量であることが望ましいと考え、それを実現せしむ方法について検討した。   Conventionally, as a method of dispersing more fine oxide-based inclusions in steel, (1) oxide-containing inclusions are formed by adding a deoxidizer to molten steel containing a large amount of oxygen, and (2) deoxidation. A method is known in which a gas or solid oxygen source is added to molten steel containing a large amount of a chemical component to form oxide-based inclusions. However, these methods have failed to form a sufficiently fine oxide in a large amount as described above. The present inventors have formed a larger amount of oxide-based inclusions in molten steel than slabs manufactured by a general manufacturing method and thought that it is desirable that they be fine and large in amount, and realized that. We examined the method of squatting.

前述のように、固体電解質(酸素イオン導電体)に外部から電場を加えることにより、酸素イオンを移動させることができる。溶融金属と接する面を酸素イオン導電体で構成し、電圧を付加して固体電解質(酸素イオン導電体)側から溶融金属側に電流を流すことにより、金属酸化物からなる付着物の形成を防止する方法は知られていた。本発明者らは逆に、溶融金属と接する面を固体電解質で構成し、電圧の向きを逆にして、溶融金属側から固体電解質側に電流を流すこととすれば、固体電解質から溶融金属に酸素が供給され、供給された酸素によって溶融金属中に微細な酸化物系介在物を多量に生成できるのではないかと着想した。即ち、(3)脱酸剤成分を多く含む溶鋼に固体電解質から酸素分を添加する方法を着想した。   As described above, by applying an electric field to the solid electrolyte (oxygen ion conductor) from the outside, oxygen ions can be moved. The surface in contact with the molten metal is composed of an oxygen ion conductor, and current is applied from the solid electrolyte (oxygen ion conductor) side to the molten metal side by applying a voltage to prevent the formation of deposits made of metal oxide. The way to do it was known. The present inventors, on the contrary, the surface in contact with the molten metal is composed of a solid electrolyte, the direction of the voltage is reversed, and if a current flows from the molten metal side to the solid electrolyte side, from the solid electrolyte to the molten metal Oxygen was supplied, and it was conceived that a large amount of fine oxide-based inclusions could be generated in the molten metal by the supplied oxygen. That is, (3) a method of adding oxygen from a solid electrolyte to molten steel containing a large amount of a deoxidizer component was conceived.

また、上記(1)〜(3)の方法で酸素もしくは脱酸剤を溶融金属中に添加するプロセスとして、(A)鋳込み段階の前(例えば製錬段階)において添加する方法、(B)鋳込みの段階において添加する方法の2つによる効果の度合いを比較評価すべきと考えた。   In addition, as a process of adding oxygen or a deoxidizing agent to a molten metal by the above-mentioned methods (1) to (3), (A) a method of adding oxygen or a deoxidizer before a casting step (for example, a smelting step); It was considered that the degree of the effect of the two methods of adding at the stage should be comparatively evaluated.

そこで、これらの組み合わせのうち、微細酸化物を溶鋼中に多量分散させるために最も適正な方法を確認するため、以下に示す実験を実施した。   In order to confirm the most appropriate method for dispersing a large amount of fine oxides in molten steel among these combinations, the following experiment was performed.

大気溶解炉と真空溶解炉のそれぞれで100kgの溶鋼を製造し、表1に示す成分1と成分2の成分系に調整した。成分1については、溶鋼中に自由酸素が残っており、方法(1)で用いる。成分2については、Alによって完全脱酸がされており、方法(2)(3)で用いる。   100 kg of molten steel was manufactured in each of the atmospheric melting furnace and the vacuum melting furnace, and adjusted to the component systems of component 1 and component 2 shown in Table 1. Regarding the component 1, free oxygen remains in the molten steel and is used in the method (1). The component 2 has been completely deoxidized by Al and used in the methods (2) and (3).

大気溶解炉において溶鋼を製造したものについては、上記(1)〜(3)の方法で溶鋼中に酸化物系介在物を形成する工程を大気溶解炉にて行い、速やかにタンディッシュを介して溶鋼を鋳型に注入し、鋼塊を製造した。即ち上記(A)の方法を用いている。
また、真空溶解炉において溶鋼を製造したものについては、溶鋼をタンディッシュに移注し、上記(1)〜(3)の方法で溶鋼中に酸化物系介在物を形成する工程をタンディッシュにて行い、鋼塊を製造した。即ち上記(B)の方法を用いている。
With respect to those produced from molten steel in an air melting furnace, the steps of forming oxide-based inclusions in the molten steel by the above-described methods (1) to (3) are performed in an air melting furnace, and immediately through a tundish. Molten steel was poured into a mold to produce a steel ingot. That is, the method (A) is used.
In the case of manufacturing molten steel in a vacuum melting furnace, the step of transferring the molten steel to a tundish and forming oxide-based inclusions in the molten steel by the above-described methods (1) to (3) is performed in a tundish. To produce a steel ingot. That is, the method (B) is used.

(A)(B)いずれも、得られた鋼塊から20mm×20mmの大きさの介在物観察用サンプルを切り出し、SEM観察することで円相当径0.05〜1μmならびに1μm以上の酸化物系介在物の個数密度(個/mm2)を調査した。 (A) and (B) In each case, a sample for observing inclusions having a size of 20 mm × 20 mm was cut out from the obtained steel ingot and observed by SEM to obtain an oxide system having a circle equivalent diameter of 0.05 to 1 μm and 1 μm or more. The number density (pieces / mm 2 ) of inclusions was investigated.

