JPH0368890B2 - - Google Patents

Info

Publication number
JPH0368890B2
JPH0368890B2 JP58102856A JP10285683A JPH0368890B2 JP H0368890 B2 JPH0368890 B2 JP H0368890B2 JP 58102856 A JP58102856 A JP 58102856A JP 10285683 A JP10285683 A JP 10285683A JP H0368890 B2 JPH0368890 B2 JP H0368890B2
Authority
JP
Japan
Prior art keywords
copolymer
polymerization
ethylene
weight
ethylene polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58102856A
Other languages
Japanese (ja)
Other versions
JPS59227913A (en
Inventor
Kenji Tanaka
Akinobu Sugawara
Takashi Yamawaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP10285683A priority Critical patent/JPS59227913A/en
Priority to US06/616,601 priority patent/US4550143A/en
Priority to DE8484106588T priority patent/DE3481313D1/en
Priority to EP84106588A priority patent/EP0134427B1/en
Publication of JPS59227913A publication Critical patent/JPS59227913A/en
Publication of JPH0368890B2 publication Critical patent/JPH0368890B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエチレン重合体あるいはその共重合体
の製造方法に関し、詳しくは機械的強度、成形性
等の優れたエチレン重合体あるいはその共重合体
を高い生産性にて長期間連続的に製造することの
できる方法に関する。 一般に高密度のエチレン重合体はチーグラー型
触媒を用いて製造されており、製品の機械的強度
を向上させるために分子量の高いものが製造され
ている。この場合、製品の分子量分布が狭いと成
形加工に際して流動性が悪く、生産性の低下を招
き、また成形のための樹脂圧力が高くなるので所
要動力を大きくする必要がある。 このため、従来エチレンの重合工程を2段階以
上の多段階に分けて行なうことにより、分子量分
布の広い製品を得る試みがなされている。しかし
ながら、多段重合法によつて製造されるエチレン
重合体は、通常のエチレン重合体よりダイスウエ
ルが低いため、ブロー成形した場合には肉厚が薄
くなり、一定品質の製品を得ることが困難とな
る。肉厚を調節するためにはダイス交換が必要と
なり、生産性が低下するため工業的に不利であ
る。また、溶融張力が低いため成形性が劣る等、
種々の問題があつた。 そこで、本発明者らは、上記問題を解消し、優
れた物性を有するエチレン重合体あるいは共重合
体を効率良く製造する方法につき、鋭意研究した
結果、各工程の条件を特定して3段階重合を行な
うことにより目的が達成できることを見出し、本
発明を完成した。 すなわち、本発明は、(A)少なくともチタン、マ
グネシウムおよびハロゲンを含有する固体触媒成
分と(B)有機アルミニウム化合物を主成分とする触
媒を用いて3段階重合によりエチレン重合体ある
いは共重合体を製造する方法において、第1段階
として、 (a)工程:温度50〜80℃のもとで、他のα−オレフ
イン含有量が0.5重量%以下であり、かつ極限
粘度〔η〕が11〜26dl/gであるエチレン重合
体または共重合体を全重合量の12〜23重量%の
割合で製造する工程 を行ない、続いて (b)工程:温度70〜100℃のもとで他のα−オレフ
イン含有量が0.5重量%以下であり、かつ極限
粘度〔η〕が0.25〜1.6dl/gであるエチレン
重合体あるいは共重合体を製造する工程 および (c)工程:温度60〜90℃のもとで他のα−オレフイ
ン含有量が2〜30重量%であり、かつ極限粘度
〔η〕が2.9〜5.1dl/gであるエチレン共重合
体を製造する工程 の2工程を任意の順序で行なうと共に(b)工程およ
び(c)工程における重合量の比が(b)工程:(c)工程=
