JPS60177008A - Preparation of polyethylene suitabe for high-speed blow molding, having high rigidity - Google Patents

Preparation of polyethylene suitabe for high-speed blow molding, having high rigidity

Info

Publication number
JPS60177008A
JPS60177008A JP3093284A JP3093284A JPS60177008A JP S60177008 A JPS60177008 A JP S60177008A JP 3093284 A JP3093284 A JP 3093284A JP 3093284 A JP3093284 A JP 3093284A JP S60177008 A JPS60177008 A JP S60177008A
Authority
JP
Japan
Prior art keywords
polymer
ethylene
reaction
average molecular
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3093284A
Other languages
Japanese (ja)
Other versions
JPH06817B2 (en
Inventor
Nobuaki Goko
郷古 宣昭
Yumito Uehara
上原 弓人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP59030932A priority Critical patent/JPH06817B2/en
Publication of JPS60177008A publication Critical patent/JPS60177008A/en
Publication of JPH06817B2 publication Critical patent/JPH06817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain the titled polymer having improved rigidity and processing properties free from fish eye, by using a catalyst consisting of a reaction product of an oxygen-containing organomagnesium compound and a Ti halide compound, etc. and an organoaluminum compound, polymerizing ethylene under specific condition by two stages. CONSTITUTION:In polymerizing ethylene alone by the use of a catalyst consisting of (A) a reaction product of an oxygen-containing organomagnesium compound and a Ti halide compound, and (B) an organoaluminum compound in a hydrocarbon solvent at 50-100 deg.C, the polymerization reaction is carried out in the first and the second polymerization zones by two stages, ethylene is polymerized in the presence of hydrogen in a molar ratio of hydrogen to ethylene in a gaseous phase of 0.01-1.0 in one of the zones to prepare 30-70wt% based on the total amount of polymer prepared of a polymer having 100,000-700,000 viscosity-average molecular weight, ethylene is polymerized in the presence of hydrogen in a molar ratio of hydrogen to ethylene of 0.1-15 in the other zone to give 70-30wt% polymer having 10,000-40,000 viscosity-average molecular weight, so that the desired polymer having 0.1-1g/10min melt index and 0.965- 9.974g/cc density of the whole polymer is obtained.

Description

【発明の詳細な説明】 本発明は中空成形、押出成形に適したポリエチレンの製
造方法に関する。さらに詳しくは、特定の触媒を使用し
て特定の条件下に一段重合して、高い剛性を有し、フィ
ッシュ・アイ良好で成形性の優れた中空成形、押出成形
用ポリエチレンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyethylene suitable for blow molding and extrusion molding. More specifically, the present invention relates to a method for producing polyethylene for blow molding and extrusion molding, which has high rigidity, good fish-eye appearance, and excellent moldability by carrying out one-stage polymerization using a specific catalyst under specific conditions.

従来よシポリエチレンの中空成形、押出成形の分野にお
いては、成形品の物性と加工性との間で高度のバランス
とフィッシュ・アイが良好であることが必要であった。
Conventionally, in the field of blow molding and extrusion molding of polyethylene, it has been necessary to have a high degree of balance between the physical properties and workability of the molded product and to have good fish eyes.

この為、種々の提案がなされているのであるが、特に優
れた成形品物性と加工性のバランス及びフィッシュ・ア
イの少いポリエチレンを製造する方法として特定の触媒
系を使用して一段階で重合反応を行い、その際重合体の
混合比、分子量等を特定する方法が提案されている(特
開昭!A−、2コ30ダ)。
For this reason, various proposals have been made, but one method to produce polyethylene with an excellent balance between molded product properties and processability and with fewer fish eyes is to carry out polymerization in one step using a specific catalyst system. A method has been proposed in which a reaction is carried out and the mixing ratio, molecular weight, etc. of the polymers are specified at that time (Japanese Patent Application Laid-Open No. 2003-120012, A-, 2-30).

この方法によると耐環境応力亀裂性が優れているうえに
、押出性やバラス効果等成形性も良好であり、フィッシ
ュ・アイも少く優れた中空成形用ポリエチレンを得るこ
とが出来ることが示されている。また、上記方法に加え
て1段目、一段目の双方の重合体を特定の共重合度に制
御することによシ耐衝撃性及び耐環境応力亀裂性の一層
の向上が計られる方法も提案されている(特開昭!’/
−/!rざλ//)。
It has been shown that by this method, it is possible to obtain polyethylene for blow molding which not only has excellent environmental stress cracking resistance but also has good formability such as extrudability and ballance effect, and has fewer fish eyes. There is. In addition to the above method, we also proposed a method in which impact resistance and environmental stress cracking resistance are further improved by controlling both the first and first stage polymers to a specific degree of copolymerization. It has been done (Tokukaisho!'/
-/! rzaλ//).

しかしながら、近年、省資源省エネルギーの観点から薄
肉成形及び高速成形に適したポリエチレンが蚤求される
ようになって来ているが、従来技術では十分な満足を得
られなくなって来ている。薄肉成形に適している樹脂と
は薄肉にしても強度が得られるように剛性が高いこと、
薄く均一にのびやすいことが必要であると共に薄肉化に
より目立ち易くなるフィッシュ・アイについても一層少
いことが盛装である。高速成形に適した樹脂とは前記薄
肉成形性とも関連があるが成形時に高速で吹き込む際に
パリソンの吹き破れのないこと、高剪断下で肌荒れが起
きないこと、押出機での溶融樹脂の押出性が良いことを
意味する。
However, in recent years, polyethylene suitable for thin-wall molding and high-speed molding has been increasingly sought after from the viewpoint of resource and energy conservation, but the conventional techniques are no longer able to provide sufficient satisfaction. Resins that are suitable for thin-walled molding must have high rigidity so that they can be strong even when made thin.
It is necessary to be able to easily spread thinly and uniformly, and the thinning of the wall also reduces the appearance of fish eyes, which become more noticeable. Resins suitable for high-speed molding are related to the above-mentioned thin-wall moldability, but must not cause the parison to blow out when being blown at high speed during molding, do not cause surface roughness under high shear, and must be able to extrude the molten resin using an extruder. It means having good sex.

本発明−者らは上記の点を鋭意検討したところ、特定の
触媒系を用いてエチレンの単独重合を特定条件下で行う
ことによp思もよらぬ高い剛性を発現すること、薄肉成
形性、高速成形性が優れていること、フィッシュ・アイ
が少いことを見い出し本発明に到達した。
The inventors of the present invention have intensively studied the above points, and have found that by carrying out homopolymerization of ethylene under specific conditions using a specific catalyst system, unexpectedly high rigidity can be developed, and thin-wall moldability can be achieved. The present invention was achieved by discovering that it has excellent high-speed moldability and fewer fish eyes.