上記(3)の方法で脱酸剤成分を多く含む溶鋼に固体電解質から酸素分を添加する方法について説明する。固体電解質としては、5mol%CaO安定化ZrO2を用いた。
(A)の方法で大気溶解炉内で固体電解質から酸素分を添加するに際しては、図3に示す手段を用いた。大気溶解炉12内の溶融金属20に、固体電解質15で形成された棒状の酸素供給体13を浸漬させる。酸素供給体13と溶融金属20の接触面積は30cm2である。酸素供給体13の溶融金属20より上部側の外周に接触電極16を設けている。大気溶解炉12に対極電極17を設ける。直流電源9を準備し、酸素供給体13に設けた接触電極16を負極19側、大気溶解炉12に設けた対極電極17を正極18側として、リード線8によって直流電源9と接続した。大気溶解炉12内で、表1の成分2の成分系(完全脱酸)に対し、360秒にわたって電流1Aで電流を流し、その後大気溶解炉12からタンディッシュ1に移注した。
(B)の方法でタンディッシュ内で固体電解質から酸素分を添加するに際しては、図1に示す手段を用いた。タンディッシュ1の底部には上ノズル6と浸漬ノズル7が設けられ、ストッパー2によって溶融金属の流量調整が行われる。ストッパー2は、ストッパー鉄心3、ストッパーヘッド4、ストッパースリーブ5によって形成される。ここでは、ストッパースリーブ5を固体電解質15によって形成した。固体電解質15と溶融金属20の接触面積は30cm2である。ストッパースリーブ5の溶融金属20より上部側の外周に接触電極16を設けている。浸漬ノズル7がアルミナグラファイト製であり導電性を有するので、浸漬ノズル7の外周にリード線8を接触させ、浸漬ノズル7を対極電極17とした。直流電源9を準備し、ストッパースリーブ5に設けた接触電極16を負極、浸漬ノズル7(対極電極17)を正極として、リード線8によって直流電源9と接続した。図示しない真空溶解炉から溶融金属20をタンディッシュ1に移注し、浸漬ノズル7を経由してタンディッシュ1から溶融金属20を流出する過程において、表1の成分2の成分系(完全脱酸)に対し、360秒にわたって電流1Aで電流を流した。
A method of adding oxygen from a solid electrolyte to molten steel containing a large amount of a deoxidizer component by the method (3) will be described. As the solid electrolyte, 5 mol% CaO-stabilized ZrO 2 was used.
When oxygen was added from the solid electrolyte in the air melting furnace by the method (A), the means shown in FIG. 3 was used. The rod-shaped oxygen supply body 13 formed of the solid electrolyte 15 is immersed in the molten metal 20 in the atmosphere melting furnace 12. The contact area between the oxygen supplier 13 and the molten metal 20 is 30 cm 2 . The contact electrode 16 is provided on the outer periphery of the oxygen supply body 13 above the molten metal 20. A counter electrode 17 is provided in the atmospheric melting furnace 12. A DC power supply 9 was prepared, and the contact electrode 16 provided on the oxygen supply body 13 was on the negative electrode 19 side, and the counter electrode 17 provided on the atmospheric melting furnace 12 was on the positive electrode 18 side. In the atmosphere melting furnace 12, a current was passed at a current of 1 A to the component system (complete deoxidation) of the component 2 in Table 1 for 360 seconds, and then transferred from the atmosphere melting furnace 12 to the tundish 1.
When the oxygen content was added from the solid electrolyte in the tundish by the method (B), the means shown in FIG. 1 was used. An upper nozzle 6 and an immersion nozzle 7 are provided at the bottom of the tundish 1, and the flow rate of the molten metal is adjusted by the stopper 2. The stopper 2 is formed by a stopper core 3, a stopper head 4, and a stopper sleeve 5. Here, the stopper sleeve 5 is formed of the solid electrolyte 15. The contact area between the solid electrolyte 15 and the molten metal 20 is 30 cm 2 . The contact electrode 16 is provided on the outer periphery of the stopper sleeve 5 above the molten metal 20. Since the immersion nozzle 7 was made of alumina graphite and had conductivity, the lead wire 8 was brought into contact with the outer periphery of the immersion nozzle 7, and the immersion nozzle 7 was used as the counter electrode 17. A DC power supply 9 was prepared, and the contact electrode 16 provided on the stopper sleeve 5 was used as a negative electrode, and the immersion nozzle 7 (counter electrode 17) was used as a positive electrode. In the process of transferring the molten metal 20 from a vacuum melting furnace (not shown) to the tundish 1 and flowing out the molten metal 20 from the tundish 1 via the immersion nozzle 7, the component system of the component 2 in Table 1 (complete deoxidation) ), A current of 1 A was applied for 360 seconds.

方法(1)(酸素を多く含む溶鋼に脱酸剤を添加)については、表1の成分1(未脱酸)を対象とし、(A)の方法では大気溶解炉12内、(B)の方法ではタンディッシュ1内で、溶融金属中に表2に示す量のAlを添加した。
方法(2)(脱酸剤成分を多く含む溶鋼に酸素源を添加)については、(A)の方法では大気溶解炉12内、(B)の方法ではタンディッシュ1内で、溶融金属中に表2に示す合計量の気体酸素を、アルゴンとの混合ガスとして360秒にわたって吹き込んだ。
Al添加量、酸素ガス吹き込み量、通電条件、得られた鋼塊中のsol.AlおよびT.Oの濃度、酸化物系介在物個数を併せて表2に示す。
The method (1) (adding a deoxidizing agent to molten steel containing a large amount of oxygen) targets component 1 (non-deoxidized) in Table 1, and the method (A) uses the inside of the atmospheric melting furnace 12 and the method (B). In the method, the amount of Al shown in Table 2 was added to the molten metal in the tundish 1.
Regarding the method (2) (adding an oxygen source to molten steel containing a large amount of a deoxidizer component), in the method of (A), in the air melting furnace 12, in the method of (B), in the tundish 1, and in the molten metal. The total amount of gaseous oxygen shown in Table 2 was blown for 360 seconds as a mixed gas with argon.
Al addition amount, oxygen gas blowing amount, energization conditions, sol. Al and T.I. Table 2 also shows the concentration of O and the number of oxide-based inclusions.