1:0.5〜1.5となるよう重合することを特徴とす
る極限粘度〔η〕2.5〜5.2dl/g、密度0.939〜
0.965g/cm3であるエチレン重合体あるいは共重
合体の製造方法を提供するものである。 本発明において使用する触媒としては、(A)少な
くともチタン、マグネシウム、ハロゲンを含有す
る固体触媒成分と(B)有機アルミニウム化合物成分
を主成分とする触媒である。ここで(A)成分である
少なくともチタン、マグネシウムおよびハロゲン
を含有する固体触媒成分は、マグネシウム化合物
とハロゲン含有チタン化合物または該化合物と電
子供与体との付加化合物を段階的または一次的に
接触させることにより形成される複合固体であ
り、特に限定されることなく公知の各種のものを
用いることができる。例えばマグネシウム化合物
と塩素含有チタン化合物を炭化水素溶媒中で撹拌
しながら反応させることによつて得ることができ
る。その他若干の製法例を示せば、特公昭46−
34092号、特公昭50−32270号、特開昭50−95382
号、特開昭54−41985号、特開昭55−729号、特開
昭55−13709号、特開昭57−12006号、特開昭57−
141409号の各公報などに開示された方法がある。 (A)成分の製造に使用できるマグネシウム化合物
としては、通常チーグラー型触媒の担体として用
いられる種々のものがある。例えば、塩化マグネ
シウム、臭化マグネシウム、沃化マグネシウム、
弗化マグネシウムなどのハロゲン化マグネシウ
ム、水酸化マグネシウム、酸化マグネシウム、硫
酸マグネシウム、炭酸マグネシウム、塩化ヒドロ
キシマグネシウム、臭化ヒドロキシマグネシウ
ム、沃化ヒドロキシマグネシウムなどのハロゲン
化ヒドロキシマグネシウム、メトキシマグネシウ
ム、エトキシマグネシウム、プロポキシマグネシ
ウム、プトキシマグネシウムなどのアルコキシマ
グネシウム、メトキシマグネシウムクロライド、
メトキシマグネシウムブロマイド、エトキシマグ
ネシウムクロライド、エトキシマグネシウムブロ
マイド、プロポキシマグネシウムクロライド、プ
ロポキシマグネシウムブロマイド、ブトキシマグ
ネシウムクロライド、ブトキシマグネシウムブロ
マイドなどのアルコキシマグネシウムハライド、
アリロキシマグネシウム、アリロキシマグネシウ
ムクロライド、アリロキシマグネシウムブロマイ
ドなどのアリロキシマグネシウムハライド、さら
にはメチルマグネシウムクロライド、メチルマグ
ネシウムブロマイド、エチルマグネシウムクロラ
イド、エチルマグネシウムブロマイド、プロピル
マグネシウムクロライド、プロピルマグネシウム
ブロマイド、ブチルマグネシウムクロライド、ブ
チルマグネシウムブロマイドなどのアルキルマグ
ネシウムハライドあるいはこれらの混合物などを
挙げることができる。 また、マグネシウム化合物は上記のものをその
まま用いることができるが、ケイ素のハロゲン化
物等で変性したものを用いればさらに好ましい。
例えば、マグネシウムジアルコキシドと硫酸マグ
ネシウムの混合物を四塩化ケイ素およびアルコー
ルで変性したものは好適に使用することができる
(特開昭55−40724)。 (A)成分の製造に使用できるハロゲン含有チタン
化合物は、2価、3価または4価のチタンのハロ
ゲン化化合物であればよい。ハロゲンとしては臭
素、沃素などがあるが特に塩素が好ましい。例え
ば、四塩化チタン(TiCl4)、三塩化チタン
(TiCl3)、三塩化チタンと塩化アルミニウムの付
加物(TiCl3・1/3AlCl3)、ジクロロメトキシ
チタン(CH3OTiCl2)、トリクロロエトキシチタ
ン(C2H5OTiCl3)、トリクロロプロポキシチタ
ン(C3H7OTiCl3)、ジクロロジプロポキシチタ
ン((C3H7O)2TiCl2)、ジクロロジエトキシチタ
ン((C2H5O)2TiCl2)、モノクロロトリエトキシ
チタン((C2H5O)3TiCl)などをあげることがで
きる。なお、(A)成分の固体触媒成分において上記
化合物はハロゲン/チタン=3〜200(モル比)お
よびマグネシウム/チタン=3〜90(モル比)の
範囲となるように配合することが望ましい。 次に、(B)成分の有機アルミニウム化合物成分
は、少なくとも分子内に1個のアルミニウム−炭
素結合を有する化合物であり、例えば一般式
R3Al、R2AlX、RAlX2、R2AlOR、RAl(OR)
X、R3Al2X3など(ただし、Rは炭素数1〜20の
アルキル基またはアリール基を示し、同一式中で
同一であつてもよく、あるいは異なるものであつ
てもよい。また、Xはハロゲン原子を示す。)こ
の化合物の好適例としてはジエチルアルミニウム
モノクロライド、ジイソプロピルアルミニウムモ
ノクロライド、ジイソブチルアルミニウムモノク
ロライド、ジオクチルアルミニウムモノクロライ
ド、エチルアルミニウムジクロライド、イソプロ
ピルアルミニウムジクロライド、エチルアルミニ