すなわち本発明の賛旨は、(a)マグネシウムの酸素含
有有機化合物とチタンハロゲン化合物との反応生成物ま
たは、マグネシウムの酸素含有有機化合物とチタンの酸
素含有有機化合物とアルミニウムハロゲン化合物との反
応生成物□と(b)有機アルミニウム化金物とからなる
触媒系を用いて、炭化水素溶媒中go−ioocの温度
でエチレンの単独重合を行なうに際し、(イ)重合反応
を一段階、すなわち第1の反応帯域で重合して得られた
反応混合物を第一の反応帯域において史に重合する方式
で行ない、(ロ)第7および第一の反応帯域のいずれか
一方の帯域において気相中のエチレンに対するモル比で
0.0 /〜八への水素の存在下重合して粘度平均分子
1に10万〜70万の重合体Aを全重合体生成蓋の30
〜りO重t%生成させ、他方の帯域において気相中のエ
チレンに対するモル比で八〇〜15の水素の存在下重合
して粘度平均分子f7万〜ダ万の重合体Bを、全重合体
生成量の70〜30重量−生成させ、更に、重合体Aの
粘度平均分子量/重合体Bの粘度平均分子量を1O−1
IOとし、更に、(ハ)第1、第一の反応帯域とも、エ
チレン単独重合とし、 に)最終的に生成する全重合体のメルトインデックスを
o、i〜/f/10分、密度を0+9 A j−え0.
97’1f10oとする ことを特徴とする高剛性、高速プロー成形に適したポリ
エチレンの製造法に存する。
That is, the gist of the present invention is that (a) a reaction product between an oxygen-containing organic compound of magnesium and a titanium halide compound, or a reaction product between an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound; When homopolymerizing ethylene at a go-iooc temperature in a hydrocarbon solvent using a catalyst system consisting of □ and (b) an organoaluminide metal, (a) the polymerization reaction is carried out in one step, that is, the first reaction. The reaction mixture obtained by polymerization in the zone is polymerized in the first reaction zone, and (b) the mole based on the ethylene in the gas phase is polymerized in either the seventh or first reaction zone. Polymer A is polymerized in the presence of hydrogen at a ratio of 0.0/~8 to 100,000 to 700,000 with a viscosity average molecular weight of 1 to 30 of the total polymer produced.
Polymer B with a viscosity average molecular f of 70,000 to 20,000 is produced in the other zone in the presence of hydrogen with a molar ratio of 80 to 15 to ethylene in the gas phase, with a total weight of 70 to 30 weight of the combined product amount, and further, the viscosity average molecular weight of polymer A/the viscosity average molecular weight of polymer B is 1O-1
IO, and furthermore, (c) both the first and first reaction zones are ethylene homopolymerized, and (b) the melt index of the entire polymer finally produced is o, i~/f/10 min, and the density is 0+9. A j-e0.
The present invention relates to a method for producing polyethylene which is characterized by having a polyethylene of 97'1f10o and is suitable for high-speed blow molding.

本発明をさらに詳細に説明するに、本発明において用い
られる触媒は、(a)マグネシウムの酸素含有有機化合
物とチタンノ・ロゲン化合物との反応生成物またはマグ
ネシウムの酸素含有有機化合物とチタンの酸素含有有機
化合物とアルミニウムハロケン化合物との反応生成物と
、(b)有機アルミニウム化合物とからなる触媒系であ
る0そしてこれらの触媒糸を用い、後記の重合条件で重
合することによシ、触媒当シの重合量が著しく高いばか
シでなくとくに剛性及び成形性がすぐれた重合体が得ら
れ、他の触媒例えば三塩化チタン−アルキルアルミニウ
ム系、四塩化チタン−トリアルコキシバナジル−アルキ
ルアルミニウム系を用いで製造されたポリオレフィンを
使用した場合よシも有利である。
To explain the present invention in more detail, the catalyst used in the present invention is (a) a reaction product of an oxygen-containing organic compound of magnesium and a titanium compound, or a reaction product of an oxygen-containing organic compound of magnesium and an oxygen-containing organic compound of titanium. A catalyst system consisting of a reaction product of a compound and an aluminum halokene compound, and (b) an organoaluminum compound, and these catalyst threads are used to polymerize the catalyst under the polymerization conditions described below. A polymer having a significantly high polymerization amount and excellent rigidity and moldability can be obtained, and other catalysts such as titanium trichloride-alkylaluminum system and titanium tetrachloride-trialkoxyvanadyl-alkylaluminum system can be used. It is also advantageous to use manufactured polyolefins.

使用される触媒について説明するに、(a)の反応生成
物を調製する際に用いられるマグネシウムの酸素含有有
機化合物としては、 ng(oR’)mx;−□(式中
、R′はアルキル基、アリール基又はシクロアルキル基
を示し XIはハロゲン原子ケ示し、mは/又はコを示
す。)で表わされる化合物、例えばマグネシウムジェト
キシド、マグネシウムジメトキシドウマグネシウムジフ
ェノキシド、マグネシウムモノエトキシクロリド、マグ
ネシウムモノフェノキシクロリド、マグネシウムモノエ
トキシプロミド、マグ不シウムモノエトキ7ヨウジド等
が挙げられる。このうちマグネシウムジェトキシドが好
ましい。チタンハロゲン化合物としては、一般式TiX
%(OR”入−n(式中、X2はハロゲン原子を示し 
HRはアルキル基、アリール基又は7クロアルキル基を
示し、nはt−jの数を示す)で表わされる化合物、例
えは四塩化チタン、四臭化チタン、四ヨウ化チタン等の
四ハロゲン化チタン、モノエトキシトリクロルチタン、
モノメトキシトリブロムチタン、ジェトキシジクロルチ
タン等が挙げられる。このうち四ハロゲン化チタンが好
ましい。マグネシウムの酸素含有有機化合物とテタンノ
1oゲン化合物との反応は、両者を不活性炭化水素溶媒
の存在下又は不存在下に5oc−、zoocの温度で接
触することによシおこなわれる。反応生成物は沈澱とし
て得られ、未反応物は不活性炭化水素溶媒で洗浄除去さ
れる。両者の反応比率は、マグネシウムに対するチタン
の原子比に特に制限はないが多すぎることはチタンが無
駄になり、少いと重合活性が低下する。そこで通常Ti
/Mg=0./〜100モル比とすることが好ましい。
To explain the catalyst used, the oxygen-containing organic compound of magnesium used in preparing the reaction product of (a) is ng(oR')mx;-□ (wherein R' is an alkyl group , represents an aryl group or a cycloalkyl group, XI represents a halogen atom, and m represents/), such as magnesium jetoxide, magnesium dimethoxide, magnesium diphenoxide, magnesium monoethoxy chloride, magnesium monophenoxy Examples include chloride, magnesium monoethoxypromide, and magnesium monoethoxypromide. Among these, magnesium jetoxide is preferred. As a titanium halogen compound, the general formula TiX
%(OR''-n (wherein, X2 represents a halogen atom)
HR represents an alkyl group, an aryl group, or a 7-chloroalkyl group, and n represents the number of t-j), such as tetrahalogenated titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, etc. Titanium, monoethoxytrichlortitanium,
Examples include monomethoxytribromotitanium and jetoxydichlorotitanium. Among these, titanium tetrahalide is preferred. The reaction between the oxygen-containing organic compound of magnesium and the tetanogen compound is carried out by bringing the two into contact at a temperature of 5°C or 2°C in the presence or absence of an inert hydrocarbon solvent. The reaction product is obtained as a precipitate, and unreacted substances are washed away with an inert hydrocarbon solvent. There is no particular limit to the atomic ratio of titanium to magnesium in the reaction ratio between the two, but if it is too large, titanium will be wasted, and if it is too small, the polymerization activity will decrease. Therefore, usually Ti
/Mg=0. It is preferable to set it as /~100 molar ratio.

