JPH08246026A - Method for controlling form of inclusion in molten steel - Google Patents

Method for controlling form of inclusion in molten steel

Info

Publication number
JPH08246026A
JPH08246026A JP4576695A JP4576695A JPH08246026A JP H08246026 A JPH08246026 A JP H08246026A JP 4576695 A JP4576695 A JP 4576695A JP 4576695 A JP4576695 A JP 4576695A JP H08246026 A JPH08246026 A JP H08246026A
Authority
JP
Japan
Prior art keywords
molten steel
oxygen
gas
inclusions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4576695A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Ryuji Yamaguchi
隆二 山口
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4576695A priority Critical patent/JPH08246026A/en
Publication of JPH08246026A publication Critical patent/JPH08246026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To make it possible to efficiently and finely disperse a large amt. of nonmetallic inclusions in molten steel by supplying a specific quantity of oxygen component to the molten steel after adding a deoxidizing agent thereto. CONSTITUTION: A chamber 4 in which an argon atmosphere is maintained is internally provided with a vacuum high-frequency furnace 1 where the molten steel 2 is melted. The molten steel 2 is subjected to component adjustment and, thereafter, molten steel is cast into a die casting mold 8 via a tundish 7 three to four minutes after addition of the deoxidizing agent. The oxygen component of 1×10<-2> to 6×10<-2> kg per 1 ton of the molten steel in a killed state is supplied to the molten steel. The supply of the oxygen component is executed by blowing gas of an oxygen content of 1 to 10vol.% into the molten steel. The gas is blown via a porous plug 5 from a gas supply source 6. As a result, the form of the nonmetallic inclusions existing in the molten steel is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶鋼中に存在する非金属
介在物の形態を制御する溶鋼の介在物形態制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling inclusion morphology of molten steel for controlling the morphology of non-metallic inclusions present in molten steel.

【0002】[0002]

【従来の技術】溶鋼中には酸化物が主体の非金属介在物
が存在し、その存在量が過剰になると、短時間でノズル
詰まりを生じるばかりでなく、さらに非金属介在物が除
去されることなく凝固後においても鋼中に残留した場合
には鋼材製品の重大な欠陥を生じる。このため従来から
溶鋼中の非金属介在物量が増えないように、製鋼プロセ
スの各工程において脱酸生成物などの非金属介在物を徹
底的に除去している。
2. Description of the Related Art Non-metallic inclusions mainly composed of oxides are present in molten steel, and when the amount thereof is excessive, not only nozzle clogging occurs in a short time, but also non-metallic inclusions are removed. If it remains in the steel even after solidification, it causes a serious defect in the steel product. For this reason, conventionally, non-metallic inclusions such as deoxidation products are thoroughly removed in each step of the steelmaking process so that the amount of non-metallic inclusions in molten steel does not increase.

【0003】しかし、このような非金属介在物を少なく
するという清浄鋼の狙いとは逆の発想として、製品欠陥
にならないほどの粒径の小さな介在物を積極的に増加さ
せることにより鋼材特性を向上させる試みもなされてい
る。例えば、日本鉄鋼協会発行「材料とプロセス」3(19
90) ,276 頁及び「鉄と鋼」78(1992),1697頁では鋼中
の酸化物を硫化物の析出核として利用し、硫化物の分散
制御を図る方法が提案されている。
However, as an idea contrary to the purpose of the clean steel to reduce such non-metallic inclusions, the steel material characteristics are improved by positively increasing the inclusions having a grain size small enough not to cause product defects. Attempts have been made to improve it. For example, “Materials and Processes” 3 (19
90), p.276, and "Iron and Steel", 78 (1992), 1697, propose a method of controlling the dispersion of sulfide by using oxides in steel as precipitation nuclei of sulfide.