Figure 2020011261
Figure 2020011261

Figure 2020011261
Figure 2020011261

タンディッシュにおいて固体電解質を介した通電による酸素の添加を行ったもの(B3)において、微細な酸化物系介在物が最も多量に分散していた。その理由は詳細には不明であるが、以下のように推測できる。即ち、脱酸剤を添加したもの(A1)(B1)は、脱酸剤が鋼中で溶融するとともに急速に酸化物形成反応が進行し、粗大な酸化物ができた。酸素を添加したもの(A2)(B2)も同様に、酸素ガスの気泡周囲で急速に酸化物形成反応が進行し、粗大な酸化物ができたと推定される。また、同じ通電でも、溶解炉で通電されるもの(A3)よりもタンディッシュにて通電した場合(B3)に微細な酸化物系介在物が多量に存在したのは、B3条件では、酸素が供給され、微細な酸化物系介在物ができてからすぐに溶鋼が鋳型に注入されるため、鋳型内で凝固するまで時間が短く、微細な酸化物系介在物の凝集合体が起こりづらかったためと推定される。   In the tundish to which oxygen was added by energization via the solid electrolyte (B3), the fine oxide-based inclusions were dispersed in the largest amount. The reason is not clear in detail, but can be guessed as follows. That is, in the case where the deoxidizing agent was added (A1) and (B1), the deoxidizing agent was melted in the steel and the oxide forming reaction proceeded rapidly, so that a coarse oxide was formed. Similarly, it is presumed that the oxide-added reaction (A2) and (B2) to which oxygen was added rapidly progressed around the oxygen gas bubbles to form a coarse oxide. Also, at the same energization, when the energization was carried out in a tundish (B3) than in the melting furnace (A3), a large amount of fine oxide-based inclusions was present. The molten steel is injected into the mold immediately after it is supplied and fine oxide-based inclusions are formed, so it takes a short time to solidify in the mold, and it is difficult for aggregates of the fine oxide-based inclusions to occur. Presumed.

また、固体電解質を介した通電による酸素の添加により生成する酸化物系介在物は1μm未満のものが主であり、表2に示されるように、溶鋼全体の酸素量を大きく上げることなく微細な酸化物系介在物が多数分散する溶鋼を得ることができる。   Further, oxide-based inclusions generated by addition of oxygen due to energization through the solid electrolyte are mainly smaller than 1 μm, and as shown in Table 2, fine inclusions without increasing the oxygen content of the entire molten steel greatly. Molten steel in which a large number of oxide-based inclusions are dispersed can be obtained.

この実験結果は、脱酸剤を上記のAlに替えて、Zr、REMなど種々の酸化物の組み合わせに変更して行った実験においても、微細な酸化物系介在物はタンディッシュにて通電された場合において最も多量に存在する傾向は変わらなかった。   The results of this experiment show that the fine oxide-based inclusions were also energized in a tundish even in an experiment in which the deoxidizing agent was changed to the above-mentioned Al and various oxide combinations such as Zr and REM were used. The tendency to be present in the largest amount did not change.

ここで、固体電解質を用いて溶鋼中に酸素を供給するためには、雰囲気中の酸素ガスを酸素イオンとして固体電解質内に取り込み、固体電解質内で酸素イオンを輸送し、溶鋼中に溶融酸素として放出する必要がある。すなわち、固体電解質はその一部が溶鋼内に浸漬し、他の一部が導線に接続された接触電極に接触し、接触電極部は雰囲気中に設置される。また、固体電解質への酸素の取り込みは固体電解質、接触電極、雰囲気の三相界面で行われるため、固体電解質と接触電極の接触面積は大きい方が望ましい。   Here, in order to supply oxygen into molten steel using a solid electrolyte, oxygen gas in the atmosphere is taken into the solid electrolyte as oxygen ions, oxygen ions are transported in the solid electrolyte, and molten oxygen is introduced into the molten steel as molten oxygen. Need to release. That is, a part of the solid electrolyte is immersed in the molten steel, and the other part is in contact with the contact electrode connected to the conductor, and the contact electrode part is set in the atmosphere. Further, since oxygen is taken into the solid electrolyte at a three-phase interface between the solid electrolyte, the contact electrode, and the atmosphere, it is desirable that the contact area between the solid electrolyte and the contact electrode be large.

本発明は、以上の知見に基づいてなされたものである。本発明の微細酸化物分散金属塊の製造装置は、溶融金属20を収容する溶融金属容器21と、少なくとも一部が固体電解質15で構成される耐火物22と、溶融金属容器21内に収容された溶融金属20に接触する対極電極17と、直流電源9とを有し、前記耐火物22は、溶融金属容器21内に溶融金属20を収容したときにその一部が溶融金属20中に浸漬し、前記耐火物22の溶融金属20に接触しない部分に接触電極16を設け、直流電源9の正極18が対極電極17に接続され、直流電源9の負極19が接触電極16に接続されていることを特徴とする。図1、図2に示すように、溶融金属容器20をタンディッシュ1とすることができる。対極電極17を浸漬ノズル7とすることができる。
固体電解質としては、酸化物系の固体電解質を用いることができる。安定化ジルコニア(ZrO2)が好ましい。例えば、CaO安定化ZrO2、Y23(イットリア)安定化ZrO2を用いることができる。
The present invention has been made based on the above findings. The apparatus for producing a fine metal oxide-dispersed metal lump according to the present invention includes a molten metal container 21 containing a molten metal 20, a refractory 22 at least partially composed of the solid electrolyte 15, and a refractory 22 contained in the molten metal container 21. The refractory 22 has a counter electrode 17 in contact with the molten metal 20 and a DC power supply 9, and a part of the refractory 22 is immersed in the molten metal 20 when the molten metal 20 is accommodated in the molten metal container 21. A contact electrode 16 is provided on a portion of the refractory 22 that does not contact the molten metal 20, a positive electrode 18 of the DC power supply 9 is connected to the counter electrode 17, and a negative electrode 19 of the DC power supply 9 is connected to the contact electrode 16. It is characterized by the following. As shown in FIGS. 1 and 2, the molten metal container 20 can be a tundish 1. The counter electrode 17 can be the immersion nozzle 7.
As the solid electrolyte, an oxide-based solid electrolyte can be used. Stabilized zirconia (ZrO 2 ) is preferred. For example, CaO stabilized ZrO 2 and Y 2 O 3 (yttria) stabilized ZrO 2 can be used.