次に、(a)の反応生成物を調製する際に用いられるマ
グネシウムの酸素含有有機化合物としては、前示一般式
のマグネシウム化合物が同様に挙げられる。チタンの酸
素含有有機化合物としては一般式T i (OR” )
kX、”−k(式中、R3はアルキル基、アリール基又
はシクロアルキル基を示し、Xlはハロゲン原子を示し
、kはl−ダの数を示す)で表わされる化合物、例えば
、テトラエトキ7チタン、テトラノルマルプロポキシチ
タン、テトラノルマルブトキシチタン、テトラフェノキ
クチタン、トリエトキシモノクロルチタン、トリノルマ
ルブトキシモノクロルチタン、ジェトキシジクロルチタ
ン、トリノルマルブトキシモツプロムチタン等が挙けら
れる。このうち、kが3又は弘の化合物が好ましい。ア
ルミニウムハロゲン化合物としては、一般式htR’、
、X’、−,。
Next, examples of the magnesium oxygen-containing organic compound used in preparing the reaction product of (a) include the magnesium compounds of the general formula shown above. The oxygen-containing organic compound of titanium has the general formula T i (OR”)
kX, "-k (in the formula, R3 represents an alkyl group, aryl group or cycloalkyl group, Xl represents a halogen atom, and k represents the number of l-da), for example, tetraethoxy7 titanium , tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetraphenoquititanium, triethoxymonochlor titanium, tri-n-butoxy monochloro titanium, jetoxydichlor titanium, tri-n-butoximotuprom titanium, etc. Among these, k is 3 or Hiro's compounds are preferred.As the aluminum halogen compounds, compounds with the general formula htR',
,X',-,.

(式中 14はアルキル、アリール又はシクロアルキル
基を示し、Xlはハロゲン原子を示う。pはO<p<3
の数を示す)で表わされる化合物、例えは、エチルアル
ミニウムジクロリド、ノルマルプロピルアルミニウムジ
クロリド、エチルアルミニウムセスキクロリド、ジエチ
ルアルミニウムモノクロリド等が挙げられる。このうち
でが塩素でありpが7である化合物が好ましい。
(In the formula, 14 represents an alkyl, aryl, or cycloalkyl group, and Xl represents a halogen atom. p is O<p<3
examples thereof include ethylaluminum dichloride, normal propylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum monochloride, etc. Among these, a compound in which chlorine is used and p is 7 is preferred.

1グネシウムの酸素含有有機化合物とチタンの酸素含有
有機化合物とアルミニウムハロゲン化合物との反応は、
まず、マグネシウムの酸素含有有機化合物とチタンの酸
素含有有機化合物とを混合し100C−/60Cに加熱
して均一な液状物を調製する。均一な液状物が生成し難
い場合には、アルコールを存在させることが好ましい。
The reaction between an oxygen-containing organic compound of 1gnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound is
First, an oxygen-containing organic compound of magnesium and an oxygen-containing organic compound of titanium are mixed and heated to 100C-/60C to prepare a uniform liquid. If it is difficult to produce a uniform liquid, it is preferable to include alcohol.

アルコールトシてはエチルアルコール、n−ブチルアル
コール、n−オクチルアルコール等が挙げられる。次い
で不活性炭化水素溶媒を添加して不活性炭化水素溶液と
する。以上のようにして得られた不活性炭化水素溶液に
アルミニウムハロゲン化合物を添加して常温〜100C
で反応させると、反応生成物は沈澱として得られ、未反
応物は不活性炭化水素溶媒で洗浄除去される。各成分の
量比は、マグネシウムに対するチタンの原子比(Ti/
Mg )で、0.1〜10゜マグネシウムとチタンのダ
ラム当量の和に対する全ハロゲンのグラム当葉の和の比 Mg+Ti で、/、O−コOであることが好ましい。
Examples of the alcohol include ethyl alcohol, n-butyl alcohol, and n-octyl alcohol. An inert hydrocarbon solvent is then added to form an inert hydrocarbon solution. An aluminum halogen compound was added to the inert hydrocarbon solution obtained as above, and the mixture was heated at room temperature to 100C.
When the reaction is carried out, the reaction product is obtained as a precipitate, and unreacted substances are washed away with an inert hydrocarbon solvent. The quantitative ratio of each component is the atomic ratio of titanium to magnesium (Ti/
Mg), the ratio of the sum of grams of all halogens to the sum of Durham equivalents of magnesium and titanium is preferably 0.1 to 10°, Mg+Ti, /, O-coO.

なお、ここで、全ハロゲンとは、マグネシウムの酸素含
有有機化合物、チタンの酸素含有有機化合物およびアル
ミニウムハロゲン化合物中に含まれるハロゲンをいう。
Note that the total halogen herein refers to the halogen contained in the oxygen-containing organic compound of magnesium, the oxygen-containing organic compound of titanium, and the aluminum halogen compound.

一方、共触媒として用いられる有機アルミニウム化合物
としては一般式AtR: x:〜q(式中、R8はアル
キル基、アリール基又はシクロアルキル基を示し、xl
lはハロゲン原子を示し、qは7〜3の数を示す)で表
わされる化合物、例えば、トリエチルアルミニウム、ト
リノルマルプロピルアルミニウム、トリノルマルブチル
アルミニウム、トリイソブチルアルミニウム、ジエチル
アルミニウムモノクロリド、ジノルマルフロピルアルミ
ニウムモノクロリド等が羊けられる。
On the other hand, the organoaluminum compound used as a cocatalyst has the general formula AtR:
(l represents a halogen atom, q represents a number from 7 to 3), such as triethylaluminum, tri-n-propyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, diethylaluminium monochloride, di-n-furopyl Aluminum monochloride etc. are excluded.

このうちジエチルアルミニウムモノクロリドまたはジエ
チルアルミニウムモノクロリドとトリエチルアルミニウ
ムの混合物が特に好適に用いられる。
Among these, diethylaluminum monochloride or a mixture of diethylaluminum monochloride and triethylaluminum is particularly preferably used.

本発明においては、上記触媒系を用いて炭化水素溶媒中
3θG−100Cの温度でエチレンの単独重合をおこな
う。炭化水素溶媒としては、ヘキサン、ヘプタン等の脂
肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香
族炭化水素、シクロ入キザン、メチルシクロヘキサン等
の脂環式炭化水素等の不活性炭化水素溶媒が挙げられる
In the present invention, homopolymerization of ethylene is carried out in a hydrocarbon solvent at a temperature of 3θG-100C using the above catalyst system. Examples of hydrocarbon solvents include inert hydrocarbon solvents such as aliphatic hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as benzene, toluene, and xylene, and alicyclic hydrocarbons such as cyclohexane and methylcyclohexane. It will be done.

しかして、本発明においては、重合反応を、下記(イ)
、(ロ)、e9の東件下でおこなう。
Therefore, in the present invention, the polymerization reaction is carried out as described in (a) below.
, (b), carried out under the East subject of e9.

