JPH0568506B2 - - Google Patents

Info

Publication number
JPH0568506B2
JPH0568506B2 JP59001317A JP131784A JPH0568506B2 JP H0568506 B2 JPH0568506 B2 JP H0568506B2 JP 59001317 A JP59001317 A JP 59001317A JP 131784 A JP131784 A JP 131784A JP H0568506 B2 JPH0568506 B2 JP H0568506B2
Authority
JP
Japan
Prior art keywords
block copolymer
propylene
weight
ethylene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001317A
Other languages
Japanese (ja)
Other versions
JPS60147464A (en
Inventor
Tadashi Asanuma
Ikuo Kume
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59001317A priority Critical patent/JPS60147464A/en
Publication of JPS60147464A publication Critical patent/JPS60147464A/en
Publication of JPH0568506B2 publication Critical patent/JPH0568506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は成形時の流動性の良好な射出成形用ポ
リプロピレンブロツク共重合体の製造法に関す
る。詳しくは特定のポリプロピレンブロツク共重
合体を熱減成して高流動性のポリプロピレンブロ
ツク共重合体を製造する方法に関する。 省資源、省エネルギーの見地から射出成形品の
薄肉化が進み、樹脂の剛性とか耐衝撃性のバラン
スを保ちながら成形時の流れ性を改良することが
望まれている。 樹脂の成形時の流れ性を改良する方法として
は、重合の際に水素などの連鎖移動剤を用いて分
子量の比較的小さい重合体を製造する方法が知ら
れているが、分子量の小さい重合体を製造する
と、ヘキサン、ヘプタン、デカンなどの不活性炭
化水素や単量体からなる重合媒体に可溶の重合体
分が多くなり、これらの可溶の重合体は得られる
重合体の物性に悪影響を与えるので通常除去され
る。そのために消費単量体当りの重合体の収率が
低下し、全体としては省資源にならない。また、
気相重合法で作る場合にも、重合媒体に可溶性の
重合体は粘着性があり、重合槽へ付着したり、樹
脂パウダー自体の流動性が不良となるなどの問題
がある。これに対して比較的高分子量の重合体を
重合で製造し、次いで有機過酸化物などのラジカ
ル発生剤を用いて熱処理し、分子量を低下させる
方法も公知である(例えば、特公昭44−29742号、
特開昭48−21731号など)。しかしながら、上記の
有機過酸化物などのラジカル発生剤を用いて熱処
理する方法は、成形時の流動性を改良する方法と
しては優れているが、得られた高流動の樹脂は成
形品の耐衝撃性の1つの尺度である破断時の伸び
が小さいという問題があつた。 本発明者らは上記問題を解決する方法について
鋭意検討した結果、特定のポリプロピレンブロツ
ク共重合体を有機過酸化物などのラジカル発生剤
を用いて熱処理すると、高流動性でしかも成形物
の破断時の伸びが大きい樹脂が得られることを見
い出し、本発明を完成した。 本発明の目的は高流動性のポリプロピレンブロ
ツク共重合体を製造する方法を提供することにあ
る。 即ち、本発明は、30℃での白灯油可溶部が全ブ
ロツク共重合体の5重量%以上で、該可溶部のエ
チレン含量が20〜70重量%で、しかもゲルパーミ
エーシヨンクロマトグラフイー(GPC)で測定
した重量平均分子量と数平均分子量の比(MW/
MN)が6.0以上であるプロピレンとエチレンの
ブロツク共重合体を有機過酸化物を混合加熱する
ことを特徴とする高流動性射出成形用プレピレン
ブロツク共重合体の製造方法である。 本発明の方法に於ては使用する原料プロピレン
とエチレンのブロツク共重合体に特徴があり、有
機過酸化物と混合加熱して高流動性のポリプロピ
レンブロツク共重合体を得る方法は公知の方法が
採用でき、具体的には前述の文献に記載された方
法を用いることが可能である。即ち、有機過酸化
物としては公知の芳香族パーオキサイド、芳香族
ハイドロパーオキサイド、脂肪族パーオキサイ
ド、脂肪族ハイドロパーオキサイド、ケトンパー
オキサイド、パーオキシエステルなどが用いられ
るが、中でも得られるポリプロピレンブツロク共
重合体の臭気などの問題から脂肪族のものが好ま
しい。具体的には、2.5ジメチル−2.5−t−ブチ
ルパーオキシヘキサン、2.5−ジメチル−2.5−t
−ブチルパーオキシヘキセン−3、2.5−ジメチ
ルヘキサン−2.5−ジハイドロパーオキサイドな
ど多くのものが市販されており、容易に入手可能
である。 混合加熱は、通常比較的低温で、例えばヘンシ
エルミキサーなどで、良く混合し、次いでロール
とか押出機で加熱混練するのが好ましい。 本発明において使用する原料プロピレンとエチ
レンのブツロク共重合体の製造方法については、
前記条件を満足するブロツク共重合体を与える条
件であれば良く、格別限定はなく、不活性な液状
媒体を用いる溶媒重合法、液状プロピレン自身を
媒体とする塊状重合体、或いは液状媒体の存在し
ない気相重合法のいずれであつても良い。 共重合の方法としては、始めにプロピレン単独
或いは小量のエチレン(通常はエチレン/プロピ
レンの反応比が0〜3wt%)と共重合し、全重合
体の90〜70重合%を占めるよう重合する。次いで
エチレンとプロピレンの反応比が20/80〜80/20
重合比での反応を行う。この場合比較的分子量分
布の広い触媒を用いるか或いはエチレンとプロピ
レンの反応比が20/80〜80/20重合比で反応を水
素濃度を変えた段階を2段階以上行うか、エチレ
ン濃度を比較的大きく変えて2段階以上行うどし
て、得られたブロツク共重合体が後述の条件を満
足するように重合を行わねばならない。 本発明において、使用するプロピレンとエチレ
ンのブロツク共重合体は以下の条件を満足しなけ
ればならない。 即ち、プロピレンとエチレンのブロツク共重合
体を白灯油に溶解する。この際、ブロツク共重合
体と白灯油の割合は10gのブロツク共重合体に対
して300ml〜1の白灯油が用いられ、130〜180
℃で完全に溶解される。この溶解の際にはブロツ
ク共重合体の熱分解をさけるため酸化防止剤を添
加するのが好ましい。完全に溶解した後、6時間
かけて、30℃まで降温する。次いで不溶部と可溶
部がろ過によつて分離される。不溶部は白灯油で
数回洗浄し洗浄液は可溶部に加えられる。可溶部
は多数のアセトンで重合体を不溶化し分離され
る。こうして可溶部と不溶部を分離される。 不溶部は好ましくは70重量%以上特に80重量%
以上であることが剛性を良好なものにするため必
要である。又可溶部は5重量%以上特に7重量%
以上存在することが耐衝撃性を良好に保つために
必要である。又可溶部のアチレチン含量は20〜70
重量%である必要があり、20重量%より少ないか
又は70重量%より多いと耐衝撃性が不良となる。 GPCは135℃で1,2,3−トリクロロベンゼ
ンを媒体として用いて測定される。分子量の算出
はポリスチレンの標準分子量のものを用いQフア
クター比として0.639(ポリプロピレンのQフアク
ター/スチレンとのQフアクター)を用いて求め
る。エチレンとの共重合体もポリプロピレンと同
じ屈折率、フアクター値であるとして算出する。
可溶部の重量平均分子量と数平均分子量の比
(MW/MN)が6.0以下では得られるプロピレン
ブロツク共重合体の破断時の伸びが小さくなり好