【0004】核となる酸化物の多量微細分散法として
は、溶鋼成分及びスラグ成分を調整することにより生成
酸化物の組成を変える方法、Zr脱酸等の比重の大きい
酸化物を生じさせ溶鋼からの浮上比率を低減させて溶鋼
中の残留割合を増加させる方法等が提案されている。
As a method for finely dispersing a large amount of core oxides, the composition of the produced oxide is changed by adjusting the molten steel component and the slag component, and an oxide having a large specific gravity such as Zr deoxidation is produced from the molten steel. There has been proposed a method of reducing the levitation ratio and increasing the residual ratio in molten steel.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法を用いたとしても鋼中に分散する介在物の個数が
十分でなく、その分布のばらつきが大きいこと、また、
鋼中にZrが残留すると材質硬度に及ぼす影響が大きい
ため、その添加量と添加方法が難しいこと等の問題点が
あり、現状では必ずしも要求を満足するものはない。
However, even if these methods are used, the number of inclusions dispersed in the steel is not sufficient and the distribution thereof is large, and
If Zr remains in the steel, it has a great influence on the material hardness, so that there are problems such as the addition amount and the addition method being difficult.

【0006】本発明は上記課題を解決するためになされ
たものであり、溶鋼中の非金属介在物を効率的に多量に
微細分布させることができる溶鋼の介在物形態制御方法
を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for controlling the morphology of inclusions in molten steel capable of efficiently finely distributing a large amount of non-metallic inclusions in the molten steel. To aim.

【0007】[0007]

【課題を解決するための手段】本発明に係る溶鋼の介在
物形態制御方法は、溶鋼に脱酸剤を添加した後に、キル
ド状態の溶鋼1トン当たり1×10-2〜6×10-2kg
の酸素分を供給することを特徴とする。
The method for controlling the inclusion morphology of molten steel according to the present invention is 1 × 10 -2 to 6 × 10 -2 per ton of molten steel in a killed state after adding a deoxidizing agent to the molten steel. kg
It is characterized by supplying the oxygen content of.

【0008】なお、この場合に酸素含有量が1〜10体
積%の気体をキルド状態の溶鋼中に吹き込むことが望ま
しい。また、一次添加の脱酸剤としてはSi,Mn,T
i等の成分元素を含む金属又は化合物を用いることが好
ましい。
In this case, it is desirable to blow a gas having an oxygen content of 1 to 10% by volume into the molten steel in the killed state. In addition, as the primary deoxidizing agent, Si, Mn, T
It is preferable to use a metal or compound containing a component element such as i.

【0009】[0009]

【作用】本発明に係る溶鋼の介在物形態制御方法におい
ては、溶鋼中にSi,Mn,Ti等の脱酸剤を添加した
後に、各元素もしくは複合の脱酸平衡で規定される溶存
酸素分を除き、初期の酸素分に対応していわゆる一次脱
酸生成物が生じる。その後、溶鋼の冷却凝固に伴って溶
存可能な酸素量が減少するため、その余剰酸素分に対応
して二次脱酸生成物が生じる。
In the method of controlling the inclusion morphology of molten steel according to the present invention, the dissolved oxygen content defined by the deoxidization equilibrium of each element or compound is added after adding a deoxidizing agent such as Si, Mn, and Ti to the molten steel. Except the above, a so-called primary deoxidation product is produced corresponding to the initial oxygen content. After that, since the amount of oxygen that can be dissolved decreases as the molten steel cools and solidifies, a secondary deoxidation product is produced corresponding to the excess oxygen content.

【0010】溶鋼中の流動及び攪拌等で生じた非金属介
在物は系外に除去されるが、一次脱酸生成物の一部と二
次脱酸生成物の大部分は溶鋼中にそのまま残存し、冷却
凝固後も鋼塊中に持ち込まれる。
Non-metallic inclusions generated by the flow and stirring in the molten steel are removed to the outside of the system, but some of the primary deoxidation products and most of the secondary deoxidation products remain in the molten steel. However, it is brought into the steel ingot even after being cooled and solidified.

【0011】通常の場合は二次脱酸生成物のほうが一次
脱酸生成物より粒径が小さい。この理由は、二次では温
度降下するにしたがって溶存酸素量が徐々に減少して脱
酸生成物の量が少なく、一次のように瞬間的に多量に脱
酸生成物が生成されないからであり、さらに二次では介
在物同士が凝集・合体して肥大化するための時間的余裕
がないからである。
Usually, the secondary deoxidation product has a smaller particle size than the primary deoxidation product. The reason for this is that in the secondary, the amount of dissolved oxygen gradually decreases as the temperature drops and the amount of the deoxidation product is small, so that a large amount of the deoxidation product is not generated instantaneously as in the primary. Furthermore, in the secondary, there is no time to allow the inclusions to aggregate and coalesce to enlarge.