(イ)重合反応を一段階、すなわち第1の反応帯域で重
合して得られた反応混合物を第2の反応帯域においてさ
らに重合する方式でおこなう (ロ)第1および第一の反応帯域のいずれか一方の帯域
において、気相中のエチレンに対するモル比で0,07
〜/、0の水素の存在下1合して粘度平均分子jklO
万〜70万の重合体Aを、全重合体生成値の30重量%
〜70重it%生成させ、他方の帯域において、気相中
のエチレンに対するモル比で/、0− / jの水素の
存在下重合して粘度平均分子量1万〜グ万の重合体Bを
、全重合体生成量の70重量%〜3θ重量%生成させ、
さらに(重合体Aの粘度平均分子量)/(重合体Bの粘
度平均分子量)を10〜4tOとする (ハ)第1.第一の反応帯域ともエチレンで単独重合と
し くニ)最終的に生成する全重合体のメルトインデックス
を0./ −1,O1710分とする。
(b) The polymerization reaction is carried out in one step, that is, the reaction mixture obtained by polymerization in the first reaction zone is further polymerized in the second reaction zone. (b) Either of the first and first reaction zones In one zone, the molar ratio to ethylene in the gas phase is 0.07
~/, in the presence of 0 hydrogen, the viscosity average molecule jklO
30,000 to 700,000 polymer A, 30% by weight of the total polymer production value
~70% by weight was produced, and in the other zone, polymerization was performed in the presence of hydrogen at a molar ratio of /, 0-/j to ethylene in the gas phase to produce a polymer B with a viscosity average molecular weight of 10,000 to 10,000 g. 70% by weight to 3θ weight% of the total polymer production amount,
Further, (viscosity average molecular weight of polymer A)/(viscosity average molecular weight of polymer B) is set to 10 to 4 tO (c) 1st. Both the first reaction zone and ethylene are used for homopolymerization, and d) the melt index of all the polymers finally produced is 0. / -1, O1710 minutes.

これら(イ)、(ロ)、(ハ)、に)の3条件について
説明する。(イ)の一段階重合は、連続重合方式、回分
重合方式のいずれでもおこなうことができる。
These three conditions (a), (b), (c), and (ii) will be explained. The one-step polymerization (a) can be carried out by either a continuous polymerization method or a batch polymerization method.

連続重合の場合は、反応器をコ基シリーズにっなぎ、第
lの反応器で重合して得られた反応混合物を第一の反応
器に導入して重合を続ける。
In the case of continuous polymerization, the reactors are arranged in series, and the reaction mixture obtained by polymerization in the first reactor is introduced into the first reactor to continue the polymerization.

そして必要に応じて、コ基の反応器の間に、水素を大部
分パージしうるフラッシュ檜を設置する。回分重合の場
合は反応器l基にて逐次反応させる。このうち連続重□
合が好ましい。
And, if necessary, a flash cypress capable of purging most of the hydrogen is installed between the co-group reactors. In the case of batch polymerization, the reactions are carried out sequentially in one reactor. Of these, continuous weight□
preferably.

(ロ)の反応や件によれば、まず、第1および第一の反
応帯域のいずれか一方の帯域において、気相中のエチレ
ンに対するモル比でo、oi〜/、0゜好ましくは0.
03〜Ojの水素の存在下重合して、最終的に生成する
全重合体の全生成量の30重量−〜10重量%の重合体
Aを生成させるが、ことで得られる重合体Aの粘度平均
分子量は/Q万〜70万とする。粘度平均分子量は。
According to the reaction and matter (b), first, in either the first or first reaction zone, the molar ratio to ethylene in the gas phase is o, oi ~/, 0°, preferably 0.
Polymerization is carried out in the presence of hydrogen of 03 to Oj to produce 30% to 10% by weight of polymer A of the total amount of the final polymer produced, but the viscosity of the resulting polymer A is The average molecular weight is /Q from 70,000 to 700,000. What is the viscosity average molecular weight?

/JOCテトラリン溶液中での極限粘度を測定し、〔η
〕=ダ、6θX / f’ X’ M’・721 C(
η〕は極限粘度、Mは粘度平均分子量)の式から計算し
た値である。重合体Aを、第2の反応帯域において、第
7の反応帯域で製造された重合体Bの存在下、製造した
場合には、重合体Aの粘度平均分子量は、下記式、 〔η)A=(10(7(η)−WB(η)B、)/WA
(式中、〔η〕ムは重合体Aの極限粘度を示し、〔η〕
3は重合体Bの極限粘度を示し、〔η〕は第一の反応帯
域で最終的に得られる全重合体の極限粘度を示し、wA
は第一の反応帯域で生成する重合体Aの重量%を示し、
WBは第1の反応帯域で生成する重合体Bの重量%を示
す) から〔η〕Aをめ粘度平均分子量を計算すればよい。
/ Measure the intrinsic viscosity in the JOC tetralin solution, [η
]=Da, 6θX/f'X'M'・721 C(
η] is the intrinsic viscosity, and M is the value calculated from the formula (viscosity average molecular weight). When polymer A is produced in the second reaction zone in the presence of polymer B produced in the seventh reaction zone, the viscosity average molecular weight of polymer A is expressed by the following formula: [η)A = (10(7(η)-WB(η)B,)/WA
(In the formula, [η] indicates the intrinsic viscosity of polymer A, and [η]
3 indicates the limiting viscosity of polymer B, [η] indicates the limiting viscosity of the entire polymer finally obtained in the first reaction zone, and wA
indicates the weight percent of polymer A produced in the first reaction zone,
The viscosity average molecular weight can be calculated from [η]A (WB indicates the weight percent of the polymer B produced in the first reaction zone).

しかして、粘度平均分子量が10万未満であると、得ら
れる重合体(最終的に生成する全重合体)の衝撃強度、
引裂強度、耐環境亀裂性が低くなり、70万を超えると
成形性が低くなシ好ましくない。好ましい範囲は/S万
〜jθ万、特に好ましくはλO万〜ダ0万である。気相
中のエチレンに対する水素のモル比は、o、oi未満で
は粘度平均分子量がりO万を超えることが多く、/、(
17を超えると粘度平均分子量がlO万未満となること
が多く好ましくない。生成量が3ONf1%未満である
と、得られる重合体(最終生成重合体)の衝撃強度、引
裂強度、耐環境亀裂性が低くなシ、10重ik−を超え
ると成形性が低くなり好ましくない。好ましい範囲は3
0重量%〜10重量%、とくに33重量−〜よ!重量−
である。
However, if the viscosity average molecular weight is less than 100,000, the impact strength of the resulting polymer (the total polymer finally produced)
Tear strength and environmental cracking resistance become low, and if it exceeds 700,000, formability becomes low, which is not preferable. The preferred range is /S 10,000 to jθ 0,000, particularly preferably λO 0,000 to Da 00,000. When the molar ratio of hydrogen to ethylene in the gas phase is less than o, oi, the viscosity average molecular weight often exceeds 0,000,
If it exceeds 17, the viscosity average molecular weight will often be less than 10,000, which is not preferable. If the amount of 3ONf produced is less than 1%, the impact strength, tear strength, and environmental cracking resistance of the resulting polymer (finally produced polymer) will be low, and if it exceeds 10 times ik-, the moldability will be low, which is undesirable. . The preferred range is 3
0% to 10% by weight, especially 33% by weight! Weight -
It is.

重合反応はsoC〜1007:において、lO分〜IO
時間、o、sky/a/iゲージ〜/ 00 kg/c
r/1ゲージの圧力下に実施すればよい。
The polymerization reaction is performed at soC ~ 1007: 10 minutes ~ IO
Time, o, sky/a/i gauge~/00 kg/c
It may be carried out under a pressure of r/1 gauge.