ましくない。 本発明の方法を適用することにより物性バラン
スの良好な高流動性のブロツク共重合体を収率よ
く与えることが可能となり、工業的価値は大き
い。 以下に実施例を挙げ本発明をさらに具体的に説
明する。 実施例及び比較例において、物性の測定は以下
の方法によつて行つた。(物性の測定は、MFIを
除き、すべて厚さ2mmの射出成形シートで行つ
た。)。 MFI :ASTM D1238−62Tg/10min 引張り強さ :ASTM D638−64TKg/cm2 破断時伸び :ASTM D638−64T% アイゾリツト衝撃強さ
:ASTM D256−56Kg・cm/cm2 デユポン衝撃強さ :JIS K6718に準ずKg・cm 曲げ弾性率 :ASTM D790−63Kg/cm2 参考例 1 〔ブロツク共重合体の製造i〕 三塩化チタン(東邦チタニウム製TAC−141)
とジエチルアルミニウムフロライド(三塩化チタ
ンに対して2重量倍)からなる触媒を用いて、n
−ヘプタン中で、プロピレン単独の重合を60℃
で、又プロピレンとエチレンとの共重合を50℃で
行つて、ブロツク共重合体を製造した。(実施例
1、2の共重合体はプロピレンとエチレンの共重
合を水素濃度をかえて2段重合を行い、比較例1
の共重合は水素濃度をかえずに重合を行つた。)。 重合デザインとしてはプロピレン単独の重合は
全体の約85%で、この部分の極限粘度数(135℃
ラトラリン溶液で測定)が1.40であり、共重合部
の反応比はエチレン/プロピレンが2/1wt比
で、極限粘度数が5.50であつた。 共重合反応の後、メタノールで脱活し、水洗し
た後、スラリーをろ過して、共重合体を得た。 参考例 2 〔ブロツク共重合体の製造〕 塩化マグネシウムとケイ酸トリエチル及びα,
α,α−トリクロロトルエンを共粉砕し、次いで
四塩化チタンを担持して得た固体触媒とジエチル
アルミニウムクロライド、トリエチルアルミニウ
ム、p−トルイル酸メチルからなる触媒(固体触
媒に対しそれぞれ1:3:2:2重量比)を用い
て、プロピレン自身を媒体とする塊状重合法で、
プロピレン単独の重合を75℃で行い、次いで55℃
でエチレンとプロピレンの共重合を行つた。(実
施例3,4の共重合はプロピレンとエチレンの反
応比をかえて重合し、比較例2の共重合は反応比
一定で行い共重合全体の反応比はほぼ同一とし
た。) 重合デザインとしてはプロピレン単独の重合は
全体の84%でこの部分の極限粘度数が1.60であ
り、共重合は極限粘度数が4.5で、反応比は1.5/
1であつた。 重合反応終了後、n−ブタノールで触媒を失活
した後静置し、上澄のプロピレンを除去した後、
残りのプロピレンをパージして、共重合パウダー
を得た。 実施例1〜4及び比較例1,2 〔プロピレン−エチレン−ブロツク共重合体の熱
処理〕 有機過酸化物とブロツク共重合体の混合加熱処
理は、すべて使用したブロツク共重合体に対して
2.5−ジメチル−2.5−t−ブチルパーオキシヘキ
サンを1/10000〜15/10000加え、公知の酸化防止
剤を20/1000加え、ヘンシエルミキサーで混合し
た後40mmの押出機を用いてペレツト化した。この
ペレツト化時の温度は230℃である。 得られたポリプロピレン共重合体の物性を測定
した結果を用いたプロピレン−エチレン−ブロツ
ク共重合体の分析結果と共に第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polypropylene block copolymer for injection molding which has good fluidity during molding. More specifically, the present invention relates to a method for producing a highly fluid polypropylene block copolymer by thermally degrading a specific polypropylene block copolymer. In order to save resources and energy, injection molded products are becoming thinner, and it is desired to improve flowability during molding while maintaining a balance between resin rigidity and impact resistance. A known method for improving the flowability of resin during molding is to use a chain transfer agent such as hydrogen during polymerization to produce a polymer with a relatively small molecular weight. When producing a polymer, a large proportion of the polymer is soluble in the polymerization medium consisting of monomers and inert hydrocarbons such as hexane, heptane, and decane, and these soluble polymers have an adverse effect on the physical properties of the resulting polymer. It is usually removed because it gives As a result, the yield of polymer per consumed monomer decreases, and the overall resource saving is not achieved. Also,
Even when produced by gas phase polymerization, there are problems such as polymers soluble in the polymerization medium being sticky and sticking to the polymerization tank, and the resin powder itself having poor fluidity. On the other hand, a method is known in which a relatively high molecular weight polymer is produced by polymerization and then heat treated using a radical generator such as an organic peroxide to reduce the molecular weight (for example, Japanese Patent Publication No. 44-29742 issue,