ウムセスキクロライドなどをあげることができ
る。この(B)成分の使用量は前記(A)成分中のチタン
化合物に対して0.1〜1000モル倍とすべきである。 上記(A)成分と(B)成分を主成分とする触媒は通
常、チタン1mg当り80〜400gのエチレン重合体
を製造する能力を有している。 上記の如き触媒のうち特に特開昭54−161691
号、特開昭55−40724号および特開昭55−149307
号の各公報に開示された触媒が好適である。 本発明の方法は、上記の如き触媒を用いて、エ
チレンを3段階に分けて重合することによつて行
なう。 まず第1段階の重合としては、前述した(a)工程
を行なうわけであるが、この工程の温度条件とし
て通常40℃以上、好ましくはは50〜80℃とすべき
である。ここで温度が40℃未満では重合反応が充
分に進行しないため生産性が低く、一方80℃を超
えると得られる重合体の極限粘度〔η〕の調節が
困難となり所望の性状のエチレン重合体あるいは
共重合体を得ることができなくなる。またこの(a)
工程ではエチレン以外のα−オレフイン、例えば
プロピレン、ブテン−1、ペンテン−1、ヘキセ
ン−1等の含有量が0.5重量%以下であつて、極
限粘度〔η〕が11〜26dl/g、好ましくは12〜24
dl/gのエチレン重合体あるいは共重合体を製造
するように条件が設定される。このような条件を
実現するには上記の温度以外に圧力、エチレン供
給量、他のα−オレフインの供給量、水素供給量
などを適宜選定すればよい。特に極限粘度〔η〕
の調節は、水素などの分子量調節剤を用いること
により容易に行なうことができる。この(a)工程で
得られるエチレン重合体あるいは共重合体におい
て、他のα−オレフイン含有量が0.5重量%を超
えると重合温度を低下させる必要が生じ、生産性
の低下につながる。また、このエチレン重合体あ
るいは共重合体の極限粘度〔η〕が11dl/g未満
では、最終的に得られるエチレン重合体あるいは
共重合体のスウエル比が小さくブロー成形に適さ
ないものとなり、逆に26dl/gを超えると連続運
転が困難になると共に製品に鮫肌が発生するため
実用に供し得なくなる。さらに(a)工程では、(a)、
(b)、(c)の3工程の合計重合量の12〜23重量%、好
ましくは14〜20重量%の範囲内で重合量を調節す
ることが必要である。これは重合条件に応じて重
合時間を適宜選定することにより行なわれる。こ
こで重合量が全重合量の12重量%未満では、最終
的に得られるエチレン重合体あるいは共重合体の
スウエル比が小さくなると同時に各工程で生成す
る重合体あるいは共重合体の相溶性が悪化し、さ
らに生成する重合体のかさ密度も低いものとなる
ため連続運転が不能となるなどの問題を生ずる。
また23重量%を超えると成形性が悪化して好まし
くない。 本発明の方法では、上述の(a)工程終了後、(b)工
程および(c)工程を任意の順序で行なう。つまり、
本発明の方法では(a)工程→(b)工程→(c)工程の順
序、あるいは(a)工程→(c)工程→(b)工程の順序で重
合反応を行なうこととなる。ここで(b)工程は、前
述の如く70〜100℃、好ましくは75〜95℃の温度
条件の下で重合が行なわれる。この(b)工程の温度
条件が70℃未満では重合反応が充分に進行せず、
従つて生産性が低下し、逆に100℃を超えると重
合体の一部が溶融して凝集状態となるため連続運
転が困難となる。またこの(b)工程では、上述の温
度条件と共に製造すべきエチレン重合体あるいは
共重合体の性状が定められている。つまり、(b)工
程ではエチレン以外の他のα−オレフインの含有
量が0.5重量%以下であつて、極限粘度〔η〕が
0.25〜1.6dl/g、好ましくは0.3〜1.4dl/gのエ
チレン重合体あるいは共重合体を製造しうる条件
が設定される。ここで他のオレフイン含有量が
0.5重量%を超えると得られるエチレン重合体あ
るいは共重合体の溶剤可溶成分が増加して好まし
くない。さらに極限粘度〔η〕が0.25dl/g未満
となる条件下では、得られるエチレン重合体ある
いは共重合体の溶剤可溶成分が増加し、一方、
1.6dl/gを超える条件では、エチレン重合体あ
るいは共重合体の流動性および耐環境応力亀裂性
(ESCR)が低下し実用的でない。なおこの条件
は、あくまで未反応のエチレンモノマーあるいは
さらに他のα−オレフインモノマーを(b)工程に供
給して重合した際に生成するエチレン重合体ある
いは共重合体の性状を設定しうるものであり、(a)
工程あるいはさらに(c)工程を経てある程度重合の
進行した重合体を含む混合物(モノマー、オリゴ
マー、ポリマー、コポリマーの混合物)を(b)工程
に導入した際に生成するエチレン重合体あるいは
共重合体の性状を設定するものではない。このこ
とは(c)工程においても同様である。それ故、(b)工