固体電解質で構成される耐火物22が、ストッパー2を形成する耐火物であると好ましい。図1、図2に示す例では、ストッパースリーブ5を固体電解質15で形成している。固体電解質15において、溶融金属20と接触する部位から接触電極16を設けている部位に至るまでの温度は、溶融金属20からの輻射熱と熱伝導の結果として、600℃以上の温度を確保することができる。   It is preferable that the refractory 22 composed of the solid electrolyte is a refractory forming the stopper 2. In the example shown in FIGS. 1 and 2, the stopper sleeve 5 is formed of the solid electrolyte 15. In the solid electrolyte 15, the temperature from the part in contact with the molten metal 20 to the part in which the contact electrode 16 is provided should secure a temperature of 600 ° C. or more as a result of radiant heat and heat conduction from the molten metal 20. Can be.

上記本発明の微細酸化物分散金属塊の製造装置を用いた、微細酸化物分散金属塊の製造方法においては、溶融金属容器21に溶融金属20を収容し、直流電源9を用いて通電し、その後、溶融金属容器20から溶融金属20を図示しない鋳型に注入して金属塊を製造することを特徴とする。直流電源9の正極18が対極電極17に接続され、直流電源9の負極19が接触電極16に接続されているので、直流電源9を用いて通電すると、電流は、正極18から対極電極17を経由して溶融金属容器21中の溶融金属20内を流れ、耐火物22の溶融金属との接触部から耐火物22中に流れ、耐火物に接触する接触電極16を経由して、直流電源9の負極19へと流れる。このとき固体電解質である耐火物22中では、接触電極16の部分で雰囲気から耐火物22に酸素が取り込まれ、電流の向きと逆向きに、接触電極16の部分から溶融金属20と接触する部分に向けて酸素イオンが移動し、溶融金属中に酸素が供給される。   In the method for producing a fine metal oxide-dispersed metal lump using the apparatus for producing a fine metal oxide-dispersed metal lump of the present invention, the molten metal 20 is accommodated in a molten metal container 21 and energized using a DC power supply 9. Thereafter, the molten metal 20 is poured from the molten metal container 20 into a mold (not shown) to produce a metal lump. Since the positive electrode 18 of the DC power supply 9 is connected to the counter electrode 17 and the negative electrode 19 of the DC power supply 9 is connected to the contact electrode 16, when current is supplied using the DC power supply 9, the current flows from the positive electrode 18 to the counter electrode 17. Through the molten metal 20 in the molten metal container 21, flows from the contact portion of the refractory 22 with the molten metal, flows into the refractory 22, and contacts the DC electrode 9 via the contact electrode 16 that contacts the refractory. To the negative electrode 19. At this time, in the refractory 22 which is a solid electrolyte, oxygen is taken into the refractory 22 from the atmosphere at the portion of the contact electrode 16 and the portion of the refractory 22 coming into contact with the molten metal 20 from the portion of the contact electrode 16 in a direction opposite to the direction of the current. Oxygen ions move toward the molten metal to supply oxygen into the molten metal.

本発明に係る通電による微細酸化物系介在物の分散方法において、直流電源9の正極18を溶融金属20側の対極電極17に、負極19を固体電解質15側の接触電極16に接続し、通電を行うことで溶融金属20への酸素供給が可能であるが、過大な時間およびコストをかけることなく微細酸化物系介在物を鋳片内で一定数以上存在させるためには、平均電流密度を適正な範囲に制御することが望ましい。なお、ここで言う平均電流密度とは、電流量を固体電解質のうち溶鋼に浸漬されている部分の面積で除した単位面積当たりの電流値である。   In the method for dispersing fine oxide-based inclusions by energization according to the present invention, the positive electrode 18 of the DC power supply 9 is connected to the counter electrode 17 on the molten metal 20 side, and the negative electrode 19 is connected to the contact electrode 16 on the solid electrolyte 15 side. Is performed, oxygen can be supplied to the molten metal 20. However, in order to cause a certain number or more of fine oxide-based inclusions in the slab without spending excessive time and cost, the average current density must be reduced. It is desirable to control to an appropriate range. Here, the average current density is a current value per unit area obtained by dividing an amount of current by an area of a portion of the solid electrolyte immersed in molten steel.

平均電流密度が0.05A/cm2未満では、鋼中に十分な量の酸素を効率良く供給することができず、時間当たりの溶鋼の処理量を少なくせざるを得ないばかりか、鋼中で微細酸化物系介在物の凝集合体を招き望ましくない。一方、平均電流密度が1.5A/cm2を超えると、固体電解質内において電荷の担体となる物質のうち電子が占める割合が高まる。電子による電気伝導は鋼中への酸素富化に寄与しないため、過大な電流は製造コスト上昇の原因となる。以上より、電流密度は0.05A/cm2以上1.5A/cm2以下とすることが望ましい。 If the average current density is less than 0.05 A / cm 2 , a sufficient amount of oxygen cannot be efficiently supplied into the steel, and the amount of molten steel to be processed per hour must be reduced, and This causes undesirable aggregation of fine oxide-based inclusions. On the other hand, if the average current density exceeds 1.5 A / cm 2 , the proportion of electrons that occupy the charge carrier in the solid electrolyte increases. Since electric conduction by electrons does not contribute to oxygen enrichment in steel, an excessive current causes an increase in manufacturing cost. From the above, it is desirable that the current density be 0.05 A / cm 2 or more and 1.5 A / cm 2 or less.