JP-A No. 48-21731, etc.). However, although the method of heat treatment using a radical generator such as the organic peroxide described above is an excellent method for improving fluidity during molding, the resulting highly fluid resin does not improve the impact resistance of molded products. There was a problem that elongation at break, which is one measure of strength, was low. The inventors of the present invention have conducted intensive studies on methods to solve the above problems, and have found that when a specific polypropylene block copolymer is heat-treated using a radical generator such as an organic peroxide, it has high fluidity and even when the molded product breaks. It was discovered that a resin with high elongation can be obtained, and the present invention was completed. An object of the present invention is to provide a method for producing highly fluid polypropylene block copolymers. That is, in the present invention, the white kerosene soluble portion at 30°C is 5% by weight or more of the total block copolymer, the ethylene content of the soluble portion is 20 to 70% by weight, and the gel permeation chromatograph Ratio of weight average molecular weight and number average molecular weight (MW/
This is a method for producing a highly fluid propylene block copolymer for injection molding, which comprises mixing and heating a propylene and ethylene block copolymer having a MN) of 6.0 or more with an organic peroxide. The method of the present invention is characterized by the raw material propylene and ethylene block copolymer used, and the method of mixing and heating with an organic peroxide to obtain a highly fluid polypropylene block copolymer is a known method. Specifically, it is possible to use the methods described in the above-mentioned documents. That is, as the organic peroxide, known aromatic peroxides, aromatic hydroperoxides, aliphatic peroxides, aliphatic hydroperoxides, ketone peroxides, peroxy esters, etc. are used, but among them, the polypropylene butane obtained Aliphatic ones are preferable because of problems such as the odor of the copolymer. Specifically, 2.5-dimethyl-2.5-t-butylperoxyhexane, 2.5-dimethyl-2.5-t
-Butylperoxyhexene-3, 2.5-dimethylhexane-2.5-dihydroperoxide and many other products are commercially available and can be easily obtained. The mixing and heating is usually performed at a relatively low temperature, and it is preferable to thoroughly mix the ingredients using a Henschel mixer, for example, and then heat and knead them using a roll or an extruder. Regarding the production method of the buturoku copolymer of raw material propylene and ethylene used in the present invention,
There are no particular limitations as long as the conditions provide a block copolymer that satisfies the above conditions, such as a solvent polymerization method using an inert liquid medium, a bulk polymer using liquid propylene itself as a medium, or no liquid medium. Any of the gas phase polymerization methods may be used. The copolymerization method is to first copolymerize propylene alone or with a small amount of ethylene (usually the reaction ratio of ethylene/propylene is 0 to 3 wt%), and polymerize so that it accounts for 90 to 70% of the total polymerization. . Next, the reaction ratio of ethylene and propylene is 20/80 to 80/20.
Carry out the reaction at the polymerization ratio. In this case, a catalyst with a relatively wide molecular weight distribution should be used, or the reaction should be carried out in two or more stages at a polymerization ratio of ethylene and propylene of 20/80 to 80/20 with varying hydrogen concentrations, or the ethylene concentration should be relatively wide. Polymerization must be carried out in two or more stages with major changes so that the obtained block copolymer satisfies the conditions described below. In the present invention, the propylene and ethylene block copolymer used must satisfy the following conditions. That is, a block copolymer of propylene and ethylene is dissolved in white kerosene. At this time, the ratio of block copolymer to white kerosene is 300ml to 1 part white kerosene to 10g block copolymer, and 130 to 180% white kerosene is used.