次に、もう一方の反応帯域において、気相中のエチレン
に対するモル比で1.θ〜/!、好ましくは/j−1の
水素の存在下重合して、粘度平均分子f1i: /万〜
ダ万の重合体Bを、最終的に生成する全重合体の全生成
証の70重量%〜JO重fa′−生成させる。粘度平均
分子量は/30Cテトラリン溶液中での極限粘度を測定
し、前足式から計算してめることができる。重合体Bを
第一の反応帯域において、第1の反応帯域で製造された
重合体Aの存在下、製造した場合には、重合体Bの粘度
平均分子量は、下記式1式%) (式中、〔η〕、は重合体Bの極限粘度を示し、(W:
)aは重合体Aの極限粘度を示し、〔ダ〕は第一の反応
帯域で得られる最終生成重合体全体の極限粘度を示し、
W−は第1の反応帯域で得られる重合体Aの重量%を示
し、W′B#′i第一の反応帯域で得られる重合体Bの
重量%を示す) から〔り〕、をめ粘度平均分子量を計算すれはよい。
Then, in the other reaction zone, the molar ratio to ethylene in the gas phase is 1. θ~/! , preferably in the presence of /j-1 hydrogen to give a viscosity average molecule f1i: /10,000~
JO polymer B is produced in an amount of 70% by weight of the total amount of the final polymer produced. The viscosity average molecular weight can be determined by measuring the limiting viscosity in a /30C tetralin solution and calculating from the front foot formula. When polymer B is produced in the first reaction zone in the presence of polymer A produced in the first reaction zone, the viscosity average molecular weight of polymer B is expressed by the following formula 1 formula %) (formula In the middle, [η] indicates the intrinsic viscosity of polymer B, and (W:
) a represents the intrinsic viscosity of polymer A, [da] represents the intrinsic viscosity of the entire final product obtained in the first reaction zone,
W- indicates the weight % of polymer A obtained in the first reaction zone, W'B#'i indicates the weight % of polymer B obtained in the first reaction zone). It is a good idea to calculate the viscosity average molecular weight.

しかして、粘度平均分子量が7式未満であると、得られ
る重合体(最終的に生成する全重合体)の衝撃強度が低
下し、l万を超えると成形性が低下するので好ましくな
い。気相中のエチレンに対する水素のモル比は/、0未
満であると重合体Bの粘度平均分子量がダ万を超えるこ
とが多く、13を超えると1式未満となることが多く好
ましくない。好ましい範囲は1万〜Jj万である。生成
量は70重f%を超えると、得られる重合体(最終生成
重合体)の衝撃強度、引裂強度、耐環境亀裂性が低くな
り、Jon波−未満であると成形性が低くなυ好ましく
ない・好ましい範囲は70重量%〜qo重量%とくにi
t重−I!c%〜ダ!重景チである。
However, if the viscosity average molecular weight is less than 7, the impact strength of the resulting polymer (all the polymers finally produced) will decrease, and if it exceeds 10,000, the moldability will decrease, which is not preferable. If the molar ratio of hydrogen to ethylene in the gas phase is less than /, 0, the viscosity average molecular weight of the polymer B will often exceed 10,000 yen, and if it exceeds 13, it will often be less than 1 formula, which is not preferable. The preferred range is 10,000 to Jj million. If the production amount exceeds 70% by weight, the impact strength, tear strength, and environmental cracking resistance of the resulting polymer (finally produced polymer) will be low, and if it is less than Jon wave, the moldability will be low. No/The preferred range is 70% by weight to qo% by weight, especially i
T heavy-I! c%~da! This is Shigekei.

重合反応は50C〜/θOCにおいて、l。The polymerization reaction was carried out at 50C~/θOC, l.

分〜IO時間、a、!;kg/cr/Lゲージ〜/ 0
0 kglcr&ゲージの圧力下に実施すればよい。
Minutes ~ IO time, a,! ;kg/cr/L gauge~/0
It may be carried out under a pressure of 0 kglcr & gauge.

重合の順序は、重合体Aを生成させたのち重合体Bを生
成させてもよいし、重合体Bをさきに生成させ、次いで
重合体Aを生成させてもよい。
Regarding the order of polymerization, polymer A may be produced and then polymer B may be produced, or polymer B may be produced first and then polymer A may be produced.

(重合体Aの粘度平均分子i)/lf合体Bの粘度平均
分子1t−)はlθ〜qoとする。この比が70未満で
あると、成形性が低下し、ダOを超えると衝撃強度が低
下し、好ましくない。
(Viscosity average molecule i of polymer A)/lf viscosity average molecule 1t- of coalesce B) is lθ~qo. If this ratio is less than 70, moldability decreases, and if it exceeds 0, impact strength decreases, which is not preferable.

しかして、に)の条件に従い、最終的に生成する全重合
体すなわち重合体Aと重合体Bの混合物のメルトインデ
ックスf O0/〜/、09/10分とする。ここでメ
ルトインデックスは、JISK6り60に基き、/デO
C%λ、16#荷重下で測定した値で、単位は9710
分である。メルトインデックスがへ〇以上となると%最
終的に生成する全重合体の衝撃強度が低下し好ましくな
い。メルトインデックスがO1l以下では成形性および
高剪断下での肌荒れが不良となり、本発明の目的である
高速中空成形用ポリエチレンには適さない。
Therefore, according to the conditions of (2), the melt index of the entire polymer finally produced, that is, the mixture of polymer A and polymer B, is set to f O0/~/, 09/10 minutes. Here, the melt index is based on JISK 60, /deO
C%λ, value measured under 16# load, unit is 9710
It's a minute. If the melt index exceeds 00%, the impact strength of the entire polymer finally produced will decrease, which is not preferable. If the melt index is less than O1l, moldability and surface roughness under high shear will be poor, making it unsuitable for polyethylene for high-speed blow molding, which is the object of the present invention.

以上のようにして製造された重合体の密度はOlり6S
〜0.97ダf/aaであって、成形品は極めて高い剛
性が得られる。又かくして得られた重合体は均一に伸び
易く、吹き込み成形時に高速で空気を吹き込んでも吹き
破れが起りにくい。
The density of the polymer produced as above is 6S
~0.97 daf/aa, and the molded product has extremely high rigidity. Furthermore, the polymer thus obtained is easy to stretch uniformly, and it is difficult to blow out even when air is blown at high speed during blow molding.

更に高剪断下での肌荒れがない。そして本発明によって
得られた重合体は均一化され易く単軸押出機による連続
的混練でも十分均一化され。
Furthermore, there is no roughening of the skin under high shear. The polymer obtained by the present invention is easily homogenized and can be sufficiently homogenized even by continuous kneading using a single-screw extruder.

得られた成形品のフィッシュ・アイFi、極めて少い。The fish eye Fi of the obtained molded product is extremely low.

上記の特性をもった重合体は高速薄肉吹込成形用省資源
省エネルギーポリエチレンとして、又強度を重視した高
剛性吹込成形用ポリエチレンとして好適に用いられる。
Polymers having the above characteristics are suitably used as resource-saving and energy-saving polyethylene for high-speed thin-wall blow molding, and as high-rigidity polyethylene for blow molding where strength is important.

例えばミルクボトル、飲料水ボトル、食品ボトル、医薬
品ボトル、玩具、オイル缶等の用途に好適である。
For example, it is suitable for use in milk bottles, drinking water bottles, food bottles, medicine bottles, toys, oil cans, and the like.

次に本発明を実施例によって詳細に説明するが本発明は
、その要旨を越えない限り以下の実施例に限定されるも
のではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

なお、以下の実施例において、物性試験は、得られた重
合体粉f 20 rrmφ押出機(樹脂温度260C+
:l0C)で混練し、ベレット化したサンプルによって
測定した。
In addition, in the following examples, physical property tests were conducted using the obtained polymer powder f 20 rrmφ extruder (resin temperature 260C+
The measurement was performed using a sample that was kneaded at 10C) and made into a pellet.