【0012】従って、粒径の小さな微細介在物を多量に
分布させるには脱酸剤の成分元素の脱酸平衡値で規定さ
れる二次で生成する分を多くすることが考えられる。そ
こで、脱酸剤を添加した後に、さらに酸素を強制的に溶
鋼中に供給することにより非平衡状態とし、いったん休
止していた脱酸生成物の生成を再開させ、微細介在物を
増加させる。ただし、酸素供給量が過剰になると、溶鋼
界面では一次で生成する条件と近くなるため、粒径の大
きい粗大介在物が発生しやすくなる。つまり、微細な介
在物を多量に分布させるためには、適切な酸素供給条件
が存在することになる。
Therefore, in order to distribute a large amount of fine inclusions having a small particle size, it is conceivable to increase the amount of secondary inclusions defined by the deoxidation equilibrium value of the component elements of the deoxidizer. Therefore, after adding the deoxidizing agent, oxygen is forcibly supplied into the molten steel to bring it into a non-equilibrium state, thereby restarting the production of the deoxidized product that had once been suspended, and increasing fine inclusions. However, if the oxygen supply amount becomes excessive, the conditions for the primary generation are close to those at the molten steel interface, so that coarse inclusions with a large grain size are likely to occur. That is, in order to distribute a large amount of fine inclusions, appropriate oxygen supply conditions exist.

【0013】酸素分供給量の下限値をキルド状態の溶鋼
1トン当たり1×10-2kgとした理由は、図2に示す
ように3μm以下の微細な介在物の個数がこのあたりか
ら急激に増加するからである。一方、酸素分供給量の上
限値をキルド状態の溶鋼1トン当たり6×10-2kgと
した理由は、酸素供給量が過剰になり、粒径の大きい粗
大介在物が発生しやすくなるからである。
The reason for setting the lower limit of the oxygen content supply amount to 1 × 10 -2 kg per ton of molten steel in the killed state is that the number of fine inclusions of 3 μm or less sharply increases from around this as shown in FIG. Because it will increase. On the other hand, the reason for setting the upper limit of the oxygen content supply amount to 6 × 10 -2 kg per ton of molten steel in the killed state is that the oxygen supply amount becomes excessive and coarse inclusions with a large grain size are likely to occur. is there.

【0014】[0014]

【実施例】以下、添付の図面を参照しながら本発明の実
施例について説明する。 (実施例1)図1に示すようなアルゴンガス雰囲気とさ
れたチャンバ4のなかに真空高周波誘導炉1を設け、炉
内で溶鋼2を溶解するようにしている。炉内で溶解した
溶鋼2を、成分調整した後に、脱酸剤を添加した3〜4
分後にタンディッシュ7を介して金型鋳型8に鋳造し
た。成分調整後の溶鋼2は、C;0.08〜0.12重
量%,Si;0.02〜0.06重量%,Mn;0.8
〜1.0重量%,P;0.007重量%以下,S;0.
005重量%以下,Ti;0.02〜0.15重量%,
Al;0.001重量%以下の組成である。成分調整さ
れた溶鋼2の重量は約5000kgである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. (Embodiment 1) A vacuum high frequency induction furnace 1 is provided in a chamber 4 in an argon gas atmosphere as shown in FIG. 1, and molten steel 2 is melted in the furnace. After adjusting the composition of the molten steel 2 melted in the furnace, a deoxidizer was added 3 to 4
After a minute, it was cast into a mold mold 8 through the tundish 7. The molten steel 2 after the composition adjustment is C; 0.08 to 0.12% by weight, Si; 0.02 to 0.06% by weight, Mn; 0.8.
.About.1.0% by weight, P; 0.007% by weight or less, S;
005% by weight or less, Ti: 0.02 to 0.15% by weight,
Al: The composition is 0.001% by weight or less. The weight of the molten steel 2 whose composition has been adjusted is about 5000 kg.