上記本発明の微細酸化物系介在物の分散金属塊の製造方法で製造された金属塊の内部には、最大径1μm以下の酸化物介在物が350個/mm2以上存在する。このように微細な酸化物を分散した結果として、この金属塊を用いて製造された金属構造物において、大入熱溶接を行ったときのHAZ靱性が優れるという効果を得ることができる。 Inside the metal block produced by the production method of the dispersed metal mass of the fine oxide inclusions of the present invention, the following oxide inclusions maximum diameter 1μm is present 350 / mm 2 or more. As a result of dispersing such a fine oxide, it is possible to obtain an effect that a metal structure manufactured using this metal lump has excellent HAZ toughness when large heat input welding is performed.

本発明に係る金属塊の製造方法においては、溶鋼中の酸素濃度は不可逆的に増大するため、当該溶融金属容器内に持ち込まれる溶鋼中にAl23クラスターなどの粗大な酸化物系介在物を除去する効果は期待できない。粗大な酸化物系介在物が含有されていたとしても本発明により得られる微細な酸化物系介在物を多量分散させる効果は問題なく得られるが、浸漬ノズルの閉塞、金属塊加工時の割れ発生などが懸念される。よって、当該溶融金属容器への注入前に溶鋼中の酸素濃度は十分下げておくことが望ましい。 In the method for producing a metal lump according to the present invention, since the oxygen concentration in the molten steel irreversibly increases, coarse oxide-based inclusions such as Al 2 O 3 clusters are contained in the molten steel brought into the molten metal container. The effect of removing is not expected. Even if coarse oxide-based inclusions are contained, the effect of dispersing a large amount of fine oxide-based inclusions obtained by the present invention can be obtained without any problem, but clogging of the immersion nozzle, cracking during processing of metal lump And so on. Therefore, it is desirable to sufficiently reduce the oxygen concentration in the molten steel before pouring into the molten metal container.

本発明の効果を得るためには、固体電解質を溶鋼に浸漬した上で、固体電解質が酸素を含む雰囲気と接する部分と溶鋼の間で通電を行う必要がある。その方法として、例えば図1に示す装置のように、ストッパー2のストッパースリーブ5を固体電解質15とし、ストッパースリーブ5上方の非浸漬部に接触電極16を設け、浸漬ノズル7を対極電極17とし、固体電解質15と溶融金属20との接触部を介して通電する方法が有効である。また、図2に示す装置においては、ストッパースリーブ5を固体電解質15とする点については図1と同様である。一方図2においては、円筒状のストッパースリーブ5の内周に接触電極16を設けている。ストッパースリーブ5の内周側とストッパー鉄心3の外周との間に通気部を設け、ストッパースリーブ5の内周に金属メッシュ製の接触電極16を設ける方法が考えられる。ストッパースリーブ5の内周側とストッパー鉄心3の外周との間に通気用のパイプを配設することもできる。図2に示す装置であれば、固体電解質15における溶融金属20との接触部と接触電極16との間隔を短くすることができるので、効率よく通電を行うことが可能となる。また図2においては、対極電極17として、溶融金属20に浸漬した電極棒23を用いている。   In order to obtain the effects of the present invention, it is necessary to immerse the solid electrolyte in molten steel and then to conduct electricity between the portion where the solid electrolyte contacts an atmosphere containing oxygen and the molten steel. As a method, for example, as in the apparatus shown in FIG. 1, the stopper sleeve 5 of the stopper 2 is a solid electrolyte 15, a contact electrode 16 is provided in a non-immersion part above the stopper sleeve 5, and the immersion nozzle 7 is a counter electrode 17. It is effective to apply a current through a contact portion between the solid electrolyte 15 and the molten metal 20. In the apparatus shown in FIG. 2, the stopper sleeve 5 is the same as the solid electrolyte 15 in FIG. On the other hand, in FIG. 2, a contact electrode 16 is provided on the inner periphery of the cylindrical stopper sleeve 5. A method is conceivable in which a ventilation portion is provided between the inner peripheral side of the stopper sleeve 5 and the outer periphery of the stopper core 3, and a contact electrode 16 made of metal mesh is provided on the inner periphery of the stopper sleeve 5. A ventilation pipe may be provided between the inner peripheral side of the stopper sleeve 5 and the outer peripheral side of the stopper core 3. With the device shown in FIG. 2, the distance between the contact portion of the solid electrolyte 15 with the molten metal 20 and the contact electrode 16 can be shortened, so that current can be supplied efficiently. In FIG. 2, an electrode 23 immersed in a molten metal 20 is used as the counter electrode 17.

本発明では、その方法をストッパー方式の注入系を使用した図を代表例として示したが、固体電解質を溶鋼内に浸漬したもの、ここではストッパーを直流電源の負極に接続する電極として用い、電子を荷電粒子とする耐火物、ここでは浸漬ノズルを直流電源の正極に接続する電極として溶鋼との通電を図れば、その位置を問わず効果を得ることができる。また、本発明はストッパー方式のタンディッシュのみならず、SN(スライディングノズル)方式のタンディッシュやSNとストッパーを併用するタイプのタンディッシュにも適用することができる。   In the present invention, the method using a stopper type injection system is shown as a typical example.However, a method in which a solid electrolyte is immersed in molten steel, in which a stopper is used as an electrode for connecting a negative electrode of a DC power supply, In this case, the effect can be obtained irrespective of the position of the refractory using charged particles as the electrode, which connects the immersion nozzle to the positive electrode of the DC power supply with molten steel. In addition, the present invention can be applied not only to a tundish of a stopper type, but also to a tundish of a SN (sliding nozzle) type or a tundish of a type using both an SN and a stopper.