メルトインデックス(ur): JIS K btbθ
流出貴比(PR): ASTMD−/2JgK摩づくメルトインデックス装置
において、剪断応力値が i o” ayne /ctit及びi ollayn
e /allにおける流出量比(MI 106/M工/
θ’)密 度 (P/ca ) : JIS K /、
り60ステインネス(朽/m): ABTM D りq
7”1111 (5ee−’ ) (肌荒れO始−!、
blJIIr速[) :直接押出方式の吹込成形機(S
OW+Iφ、日本製鋼所社製)のダイス(口径20 冒φ//g、Ewmφ、ストレートダイ(長さJ議ンよ
り#J脂を/90Cの温度で押出し、押出量(せん断速
度)を変化させ、パ9ソンの肌荒れの始まるせん断速度
をrSIN (81110−1)とした。
Melt index (ur): JIS K btbθ
Flow Prevalence Ratio (PR): In an ASTM D-/2JgK abrasive melt index device, the shear stress values io” ayne /ctit and i ollayn
Outflow ratio at e/all (MI 106/M/
θ') Density (P/ca): JIS K/,
Ri60 stainness (decay/m): ABTM D Riq
7"1111 (5ee-') (Starting of rough skin!)
blJIIr speed [): Direct extrusion blow molding machine (S
#J fat was extruded at a temperature of /90C from a straight die (length J diameter) of a die (O.W. The shear rate at which the rough skin of Pa9son begins was defined as rSIN (81110-1).

高速薄肉成形テスト: パリソンの径及び肉厚を変化させ、成形温度/90C,
ブロー圧A A1i/ crlt Gの成形条件でJ−
o o oa の丸部ボトルを高速薄肉成形し、その成
形性の可否を調べた(瓶重量l!〜、yot)良好な高
速薄肉性を示す場合は良好と表示し、不良の場合はその
状態を表示。
High-speed thin-wall molding test: Varying the diameter and wall thickness of the parison, molding temperature /90C,
J- under molding conditions of blow pressure A A1i/ crlt G
A round bottle of o o oa was formed into a thin wall at high speed, and its formability was examined (bottle weight l!~, yot) If good high speed thin wall performance was shown, it was indicated as good, and if it was poor, the condition was indicated. Show.

尚、座屈強度の測定:瓶重最soyの50θOC丸型ボ
トル(空瓶、キャップなし)を/ Omn 7分の圧縮
スピードで圧縮させた時に最初に座屈するときの強度を
測定した。
Measurement of buckling strength: The strength at the first buckling was measured when a 50θOC round bottle (empty bottle, without cap) with the maximum bottle weight was compressed at a compression speed of /Omn 7 minutes.

実施例−1 (4)触媒成分の調製 マグネシウムジェトキシド//31とトリーn−ブトキ
シモノクロルチタン/!01とn−ブタノール、?7F
とを/307:でt時間混合して均一化した。次いでA
OCまで温度を下げてベンゼンJ、7 j−t f加え
、均一溶液とした。次いでエチルアルミニウムセスキク
ロリドを+&?F滴下し、AOCで1時間攪拌を続けた
。生成した沈澱をn−へキサンで洗浄することにより褐
色の触媒成分2099が得られた。得られた固体の一部
を乾燥し。
Example-1 (4) Preparation of catalyst components Magnesium jetoxide//31 and tri-n-butoxymonochlorotitanium/! 01 and n-butanol, ? 7F
and were mixed at /307 for t hours to homogenize. Then A
The temperature was lowered to OC, and benzene J and 7 jtf were added to form a homogeneous solution. Then add ethylaluminum sesquichloride +&? F was added dropwise, and stirring was continued for 1 hour with AOC. A brown catalyst component 2099 was obtained by washing the generated precipitate with n-hexane. Dry a portion of the solid obtained.

粉末とした。この粉末中にMyが10./重量%、 T
lが9.8重量%含まれていた。
It was made into powder. My in this powder is 10. /wt%, T
It contained 9.8% by weight of 1.

(B) エチレンの重合 内容xtotのオートクレーブに、ノルマルヘキサンr
、o t、上記(A)で得られた触媒成分100111
9を仕込んだ。また、ジエチルアルミニウムモノクロリ
ド(DF!A ) /j mmotを別のフィーダーに
仕込みオートクレーブに備え付けた。オートクレーブ内
温を90Cまで昇温した後、所定址のHlを導入し、次
いでエチレン及び別フィーダーからジエチルアルミニウ
ムモノクロリドを供給し、重合を開始した。全圧が一定
となる様、エチレンを間歇的に供給しながらt時間重合
反応を続け、重合反応fLkは、エチレンの供給積算量
により氷生成ポリマーの粘度平均分子i MV= ts
、Oo。
(B) In an autoclave with ethylene polymerization content xtot, normal hexane r
, o t, catalyst component 100111 obtained in the above (A)
I prepared 9. In addition, diethylaluminum monochloride (DF!A)/j mmot was charged into another feeder and the autoclave was equipped. After raising the internal temperature of the autoclave to 90C, a predetermined amount of H1 was introduced, and then ethylene and diethylaluminum monochloride were supplied from a separate feeder to start polymerization. The polymerization reaction is continued for t time while supplying ethylene intermittently so that the total pressure remains constant.
,Oo.

であった。Met.

次いで、未反応モノマーをパージした後、オートクレー
ブ内温をgSCにし、新たに所定量の水素及びエチレン
を導入して重合を再開した。全圧が一定となる様、エチ
レンを間歇的に供給しながら、90分間重合反応を続け
た後、未反応モノマーをパージした。この一段目重合反
応の間の平均気相組成 [H,/PT7 )Gはダjmot%であシ、得られた
ポリマーのMIは0.769710分、FR=70、密
度は0.949 J f 10cであった。得られたポ
リマーの物性を測定した結果を表/に示す。剛性が高い
うえ、肌荒れの出始めるせん断速度も高く、高剛性、高
速薄肉成形性良好力ことが判る。
Next, after purging unreacted monomers, the autoclave internal temperature was brought to gSC, and predetermined amounts of hydrogen and ethylene were newly introduced to restart polymerization. After continuing the polymerization reaction for 90 minutes while supplying ethylene intermittently to keep the total pressure constant, unreacted monomers were purged. The average gas phase composition [H,/PT7)G during this first stage polymerization reaction was djmot%, the MI of the obtained polymer was 0.769710 min, FR = 70, and the density was 0.949 J f It was 10c. Table 1 shows the results of measuring the physical properties of the obtained polymer. In addition to having high rigidity, the shear rate at which rough skin begins to appear is also high, indicating high rigidity and good high-speed thin-wall formability.

(C) 高速薄肉成形テスト 上記(B)で得られプこポリエチレンを用い、上記の成
形条件でパリソンの径及び肉厚を表1のように変化させ
て高速薄肉成形瓶の成形を試みた。
(C) High-speed thin-wall molding test Using the polyethylene obtained in the above (B), high-speed thin-wall molding was attempted under the above molding conditions with the parison diameter and wall thickness changed as shown in Table 1.

結果を表1にまとめて示した。パリソン肉厚コ簡の条件
では、パリソン表面の一部に肌荒れの発生が認められ吹
き破れが発生したが、その他の条件下では良好な高速薄
肉性を示した。
The results are summarized in Table 1. Under the parison thickness condition, roughness was observed on a part of the parison surface and blow-out occurred, but under other conditions, good high-speed thinning properties were exhibited.