Completely dissolved at ℃. During this dissolution, it is preferable to add an antioxidant to avoid thermal decomposition of the block copolymer. After complete dissolution, the temperature is lowered to 30°C over 6 hours. The insoluble and soluble parts are then separated by filtration. The insoluble part is washed several times with white kerosene, and the washing liquid is added to the soluble part. The soluble portion is separated by insolubilizing the polymer with a large amount of acetone. In this way, the soluble portion and the insoluble portion are separated. The insoluble portion is preferably 70% by weight or more, especially 80% by weight.
The above conditions are necessary in order to obtain good rigidity. In addition, the soluble portion is 5% by weight or more, especially 7% by weight.
The presence of these elements is necessary in order to maintain good impact resistance. Also, the content of athyretin in the soluble part is 20 to 70
If it is less than 20% by weight or more than 70% by weight, the impact resistance will be poor. GPC is measured at 135°C using 1,2,3-trichlorobenzene as the medium. The molecular weight is calculated using a standard molecular weight of polystyrene and a Q factor ratio of 0.639 (Q factor of polypropylene/Q factor with styrene). It is calculated assuming that a copolymer with ethylene has the same refractive index and factor value as polypropylene.
If the ratio of the weight average molecular weight to the number average molecular weight (MW/MN) of the soluble portion is less than 6.0, the elongation at break of the resulting propylene block copolymer will be undesirably small. By applying the method of the present invention, it becomes possible to provide a highly fluid block copolymer with a good balance of physical properties in good yield, which is of great industrial value. EXAMPLES The present invention will be explained in more detail with reference to Examples below. In Examples and Comparative Examples, physical properties were measured by the following method. (All physical properties were measured on injection molded sheets with a thickness of 2 mm, except for MFI.) MFI: ASTM D1238-62Tg/10min Tensile strength: ASTM D638-64TKg/ cm2 Elongation at break: ASTM D638-64T% Isolite impact strength
: ASTM D256-56Kg・cm/ cm 2DuPont impact strength: Kg・cm according to JIS K6718 Flexural modulus: ASTM D790-63Kg/cm 2Reference example 1 [Production of block copolymer i] Titanium trichloride (Toho Titanium TAC-141)
and diethylaluminum fluoride (2 times the weight of titanium trichloride), n
-Polymerization of propylene alone in heptane at 60℃
Then, a block copolymer was produced by copolymerizing propylene and ethylene at 50°C. (For the copolymers of Examples 1 and 2, two-stage copolymerization of propylene and ethylene was carried out by changing the hydrogen concentration, and Comparative Example 1
The copolymerization was carried out without changing the hydrogen concentration. ). Regarding the polymerization design, propylene alone accounts for approximately 85% of the total polymerization, and the intrinsic viscosity of this portion (135℃