溶鋼を連続鋳造するに際して本発明を適用した。一次精錬装置で精錬した溶鋼を取鍋に出鋼し、その後、真空精錬装置で脱ガス処理を行い、取鍋の溶鋼を連続鋳造装置のタンディッシュに移注し、タンディッシュから連続鋳造鋳型内に溶鋼を注入し、鋼を連続鋳造して鋳片を形成した。タンディッシュ1の底部には注入用の開口部が設けられ(図1参照)、当該開口部は、上ノズル6と浸漬ノズル7から構成される。上ノズル6の上部にストッパー2が設けられ、ストッパーの先端部(ストッパーヘッド4)と上ノズル6の開口部との間の開口面積を調整することにより、タンディッシュ1から鋳型(図示せず)への注入速度を調整する。   The present invention was applied when continuously casting molten steel. The molten steel refined by the primary refining device is discharged to a ladle, then degassed by a vacuum refining device, the molten steel in the ladle is transferred to a tundish of a continuous casting device, and the tundish is poured into a continuous casting mold. And molten steel was continuously cast to form a slab. An opening for pouring is provided at the bottom of the tundish 1 (see FIG. 1), and the opening includes an upper nozzle 6 and a dipping nozzle 7. The stopper 2 is provided above the upper nozzle 6, and the opening area between the tip of the stopper (stopper head 4) and the opening of the upper nozzle 6 is adjusted, so that a mold (not shown) can be formed from the tundish 1. Adjust the injection speed into the

以上説明したようなストッパー方式の注入装置により溶鋼を連続鋳造するためのタンディッシュ1において、図1に示すようにストッパー2の胴部のストッパースリーブ5を5mol%のCaOで安定化したZrO2(固体電解質15)で構成した。ストッパースリーブ5の上部には、ストッパースリーブ5を取り巻くように接触電極16を設けた。直流電源9を準備し、直流電源9の負極19と接触電極16の間をリード線8で接続した。浸漬ノズル7を対極電極17とし、直流電源9の正極と対極電極17との間をリード線8で接続した。以上のように設定することで溶鋼を介して電気回路を構成した。 In the tundish 1 for continuously casting molten steel by the stopper type injection device as described above, as shown in FIG. 1, the stopper sleeve 5 of the body of the stopper 2 is made of ZrO 2 (Stabilized with 5 mol% CaO). It consisted of a solid electrolyte 15). A contact electrode 16 was provided above the stopper sleeve 5 so as to surround the stopper sleeve 5. A DC power supply 9 was prepared, and the negative electrode 19 of the DC power supply 9 and the contact electrode 16 were connected by a lead wire 8. The immersion nozzle 7 was used as a counter electrode 17, and a lead wire 8 was connected between the positive electrode of the DC power supply 9 and the counter electrode 17. By setting as described above, the electric circuit was configured via the molten steel.

このタンディッシュ1に、上記のようにあらかじめ真空精錬設備にて脱ガス処理を行い、表3に示すaもしくはbの成分に調整した溶鋼を注入した。タンディッシュ内溶鋼表面がストッパースリーブ5の固体電解質15(安定化ZrO2)の下限位置より上、接触電極16より下に保持されるよう制御しつつ、直流電源9の正極18から、対極電極17である浸漬ノズル7を経由し、さらにタンディッシュ1内の溶融金属20に電流が流れ、溶融金属20と固体電解質15との接触部において固体電解質15に電流が流れる。固体電解質15内においては、さらに接触電極16まで電流が流れ、接触電極16からリード線8を経由して直流電源9の負極19に電流が戻る。このようにして直流電流を流しながら1550℃の溶鋼を200mm×200mmの矩形鋳型に注入し、鋳造速度0.80m/分で連続鋳造した。固体電解質15内の直流電流に対応して、接触電極16の位置で大気から酸素が固体電解質15内に供給され、固体電解質15内の電流と逆向きに酸素イオンが移動し、固体電解質15と溶融金属20との接触部から溶融金属20内に酸素が供給される。比較例においては、正極18と負極19の接続を逆にして固体電解質15内の電流を逆向きとして比較例、電流を流さない比較例の鋳造も行った。 To the tundish 1, degassing treatment was previously performed in the vacuum refining facility as described above, and molten steel adjusted to the component a or b shown in Table 3 was injected. From the positive electrode 18 of the DC power supply 9 to the counter electrode 17 while controlling the surface of the molten steel in the tundish to be maintained above the lower limit position of the solid electrolyte 15 (stabilized ZrO 2 ) of the stopper sleeve 5 and below the contact electrode 16. Then, a current flows through the molten metal 20 in the tundish 1 via the immersion nozzle 7, and a current flows through the solid electrolyte 15 at a contact portion between the molten metal 20 and the solid electrolyte 15. In the solid electrolyte 15, a current further flows to the contact electrode 16, and the current returns from the contact electrode 16 to the negative electrode 19 of the DC power supply 9 via the lead wire 8. In this manner, molten steel at 1550 ° C. was poured into a 200 mm × 200 mm rectangular mold while a direct current was flowing, and was continuously cast at a casting speed of 0.80 m / min. Oxygen is supplied from the atmosphere into the solid electrolyte 15 at the position of the contact electrode 16 in response to the DC current in the solid electrolyte 15, and oxygen ions move in a direction opposite to the current in the solid electrolyte 15, and Oxygen is supplied into the molten metal 20 from a contact portion with the molten metal 20. In the comparative example, the connection between the positive electrode 18 and the negative electrode 19 was reversed, and the current in the solid electrolyte 15 was reversed, and the comparative example and the comparative example in which no current was passed were also cast.