実施例コ〜J 実施例−lの(4)で得られた触媒を用い、重合条件を
表7のように変えたこと以外は実施例−/の(B)と同
様にして、エチレンの重合を行なった。
Examples K to J Ethylene polymerization was carried out in the same manner as in Example 1 (B) except that the catalyst obtained in Example 1 (4) was used and the polymerization conditions were changed as shown in Table 7. I did this.

その結果を表/に示す。The results are shown in Table/.

また高速薄肉成形テストでも、パリソンの肌荒れも誌め
られす、良好な薄肉成形性を示した。
In addition, in high-speed thin-wall molding tests, the parison exhibited good thin-wall moldability, with no signs of surface roughness.

比較例−ノ 実施例−/の(A)で得られた触媒を用い、表/の重合
条件でエチレンの1段重合を行なった。
One-stage polymerization of ethylene was carried out under the polymerization conditions shown in Table 1 using the catalyst obtained in (A) of Comparative Example-Example-/.

結果を表1に示す。一段重台では同−Mlでも低密度と
ガり病い剛性が得られない。また、同様にして得られた
ポリエチレンを用い高速薄肉成形テストと実施したが低
剪断速度領域で肌荒れを発生し、高速成形に適さない。
The results are shown in Table 1. On a single-stage heavy platform, low density and weak rigidity cannot be obtained even with the same Ml. In addition, a high-speed thin-wall molding test was conducted using polyethylene obtained in the same manner, but the surface roughness occurred in the low shear rate region, making it unsuitable for high-speed molding.

比較例−コ (A) 触媒成分の調製 市販の微粉シリカに三酸化クロム水溶液を含浸し、/コ
θCで乾燥後gθoCで乾燥空気下で活性化し、クロム
とo、zx景s含有する触媒第一成分を調製した。内容
量、2tのオートクレーブにヘキサン/1.上記触媒第
一成分A、Of、トリエチルアルミニウム64IRQを
仕込み、toCに昇温後水素圧がθ、’lkf/dとな
る様、H,ガスをはシ込んだ彼、エチレンガスを導入し
、30fのエチレン全90分間で重合した。反応終了波
、生成物をデカンテーション(触媒−ポリエチレン混合
物)によってヘキサンで数回洗浄した。
Comparative Example - (A) Preparation of Catalyst Component Commercially available fine powder silica was impregnated with an aqueous chromium trioxide solution, dried at θC and activated in dry air at θC to prepare a catalyst containing chromium, o, zx, and s. One component was prepared. Hexane/1. The above catalyst first component A, Of, and triethylaluminum 64IRQ were charged, and after heating up to C, H and gas were injected so that the hydrogen pressure became θ,'lkf/d. Then, ethylene gas was introduced, and 30 f of ethylene was polymerized in a total of 90 minutes. Upon completion of the reaction, the product was washed several times with hexane by decantation (catalyst-polyethylene mixture).

(B)重 合 内mM10tのオ )クレープに1上記(a)で得られ
た触媒−ポリエチレン混合物ioo。
(B) Polymerization: 10 μM of the catalyst-polyethylene mixture obtained in (a) above was added to the crepe.

■、ジエチルアルミニウムモノエトキシドJ g、!i
■、ヘキサン、11を仕込み、90Cで反応器内気相(
H,/ ICT7 )組成が/ !r Omo1%、全
圧lダkg/cyst−aで1.3時間1合を行ない、
ポリエチレン/0kg#を得た。
■, Diethyl aluminum monoethoxide J g,! i
■, hexane, 11 were charged, and the gas phase inside the reactor was heated at 90C (
H, / ICT7) The composition is /! 1 cup was carried out for 1.3 hours at r Omo 1% and total pressure 1 kg/cyst-a,
Polyethylene/0 kg# was obtained.

生成ポリエチレンのメルトインデックス(MI )はO
o、2、PR=730.密度(ρ)Fio、96λであ
った。
The melt index (MI) of the produced polyethylene is O
o,2,PR=730. The density (ρ) Fio was 96λ.

(C) 高速薄肉成形テスト 実施例−/(C)と同様に高速薄肉成形瓶の成形を試み
結果を衣/Kまとめた。これは、代表的なブローグレー
ドの1つであるが、高剪断速度領域では、肌荒れの発生
があり、′iた高ブロー比での薄肉成形においては吹破
れが発生した。ま7’C剛恰も実施例−7〜3に比較し
、低く、及ばない。
(C) High-speed thin-wall molding test example-/Similarly to (C), high-speed thin-wall molding was attempted and the results were summarized. Although this is one of the typical blow grades, surface roughness occurred in the high shear rate region, and blow-out occurred in thin-wall molding at high blow ratios. Also, the value of 7'C is lower than that of Examples 7 to 3.

比較例−3 実施例−/(A)で得られた触媒成分を用い、l−ブテ
ン共重合を行なった。即ち、内容量、2tのオートクレ
ーブに、ノルマルヘキサンlθo。
Comparative Example-3 Using the catalyst component obtained in Example-/(A), 1-butene copolymerization was performed. That is, normal hexane lθo was placed in an autoclave with an internal capacity of 2 tons.

―、触媒成分20ηを仕込んだ。またジエチルアルミニ
ウムモノクロリドo、3−mmozを別のフィーダーに
仕込み、オートクレーブに備え付けた。オートクレーブ
の内温を90cmfで昇温した後、所定量のH2を導入
し、次いでエチレン及びS/フィーダーからジエチルア
ルミニウムモノクロリドを供給し、重合を開始した。全
圧が一定となる様エチレンを間歇的に供給しながら1時
間重合反応を続けた。この間の平均気相組成(He /
 ETy )G Fij J Ornot%であった。
-, a catalyst component of 20η was charged. In addition, 3-mmoz of diethylaluminum monochloride was charged into a separate feeder, which was then installed in the autoclave. After raising the internal temperature of the autoclave to 90 cmf, a predetermined amount of H2 was introduced, and then ethylene and diethylaluminum monochloride were supplied from the S/feeder to initiate polymerization. The polymerization reaction was continued for 1 hour while supplying ethylene intermittently to keep the total pressure constant. Average gas phase composition during this period (He/
ETy) G Fij J Ornot%.

次いで未反応モノマーをパージした後、オートクレーブ
内温をg(17Cにし、新たに所定量の水素、共重合モ
ノマーの/−ブテン及びエチレンを供給して重合を再開
した。全圧が一定となる様、エチレンを間歇的に供給し
ながら90分間重合反応を続けた後、未反応モノマーを
パージした。この2段目重合反応の間の平均気相組成は
CHt / KT7 )GがJ k mot%、〔ブテ
ン/I!iT7 ]Gがコ、コmot%であった。また
、得られたポリマーのMlは0.3t/10分、PR=
4/、密度は0.91!f/acであった。
Next, after purging unreacted monomers, the temperature inside the autoclave was raised to 17C, and a predetermined amount of hydrogen and the copolymerization monomers /-butene and ethylene were supplied to restart the polymerization.The total pressure was kept constant. After continuing the polymerization reaction for 90 minutes while supplying ethylene intermittently, unreacted monomers were purged.The average gas phase composition during this second stage polymerization reaction was CHt/KT7)G was Jk mot%, [Butene/I! iT7]G was ko, komot%. Moreover, Ml of the obtained polymer is 0.3t/10min, PR=
4/, density is 0.91! It was f/ac.