【0015】なお、タンディッシュ7は溶鋼2を受鋼す
る前から予熱してある。次に、酸素分の添加について説
明する。試薬の酸化鉄(Fe23 )の添加量を0.0
8〜1.0kgの範囲で種々変えて溶鋼2に添加した。
炉底部に埋め込んだポーラスプラグ5を介して毎分10
0Nlの流量でアルゴンガスを溶鋼2のなかに吹き込
み、十分に攪拌した。酸化鉄添加終了から3〜4分間経
過した後に、これを金型鋳型8内に鋳造し、凝固させ
た。
The tundish 7 is preheated before receiving the molten steel 2. Next, the addition of oxygen will be described. Add the amount of iron oxide (Fe 2 O 3 ) added to the reagent to 0.0
Various additions were made to the molten steel 2 within the range of 8 to 1.0 kg.
10 minutes per minute through the porous plug 5 embedded in the bottom of the furnace
Argon gas was blown into the molten steel 2 at a flow rate of 0 Nl and sufficiently stirred. After a lapse of 3 to 4 minutes from the end of the addition of iron oxide, this was cast in the mold mold 8 and solidified.

【0016】鋼塊の冷却速度は熱電対を用いて鋳型半径
方向の約D/4(鋳型直径Dの4分の1)の位置で測定
した。冷却速度の測定結果は毎分20℃程度であった。
鋼塊の上部、中央部、下部の3箇所につきそれぞれ半径
方向D/2,D/4,D/8の3箇所から合計9個のサ
ンプルを切り出した。各サンプルの切断面を鏡面研磨
し、約800倍の倍率の顕微鏡下で研磨面を観察するこ
とにより、被検面1cm2 当たりにつき介在物の存在量
及び分布を測定した。
The cooling rate of the steel ingot was measured with a thermocouple at a position of about D / 4 (1/4 of the mold diameter D) in the radial direction of the mold. The measurement result of the cooling rate was about 20 ° C. per minute.
A total of 9 samples were cut out from three locations in the radial direction D / 2, D / 4, and D / 8 at the three locations of the upper portion, the central portion, and the lower portion of the steel ingot. The cut surface of each sample was mirror-polished and the polished surface was observed under a microscope with a magnification of about 800 times to measure the amount and distribution of inclusions per cm 2 of the surface to be inspected.

【0017】非金属介在物はその粒径を1μmごとに区
切ってそれぞれの個数をカウントした。なお、サンプル
の介在物総数は上記9個のサンプルの測定値の平均をも
って代表値とした。
The number of non-metallic inclusions was counted by dividing the particle size by 1 μm. The total number of inclusions in the sample was set as a representative value by averaging the measured values of the above 9 samples.

【0018】図2は、横軸に溶鋼1トン当たりの酸素原
単位(×10-2kg/トン)をとり、縦軸に鋼材断面積
1cm2 当たりに存在する直径3μm以下の介在物の個
数(個/)をとって、酸素原単位(酸素添加量)が介在
物存在量に及ぼす影響について調べた結果を示す特性線
図である。図から明らかなように、酸素原単位が1×1
-2kg/トン以上で直径3μm以下の微細な介在物の
個数が増加した。この結果から、今回の水準にはない
が、さらに酸素原単位を増量すると界面での酸素濃度が
増え、介在物が肥大化しやすくなり、微細なものの個数
が減少することが予想される。 (実施例2)上記の実施例1と同様の装置を用いて酸素
分の添加方法を気体で供給する方法を行なった。炉底部
のポーラスプラグ5を介してガス供給源6からアルゴン
ガス及び酸素ガスをともに溶鋼2のなかに吹き込み、十
分に攪拌した。
In FIG. 2, the horizontal axis represents the oxygen intensity per ton of molten steel (× 10 -2 kg / ton), and the vertical axis represents the number of inclusions having a diameter of 3 μm or less per 1 cm 2 of steel cross section. It is a characteristic diagram which shows the result of having taken (pieces /) and investigated about the influence which the oxygen basic unit (oxygen addition amount) has on the amount of inclusions. As is clear from the figure, the oxygen intensity is 1 x 1
The number of fine inclusions having a diameter of 3 μm or less increased at 0 −2 kg / ton or more. From these results, although not at the level of this time, it is expected that the oxygen concentration at the interface will increase, the inclusions will tend to enlarge, and the number of fine particles will decrease if the oxygen unit amount is further increased. (Example 2) Using the same apparatus as in Example 1 above, a method of supplying oxygen as a gas was performed. Both the argon gas and the oxygen gas were blown into the molten steel 2 from the gas supply source 6 through the porous plug 5 at the bottom of the furnace and sufficiently stirred.