連続鋳造で製造した鋳片内における酸化物系介在物個数の測定は、鋳片の厚み中心部から20mm×20mmの大きさの観察用サンプルを切り出し、鏡面研磨面をSEM観察することで行った。0.05〜1μmの大きさの酸化物系介在物は10000〜50000倍の倍率で10mm2の面積にわたって、1μm以上の大きさの酸化物系介在物個数の測定は1000〜5000倍の倍率で200mm2の面積にわたってそれぞれ観察した。 The measurement of the number of oxide-based inclusions in the slab manufactured by continuous casting was performed by cutting out a sample for observation having a size of 20 mm × 20 mm from the center of the thickness of the slab and performing SEM observation on the mirror-polished surface. . Oxide-based inclusions having a size of 0.05 to 1 μm were measured at a magnification of 10,000 to 50,000 times over an area of 10 mm 2 , and the number of oxide-based inclusions having a size of 1 μm or more was measured at a magnification of 1,000 to 5,000 times. Each was observed over an area of 200 mm 2 .

表3に鋼材の化学成分、表4通電条件と介在物の分散状態を示す。   Table 3 shows the chemical composition of the steel, Table 4 energizing conditions, and the dispersion state of the inclusions.

Figure 2020011261
Figure 2020011261

Figure 2020011261
Figure 2020011261

表4からわかるように、ストッパー2の接触電極16側を負極19、浸漬ノズル7(対極電極17)側を正極18に接続して電流を流した実施例1〜4では、0.05〜1μmの微小な酸化物系介在物がいずれも350個/mm2を超えて存在し、しかも1μm以上の酸化物系介在物数の平均値は電流を流さなかった水準と大きな差は認められなかった。 As can be seen from Table 4, in Examples 1 to 4 in which the contact electrode 16 side of the stopper 2 was connected to the negative electrode 19 and the immersion nozzle 7 (counter electrode 17) side was connected to the positive electrode 18 to flow a current, 0.05 to 1 μm. In each case, the fine oxide-based inclusions were present in excess of 350 / mm 2 , and the average value of the number of oxide-based inclusions of 1 μm or more was not significantly different from the level at which no current was passed. .

一方、通電方向が同じでも平均電流密度が0.04A/m2と過少であった比較例5は0.05〜1μmの微小な酸化物系介在物が350個/mm2に達しておらず、本発明例より劣った。また、ストッパー2の接触電極16側を正極18、浸漬ノズル7(対極電極17)側を負極19に接続して電流を流した比較例6〜8および、直流電源を接続しなかった比較例9〜10では、0.05〜1μmの微小な酸化物系介在物がいずれも50個/mm2未満であった。 On the other hand, in Comparative Example 5 in which the average current density was as low as 0.04 A / m 2 even in the same direction of current application, the number of minute oxide-based inclusions of 0.05 to 1 μm did not reach 350 / mm 2. And inferior to the examples of the present invention. Comparative Examples 6 to 8 in which the contact electrode 16 side of the stopper 2 was connected to the positive electrode 18 and the immersion nozzle 7 (counter electrode 17) side was connected to the negative electrode 19 to flow a current, and Comparative Example 9 in which no DC power supply was connected. In Nos. To 10, the number of fine oxide-based inclusions of 0.05 to 1 μm was less than 50 / mm 2 .

1 タンディッシュ
2 ストッパー
3 ストッパー鉄心
4 ストッパーヘッド
5 ストッパースリーブ
6 上ノズル
7 浸漬ノズル
8 リード線
9 直流電源
10 羽口レンガ
11 金属メッシュ
12 大気溶解炉
13 酸素供給体
15 固体電解質
16 接触電極
17 対極電極
18 正極
19 負極
20 溶融金属
21 溶融金属容器
22 耐火物
23 電極棒
DESCRIPTION OF SYMBOLS 1 Tundish 2 Stopper 3 Stopper iron core 4 Stopper head 5 Stopper sleeve 6 Upper nozzle 7 Immersion nozzle 8 Lead wire 9 DC power supply 10 Tuyere brick 11 Metal mesh 12 Atmospheric melting furnace 13 Oxygen supplier 15 Solid electrolyte 16 Contact electrode 17 Counter electrode 18 Positive electrode 19 Negative electrode 20 Molten metal 21 Molten metal container 22 Refractory 23 Electrode rod

Claims (4)

溶融金属を収容する溶融金属容器と、少なくとも一部が固体電解質で構成される耐火物と、溶融金属容器内に収容された溶融金属に接触する対極電極と、直流電源とを有し、前記耐火物は、前記溶融金属内に溶融金属を収容したときにその一部が溶融金属中に浸漬し、前記耐火物の溶融金属に接触しない部分に接触電極を設け、前記直流電源の正極が前記対極電極に接続され、直流電源の負極が前記接触電極に接続されていることを特徴とする、微細酸化物分散金属塊の製造装置。   A molten metal container that contains the molten metal, a refractory at least partially composed of a solid electrolyte, a counter electrode that contacts the molten metal contained in the molten metal container, and a DC power supply; When the molten metal is contained in the molten metal, a part thereof is immersed in the molten metal, and a contact electrode is provided in a portion of the refractory that does not come into contact with the molten metal, and the positive electrode of the DC power supply is the counter electrode. An apparatus for producing a fine metal oxide-dispersed metal block, wherein the apparatus is connected to an electrode and a negative electrode of a DC power supply is connected to the contact electrode. 前記固体電解質で構成される耐火物が、ストッパーを形成する耐火物であることを特徴とする請求項1に記載の微細酸化物分散金属塊の製造装置。   2. The apparatus according to claim 1, wherein the refractory composed of the solid electrolyte is a refractory forming a stopper. 3. 請求項1又は請求項2に記載の微細酸化物分散金属塊の製造装置を用い、
前記溶融金属容器に溶融金属を収容し、前記直流電源を用いて通電し、前記溶融金属容器から溶融金属を鋳型に注入して金属塊を製造する際、
固体電解質と溶融金属との接触面における平均電流密度を0.05〜1.5A/cm2とすることを特徴とする、微細酸化物分散金属塊の製造方法。
Using the apparatus for producing a fine oxide-dispersed metal lump according to claim 1 or claim 2,
When the molten metal is accommodated in the molten metal container and energized by using the DC power supply, when the molten metal is poured into the mold from the molten metal container to produce a metal lump,
A method for producing a fine oxide-dispersed metal mass, characterized in that the average current density at the contact surface between the solid electrolyte and the molten metal is 0.05 to 1.5 A / cm 2 .
金属塊の内部に最大径1μm以下の酸化物介在物が350個/mm2以上存在することを特徴とする請求項3に記載の微細酸化物分散金属塊の製造方法。 The method for producing a fine oxide-dispersed metal lump according to claim 3, wherein oxide inclusions having a maximum diameter of 1 µm or less exist in the metal lump at a rate of 350 / mm 2 or more.
JP2018134842A 2018-07-18 2018-07-18 Method for producing fine oxide-dispersed metal lumps Active JP7135525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134842A JP7135525B2 (en) 2018-07-18 2018-07-18 Method for producing fine oxide-dispersed metal lumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134842A JP7135525B2 (en) 2018-07-18 2018-07-18 Method for producing fine oxide-dispersed metal lumps