得られたポリマーの物性を測定した結果、剛性は密度見
合いで低く、プレス片スティ7ネスは//、000却/
d、ボトル座屈強度it却であった。
As a result of measuring the physical properties of the obtained polymer, the rigidity was low in proportion to the density, and the stiffness of the pressed piece was //, 000/
d, the bottle buckling strength was low.

手続補正書゛(自発) 昭和jり年ti月/S日 2 発明 の名称 高剛性、高速プロー成形に適したポリエチレンの製造法
3 補正をする者 出願人 三菱化成工業株式会社 4代理人〒100 5 補正の対象 明細書の発明の詳細な説明の欄6補正
の内容 以 上
Procedural amendment (spontaneous) 1/2/2019 Title of the invention Process for producing polyethylene with high rigidity and suitable for high-speed blow molding 3 Person making the amendment Applicant Mitsubishi Chemical Industries, Ltd. 4 Agent 〒100 5 Subject of amendment Contents of amendment in column 6 of detailed explanation of the invention in the description

Claims (1)

【特許請求の範囲】[Claims] (1) (a)マグネシウムの酸素含有有機化合物とチ
タンハロゲン化合物との反応生成物または、マグネシウ
ムの酸素含有有機化合物とチタンの酸素含有有機化合物
とアルミニウムハロゲン化合物との反応生成物と (1
))有機アルミニウム化合物とからなる触媒系を用いて
、炭化水素溶媒中30〜100Cの温度でエチレンの単
独重合を行なうに際し、 (イ)重合反応を一段階、すなわち第1の反応帯域で重
合して得られた反応混合物を第一の反応帯域において更
に重合する方式で行ない、 (ロ)第1および第一の反応帯域の′いずれか一方の帯
域において気相中のエチレンに対するモル比で0.0 
/ −/、0の水素の存在下重合して、粘度平均分子量
lO万〜り0万の重合体Aを全重合体生成量のaO〜7
0重量%生成させ、他方の帯域において気相中のエチレ
ンに対するモル比で1.O〜13の水素の存在下重合し
て粘度平均分子量1万〜ダ万の重合体Bを、全重合体生
成量の7θ〜30重禁チ生成させ、更に、重合体Aの粘
度平均分子量/重合体Bの粘度平均分子量を10−ダO
とし、更に1 (ハ)第1%第一の反応帯域とも、エチレン単独重合と
し、 に)最終的に生成する全重合体のメルトインデックスを
0.1〜/f/10分、密度を0.9&に〜0.97 
l floa とすることを特徴とする高剛性、高速プ
四−成形に適したポリエチレンの製造法。
(1) (a) A reaction product between an oxygen-containing organic compound of magnesium and a titanium halide compound, or a reaction product between an oxygen-containing organic compound of magnesium, an oxygen-containing organic compound of titanium, and an aluminum halide compound;
)) When carrying out the homopolymerization of ethylene at a temperature of 30 to 100 C in a hydrocarbon solvent using a catalyst system consisting of an organoaluminum compound, (a) the polymerization reaction is carried out in one step, that is, in the first reaction zone; (b) The reaction mixture obtained in this manner is further polymerized in the first reaction zone, and (b) the molar ratio to ethylene in the gas phase is 0. 0
Polymer A with a viscosity average molecular weight of 10,000 to 0,000 is obtained by polymerizing in the presence of hydrogen of / -/, 0, and the total amount of polymer produced is aO to 7.
0% by weight and in the other zone a molar ratio of 1.0% to ethylene in the gas phase. Polymer B with a viscosity average molecular weight of 10,000 to 20,000 is produced in the presence of O to 13 hydrogen, and the viscosity average molecular weight of Polymer A/ The viscosity average molecular weight of polymer B is 10-daO
Further, 1 (c) Both the 1st and 1% first reaction zones are ethylene homopolymerized, and 2) The melt index of the entire polymer finally produced is 0.1 to /f/10 min, and the density is 0. 9 & ~ 0.97
A method for producing polyethylene that is characterized by having a high rigidity and is suitable for high-speed polyethylene molding.
JP59030932A 1984-02-21 1984-02-21 High rigidity, polyethylene manufacturing method suitable for high speed blow molding Expired - Lifetime JPH06817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030932A JPH06817B2 (en) 1984-02-21 1984-02-21 High rigidity, polyethylene manufacturing method suitable for high speed blow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030932A JPH06817B2 (en) 1984-02-21 1984-02-21 High rigidity, polyethylene manufacturing method suitable for high speed blow molding

Publications (2)

Publication Number Publication Date
JPS60177008A true JPS60177008A (en) 1985-09-11
JPH06817B2 JPH06817B2 (en) 1994-01-05

Family

ID=12317448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030932A Expired - Lifetime JPH06817B2 (en) 1984-02-21 1984-02-21 High rigidity, polyethylene manufacturing method suitable for high speed blow molding

Country Status (1)

Country Link
JP (1) JPH06817B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131401A (en) * 1984-07-24 1986-02-13 Ube Ind Ltd Process for polymerizing ethylene
JPS61275313A (en) * 1985-05-30 1986-12-05 Nippon Oil Co Ltd Ultrahigh molecular weight polyethylene composition of improved injection moldability
JPH02305811A (en) * 1989-05-19 1990-12-19 Idemitsu Petrochem Co Ltd Production of ethylene polymer composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622304A (en) * 1979-08-01 1981-03-02 Mitsubishi Chem Ind Ltd Polymerization of olefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622304A (en) * 1979-08-01 1981-03-02 Mitsubishi Chem Ind Ltd Polymerization of olefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131401A (en) * 1984-07-24 1986-02-13 Ube Ind Ltd Process for polymerizing ethylene
JPS61275313A (en) * 1985-05-30 1986-12-05 Nippon Oil Co Ltd Ultrahigh molecular weight polyethylene composition of improved injection moldability
JPH02305811A (en) * 1989-05-19 1990-12-19 Idemitsu Petrochem Co Ltd Production of ethylene polymer composition

Also Published As

Publication number Publication date
JPH06817B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
RU2207347C2 (en) Ethylene polymer composition production process
KR940008983B1 (en) Process for the preparation of polyethylene
JP2732857B2 (en) Method for producing polyolefin having broad molecular weight distribution
US5486575A (en) High performance blow molding resins and process for their preparation
JPS63154753A (en) Polyethylene composition
JPH0118932B2 (en)
US8076418B2 (en) Ethylene based polymer composition and film
JPH02305811A (en) Production of ethylene polymer composition
JP6701763B2 (en) Vinyl cis-polybutadiene rubber and method for producing the same
JP5203587B2 (en) Propylene polymer and foam molded article
JPH0317845B2 (en)
JP3752759B2 (en) Ethylene polymer and method for producing the same
JPS60177008A (en) Preparation of polyethylene suitabe for high-speed blow molding, having high rigidity
JPH0368890B2 (en)
JP7130819B2 (en) Polyethylene resin for secondary battery separator, method for producing the same, and separator using the same
JP2000129044A (en) Vessel made of polyethylene for high-purity chemicals
JPH0318644B2 (en)
JPS6150087B2 (en)
JPH11138618A (en) Blow-molded body
JP3929149B2 (en) Blow molded product with excellent mechanical strength
JP2014019806A (en) Polyethylene resin composition
JP2712307B2 (en) Method for producing polyethylene
JP3341568B2 (en) Propylene / ethylene block copolymer composition and method for producing the same
JP2015193736A (en) Polyethylene for container and molded body comprising the same
JP3768327B2 (en) Ethylene polymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term