【0019】この場合に、吹き込みガス量は毎分500
〜1500Nlとし、かつ、酸素原単位は溶鋼1トン当
たり0.01kgと一定とし、ガス中の酸素濃度を0〜
10体積%の範囲で種々変えた。
In this case, the blowing gas amount is 500 per minute.
-1500 Nl, and the oxygen basic unit is fixed at 0.01 kg per ton of molten steel, and the oxygen concentration in the gas is 0-
Various changes were made within the range of 10% by volume.

【0020】ガス吹き込み終了から3〜4分間経過した
後に、これを金型鋳型8内に鋳造し、凝固させた。実施
例1と同様の評価法を用いて鋳塊のなかに含まれる非金
属介在物について調べた。
After a lapse of 3 to 4 minutes from the end of the gas blowing, this was cast in the die mold 8 and solidified. The same evaluation method as in Example 1 was used to examine the non-metallic inclusions contained in the ingot.

【0021】図3は横軸に吹込ガス中の酸素濃度(体積
%)をとり、縦軸に鋼材断面積1cm2 当たりに存在す
る直径3μm以下の非金属介在物の個数(個/cm2
をとって、吹込ガス中の酸素濃度が介在物の個数に及ぼ
す影響について調べた特性線図である。図中の曲線Gは
吹き込みガス量が毎分500Nlのときの結果を示し、
曲線Hは吹き込みガス量が毎分1500Nlのときの結
果を示す。
In FIG. 3, the horizontal axis represents the oxygen concentration (volume%) in the blown gas, and the vertical axis represents the number of non-metallic inclusions having a diameter of 3 μm or less (pieces / cm 2 ) per 1 cm 2 of the steel material cross-sectional area.
FIG. 4 is a characteristic diagram in which the influence of the oxygen concentration in the blown gas on the number of inclusions is investigated by taking the above. Curve G in the figure shows the result when the blowing gas amount is 500 Nl / min,
Curve H shows the result when the amount of blown gas is 1500 Nl / min.

【0022】図から明らかなように、吹込ガス中の酸素
濃度が1〜10(体積%)のときに介在物の個数が多く
なった。とくに、吹込ガス中の酸素濃度が3〜8体積%
の範囲では直径3μm以下の微細な非金属介在物の個数
が著しく増大する結果を得た。
As is clear from the figure, the number of inclusions increased when the oxygen concentration in the blown gas was 1 to 10 (volume%). Especially, the oxygen concentration in the blown gas is 3 to 8% by volume.
In the range, the number of fine non-metallic inclusions having a diameter of 3 μm or less was remarkably increased.

【0023】[0023]

【発明の効果】本発明によれば、いったん脱酸剤を添加
してキルド状態にした溶鋼中にさらに適切に酸素分を供
給することにより、溶鋼中の非金属介在物を効率的に多
量に微細分散させることができる。
EFFECTS OF THE INVENTION According to the present invention, a non-metallic inclusion in the molten steel can be efficiently added in a large amount by supplying an oxygen content more appropriately into the molten steel that has been once made into a killed state by adding a deoxidizer. It can be finely dispersed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る溶鋼の介在物形態制御方
法に用いた装置の概要を示す模式図である。
FIG. 1 is a schematic diagram showing an outline of an apparatus used for a method for controlling inclusion morphology of molten steel according to an embodiment of the present invention.

【図2】本発明の効果を示す特性線図である。FIG. 2 is a characteristic diagram showing the effect of the present invention.

【図3】本発明の効果を示す特性線図である。FIG. 3 is a characteristic diagram showing the effect of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼に脱酸剤を添加した後に、キルド状
態の溶鋼1トン当たり1×10-2〜6×10-2kgの酸
素分を供給することを特徴とする溶鋼の介在物形態制御
方法。
1. An inclusion form of molten steel, characterized by supplying 1 × 10 −2 to 6 × 10 −2 kg of oxygen content per ton of molten steel in a killed state after adding a deoxidizing agent to the molten steel. Control method.
【請求項2】 酸素含有量が1〜10体積%の気体をキ
ルド状態の溶鋼中に吹き込むことを特徴とする請求項1
記載の溶鋼の介在物形態制御方法。
2. A gas having an oxygen content of 1 to 10% by volume is blown into molten steel in a killed state.
A method for controlling the inclusion morphology of the molten steel described.
JP4576695A 1995-03-06 1995-03-06 Method for controlling form of inclusion in molten steel Pending JPH08246026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4576695A JPH08246026A (en) 1995-03-06 1995-03-06 Method for controlling form of inclusion in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4576695A JPH08246026A (en) 1995-03-06 1995-03-06 Method for controlling form of inclusion in molten steel