The reaction ratio of the copolymerization part was 2/1 wt ratio of ethylene/propylene, and the intrinsic viscosity was 5.50. After the copolymerization reaction, the slurry was deactivated with methanol, washed with water, and filtered to obtain a copolymer. Reference Example 2 [Production of block copolymer] Magnesium chloride, triethyl silicate and α,
A solid catalyst obtained by co-pulverizing α,α-trichlorotoluene and then supporting titanium tetrachloride, and a catalyst consisting of diethylaluminum chloride, triethylaluminum, and methyl p-toluate (1:3:2 for the solid catalyst, respectively) :2 weight ratio) using a bulk polymerization method using propylene itself as a medium,
Polymerization of propylene alone was carried out at 75°C, then at 55°C.
Copolymerization of ethylene and propylene was carried out. (The copolymerizations of Examples 3 and 4 were carried out by changing the reaction ratio of propylene and ethylene, and the copolymerization of Comparative Example 2 was carried out at a constant reaction ratio, so that the reaction ratio of the entire copolymerization was almost the same.) As a polymerization design Polymerization of propylene alone accounts for 84% of the total, and the intrinsic viscosity of this part is 1.60, while copolymerization has an intrinsic viscosity of 4.5, and the reaction ratio is 1.5/
It was 1. After the polymerization reaction was completed, the catalyst was deactivated with n-butanol, left to stand, and the supernatant propylene was removed.
The remaining propylene was purged to obtain a copolymer powder. Examples 1 to 4 and Comparative Examples 1 and 2 [Heat treatment of propylene-ethylene-block copolymer] The mixed heat treatment of organic peroxide and block copolymer was performed on the block copolymer used.
2.5-dimethyl-2.5-t-butylperoxyhexane was added at a ratio of 1/10,000 to 15/10,000, a known antioxidant was added at a ratio of 20/1,000, and the mixture was mixed using a Henschel mixer and pelletized using a 40 mm extruder. . The temperature during pelletization is 230°C. The results of measuring the physical properties of the obtained polypropylene copolymer are shown in Table 1 together with the analysis results of the propylene-ethylene-block copolymer. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 30℃での白灯油可溶部が全ブロツク共重合体
の5重量%以上で、各可溶部のエチレン含量か20
〜70重量%で、しかもゲルパーミエーシヨンクロ
マトグラフイ(GPC)で測定した重量平均分子
量と数平均分子量の比(MW/MN)が6.0以上
であるプロピレンとエチレンのブロツク共重合体
を有機過酸化物と混合加熱することを特徴する高
流動性射出成形用ポリプロピレンブロツク共重合
体の製造方法。
1 The white kerosene soluble portion at 30°C is 5% by weight or more of the total block copolymer, and the ethylene content of each soluble portion is 20
A propylene and ethylene block copolymer with a weight average molecular weight of ~70% by weight and a ratio of weight average molecular weight to number average molecular weight (MW/MN) of 6.0 or more as measured by gel permeation chromatography (GPC) is processed by organic filtration. A method for producing a highly fluid polypropylene block copolymer for injection molding, which comprises mixing and heating a polypropylene block copolymer with an oxide.
JP59001317A 1984-01-10 1984-01-10 Manufacture of highly fluid polypropylene block copolymer for injection molding Granted JPS60147464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001317A JPS60147464A (en) 1984-01-10 1984-01-10 Manufacture of highly fluid polypropylene block copolymer for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001317A JPS60147464A (en) 1984-01-10 1984-01-10 Manufacture of highly fluid polypropylene block copolymer for injection molding