Publications (2)

Publication Number Publication Date
JP2020011261A true JP2020011261A (en) 2020-01-23
JP7135525B2 JP7135525B2 (en) 2022-09-13

Family

ID=69169072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134842A Active JP7135525B2 (en) 2018-07-18 2018-07-18 Method for producing fine oxide-dispersed metal lumps

Country Status (1)

Country Link
JP (1) JP7135525B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769574A (en) * 2022-06-09 2022-07-22 中钢集团洛阳耐火材料研究院有限公司 Method for prolonging service life of integral stopper rod for continuous casting
CN116922546A (en) * 2023-09-18 2023-10-24 成都永益泵业股份有限公司 Method for manufacturing molded part by using zirconia and pump flow passage component
CN117226084A (en) * 2023-09-12 2023-12-15 中钢集团洛阳耐火材料研究院有限公司 Method for reducing alumina inclusion in tundish molten steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246026A (en) * 1995-03-06 1996-09-24 Nkk Corp Method for controlling form of inclusion in molten steel
JPH10193046A (en) * 1997-01-09 1998-07-28 Nippon Steel Corp Method for fining and dispersing oxide in molten steel
JPH11246929A (en) * 1998-03-04 1999-09-14 Natl Res Inst For Metals Oxide-dispersed steel and its production
JP2001170761A (en) * 1999-12-13 2001-06-26 Nippon Steel Corp Stopper and upper nozzle for metallurgical vessel
EP2106866A1 (en) * 2007-01-25 2009-10-07 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
JP2010024470A (en) * 2008-07-15 2010-02-04 Nippon Steel Corp Steel sheet superior in toughness of weld heat-affected zone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246026A (en) * 1995-03-06 1996-09-24 Nkk Corp Method for controlling form of inclusion in molten steel
JPH10193046A (en) * 1997-01-09 1998-07-28 Nippon Steel Corp Method for fining and dispersing oxide in molten steel
JPH11246929A (en) * 1998-03-04 1999-09-14 Natl Res Inst For Metals Oxide-dispersed steel and its production
JP2001170761A (en) * 1999-12-13 2001-06-26 Nippon Steel Corp Stopper and upper nozzle for metallurgical vessel
EP2106866A1 (en) * 2007-01-25 2009-10-07 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
JP2010024470A (en) * 2008-07-15 2010-02-04 Nippon Steel Corp Steel sheet superior in toughness of weld heat-affected zone
CN102066598A (en) * 2008-07-15 2011-05-18 新日本制铁株式会社 Steel material for welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769574A (en) * 2022-06-09 2022-07-22 中钢集团洛阳耐火材料研究院有限公司 Method for prolonging service life of integral stopper rod for continuous casting
CN114769574B (en) * 2022-06-09 2024-04-30 中钢集团洛阳耐火材料研究院有限公司 Method for prolonging service life of integral stopper rod for continuous casting
CN117226084A (en) * 2023-09-12 2023-12-15 中钢集团洛阳耐火材料研究院有限公司 Method for reducing alumina inclusion in tundish molten steel
CN117226084B (en) * 2023-09-12 2024-05-07 中钢集团洛阳耐火材料研究院有限公司 Method for reducing alumina inclusion in tundish molten steel
CN116922546A (en) * 2023-09-18 2023-10-24 成都永益泵业股份有限公司 Method for manufacturing molded part by using zirconia and pump flow passage component
CN116922546B (en) * 2023-09-18 2023-12-29 成都永益泵业股份有限公司 Method for manufacturing molded part by using zirconia and pump flow passage component

Also Published As

Publication number Publication date
JP7135525B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP7135525B2 (en) Method for producing fine oxide-dispersed metal lumps
JP6524801B2 (en) High purity steel and its refining method
JP4257368B2 (en) Manufacturing method of high cleanliness steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6237343B2 (en) Melting method of high clean steel
JP7167646B2 (en) Method of adding alloy to molten steel
JP2020180319A (en) Desulfurization method of molten metal
CN113994015A (en) Method for adding Ca to molten steel
JP2013216927A (en) Method for producing high purity steel material
JP2004143510A (en) Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
CN107530769B (en) Continuous casting method using mold flux, and slab manufactured using the same
JP5713529B2 (en) Steel material with excellent rolling fatigue life
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP2013167009A (en) Method for producing steel material having high cleanliness
JP2018127680A (en) Method for smelting clean steel
JP5056826B2 (en) Steel for continuous casting and method for producing the same
TWI824575B (en) Methods of handling molten steel and methods of manufacturing steel
JP4609325B2 (en) Treatment method of molten iron by Nd addition
JP4641022B2 (en) Manufacturing method of high cleanliness steel
JP2006233254A (en) Method for producing high cleanliness steel
JP6398673B2 (en) Bubble generation method in molten metal
JP5387045B2 (en) Manufacturing method of bearing steel
JP3870743B2 (en) Steel continuous casting method
JP7323803B2 (en) Ladle refining method for molten steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151