Publications (1)

Publication Number Publication Date
JPH08246026A true JPH08246026A (en) 1996-09-24

Family

ID=12728422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4576695A Pending JPH08246026A (en) 1995-03-06 1995-03-06 Method for controlling form of inclusion in molten steel

Country Status (1)

Country Link
JP (1) JPH08246026A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332516A (en) * 2001-05-09 2002-11-22 Nippon Steel Corp Method for dispersing a large amount of fine oxide in molten steel
CN102788499A (en) * 2012-09-07 2012-11-21 无锡豪特维思热能科技有限公司 Hearth structure of induction heating smelting furnace
CN105698530A (en) * 2016-04-22 2016-06-22 佛山市高捷工业炉有限公司 High-frequency electromagnetic inductive heating furnace
CN107449277A (en) * 2017-09-18 2017-12-08 佛山市高捷工业炉有限公司 A kind of electromagnetism smelting furnace of high thermal efficiency
CN107606943A (en) * 2017-09-18 2018-01-19 佛山市高捷工业炉有限公司 It is a kind of can high in the clouds control electromagnetism smelting furnace
JP2020011261A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method and device for producing fine oxide-dispersed metal lump
CN111218542A (en) * 2019-12-26 2020-06-02 福建华扬科技有限公司 Low argon blowing process of medium-frequency induction melting furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332516A (en) * 2001-05-09 2002-11-22 Nippon Steel Corp Method for dispersing a large amount of fine oxide in molten steel
JP4555505B2 (en) * 2001-05-09 2010-10-06 新日本製鐵株式会社 Mass dispersion method for fine oxides in molten steel
CN102788499A (en) * 2012-09-07 2012-11-21 无锡豪特维思热能科技有限公司 Hearth structure of induction heating smelting furnace
CN105698530A (en) * 2016-04-22 2016-06-22 佛山市高捷工业炉有限公司 High-frequency electromagnetic inductive heating furnace
CN107449277A (en) * 2017-09-18 2017-12-08 佛山市高捷工业炉有限公司 A kind of electromagnetism smelting furnace of high thermal efficiency
CN107606943A (en) * 2017-09-18 2018-01-19 佛山市高捷工业炉有限公司 It is a kind of can high in the clouds control electromagnetism smelting furnace
JP2020011261A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method and device for producing fine oxide-dispersed metal lump
CN111218542A (en) * 2019-12-26 2020-06-02 福建华扬科技有限公司 Low argon blowing process of medium-frequency induction melting furnace

Similar Documents

Publication Publication Date Title
CN101445853B (en) Method for casting elevator as-cast ball iron towing pulley
US4524819A (en) Method of manufacturing leaded free-cutting steel by continuous casting process
US4874576A (en) Method of producing nodular cast iron
TW461834B (en) Clean metal nucleated cast article
JPH08246026A (en) Method for controlling form of inclusion in molten steel
TWI673122B (en) Continuous casting method of steel and method for manufacturing thin steel sheet
CN113186445A (en) Method for controlling inclusion content of stainless steel product
US3814405A (en) Steel making apparatus
JP2001225154A (en) Continuous casting method for steel and continuously cast slab
US3869283A (en) Alloying steels
JPH01299742A (en) Method for continuously casting bloom or billet by calcium treatment
CN113329832B (en) Mold powder and mold coating
RU2121510C1 (en) Method of modifying cast irons and steels
JP2004009064A (en) Method for producing continuously cast slab
JP4622172B2 (en) Continuous casting method for molten steel
US3841867A (en) Alloying steels
SU854562A1 (en) Method of producing ingot
JP2001335824A (en) Method for producing high cleanliness steel
US3820982A (en) Method of adding lead to steel with lead oxide slag
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic
SU616042A1 (en) Ingot making method
JP3740084B2 (en) Manufacturing method of high cleanliness steel
CN109694935A (en) A kind of coverter pig aluminium system deoxidation carburetting alloy and its manufacturing method
GB1561746A (en) Agents for the treatment of molten metal
JP2002321043A (en) Manufacturing method for piece of cast which has fine solidification structure and steel product which is processed from it