Publications (2)

Publication Number Publication Date
JPS60147464A JPS60147464A (en) 1985-08-03
JPH0568506B2 true JPH0568506B2 (en) 1993-09-29

Family

ID=11498114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001317A Granted JPS60147464A (en) 1984-01-10 1984-01-10 Manufacture of highly fluid polypropylene block copolymer for injection molding

Country Status (1)

Country Link
JP (1) JPS60147464A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015117958A1 (en) 2014-02-06 2015-08-13 Borealis Ag Soft copolymers with high impact strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139447A (en) * 1979-04-06 1980-10-31 Chisso Corp Modification of propylene-ethylene block copolymer
JPS5638339A (en) * 1979-09-05 1981-04-13 Mitsui Toatsu Chem Inc Polypropylene resin composition
JPS5761012A (en) * 1980-09-30 1982-04-13 Showa Denko Kk Production of thermoplastic elastic elastomer
JPS5876444A (en) * 1981-10-30 1983-05-09 Mitsubishi Chem Ind Ltd Modifying method of propylene-ethylene block copolymer
JPS58189250A (en) * 1982-04-30 1983-11-04 Tokuyama Soda Co Ltd Production of modified block copolymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126313A (en) * 1978-03-24 1979-10-01 Hitachi Ltd Dust preventing device for rail
JPS5726991U (en) * 1980-07-22 1982-02-12

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139447A (en) * 1979-04-06 1980-10-31 Chisso Corp Modification of propylene-ethylene block copolymer
JPS5638339A (en) * 1979-09-05 1981-04-13 Mitsui Toatsu Chem Inc Polypropylene resin composition
JPS5761012A (en) * 1980-09-30 1982-04-13 Showa Denko Kk Production of thermoplastic elastic elastomer
JPS5876444A (en) * 1981-10-30 1983-05-09 Mitsubishi Chem Ind Ltd Modifying method of propylene-ethylene block copolymer
JPS58189250A (en) * 1982-04-30 1983-11-04 Tokuyama Soda Co Ltd Production of modified block copolymer

Also Published As

Publication number Publication date
JPS60147464A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
WO1994018250A1 (en) Polyethylene, thermoplastic resin composition containing the same, and process for producing polyethylene
JPH05310846A (en) Preparation of interpolymer of ethylene and unsaturated carboxylic acid
JPH0330605B2 (en)
JPH0317845B2 (en)
JPH0368890B2 (en)
JPH0568506B2 (en)
JPH0784486B2 (en) Novel plastic copolymer of propylene and linear diene having conjugated double bond and method for producing the same
JPH044324B2 (en)
JPH038647B2 (en)
JPS6369809A (en) Polymerization of propylene
JPS6259129B2 (en)
JP3070824B2 (en) Biaxially stretched film
JPH07173233A (en) Propylene-ethylene copolymer and its production
WO1993002116A1 (en) Process for the preparation of particle form ethylene-propylene copolymers
JPS6138926B2 (en)
JPH0262586B2 (en)
JP2710797B2 (en) Method for producing polyolefin resin composition
JPS58145718A (en) Olefin block copolymer
JPS60177008A (en) Preparation of polyethylene suitabe for high-speed blow molding, having high rigidity
JPH03290416A (en) Modified polypropylene composition
Ravve et al. Common Chain-Growth Polymers
JPH03290417A (en) Modified polypropylene composition
Chengang et al. Synthesis of well-defined functional PE graft copolymers via ATRP process
JP3860240B2 (en) Method for reducing gel of propylene block copolymer
CN116323705A (en) Process for producing polyolefin elastomer copolymer having ultra low density and high elasticity and polyolefin elastomer copolymer produced thereby

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term