程における条件設定は(a)工程の条件や生成する重
合体等の性状に影響されることなく、独自にかつ
容易に行なうことができる。さらに換言すれば、
(b)工程((c)工程も同じ)の重合条件は、モノマー
原料から生成される重合体、共重合体の性状を基
準にして定めたものであつて、現実に(b)工程で生
成する重合体、共重合体の性状を定めたものでは
ない。従つて、(b)工程の条件は、(a)工程あるいは
(c)工程で生成した重合体等の性状とは無関係に予
め設定することが可能である。 この(b)工程の条件を設定するには、(a)工程の条
件設定の場合と同様に、反応圧力、エチレン供給
量、水素供給量等を適宜選定することにより容易
に行なうことができる。 次に(c)工程は既に述べたように60〜90℃、好ま
しくは65〜85℃の温度条件下で重合が行なわれ
る。この(c)工程の温度条件が60℃未満では重合速
度が遅く生産性が低下し、90℃を超えると重合体
の一部が溶融して凝集状態となるために連続運転
が困難となる。またこの(c)工程では、エチレン以
外のα−オレフインの含有量が2〜15重量%、好
ましくは4〜10重量%であつて、極限粘度〔η〕
が2.9〜5.1dl/g、好ましくは3.1〜4.7dl/gの
エチレン重合体あるいは共重合体を製造するよう
に条件が設定される。このような条件設定は、(a)
工程、(b)工程の場合と同様に圧力、エチレン供給
量、他のα−オレフイン供給量、水素供給量など
を適宜選定することにより行なえばよい。またこ
の(c)工程の条件設定は、(b)工程の場合と同じくエ
チレンモノマー、他のα−オレフインモノマーを
原料として製造される共重合体の性状を基準とす
るものであり、(a)工程あるいはさらに(b)工程を経
た重合体等を含む混合物を原料として、実際に(c)
工程で製造される重合体、共重合体そのものの性
状を基準とするものではない。 上記(c)工程で製造されるべきエチレン共重合体
の条件として、他のα−オレフイン(例えばプロ
ピレン、ブテン−1、ペンテン−1、ヘキセン−
1など)の含有量が、2重量%未満では、最終的
に得られるエチレン重合体または共重合体の
ESCRが低下し、逆に30重量%を超えると剛性が
低下し好ましくない。さらに、極限粘度〔η〕が
2.9dl/g未満となる条件下では製品として得ら
れるエチレン重合体あるいは共重合体のESCRが
低下し、一方、5.1dl/gを超えると流動性が低
下して実用的価値の低いものとなる。 本発明の方法では、上述の(b)工程および(c)工程
のどちらを先に行なつてもよいが、いずれの場合
も、(b)工程と(c)工程における重合量の割合を、(b)
工程:(c)工程=1:0.5〜1.5、好ましくは1:0.6
〜1.3の範囲に調節しながら重合を行なうべきで
ある。この範囲外の重合比で(b)工程および(c)工程
の重合を行なうと、各工程で生成する重合体ある
いは共重合体の相溶性が悪くなると共に、樹脂圧
力が上昇し好ましくない。 なお本発明の方法の各工程における重合方式
は、懸濁重合、溶液重合、気相重合などいずれも
可能であり、また連続式も回分式も可能である。
例えば、懸濁3段重合を行なう場合は、溶媒とし
てペンタン、n−ヘキサン、シクロヘキサン、ヘ
プタン、ベンゼン、トルエンなどの不活性溶媒を
用いることができる。 本発明の方法では以上の如き3段階の重合を行
なうことによつて、極限粘度〔η〕2.5〜5.2dl/
g、好ましくは3.0〜4.5dl/gであり、密度0.939
〜0.965g/cm3、好ましくは0.940〜0.960g/cm3
エチレン重合体あるいは共重合体を製造する。こ
のエチレン重合体あるいは共重合体は、極限粘度
〔η〕が2.5〜5.2dl/gの範囲にあるため溶融張
力が充分(30g以上)であると共に成形性も良好
である。また密度が0.939〜0.965g/cm3の範囲内
にあるため、剛性等の機械的強度(オルゼン剛性
7000Kg/cm3以上)もすぐれたものである。特にブ
ロー成形において、溶融張力が大きく、パリソン
切れが防止でき、スウエル比が1.4以上と大きく、
また剪断速度に対するスウエル比の依存性が小さ
いため成形許容範囲が広い。またインフレーシヨ
ン成形においては、バブル安定性に優れ、フイル
ム外観が良好であつて、樹脂圧力が低いため成形
性に優れている。さらにESCRが200時間以上と
優れており、溶剤可溶成分が5%以下と少ない。
したがつて、本発明により得られるエチレン重合
体あるいは共重合体は幅広く有効に用いられ得
る。そのうえ、本発明の方法は、1段階目の重合
である(a)工程において水素供給量の少ない条件に
て重合が進められるため、脱気槽が不用となると
いうプロセス上の利点もある。 それ故、本発明の方法によれば、すぐれた性状
のエチレン重合体あるいは共重合体を効率よく製
造することができ、工業上極めて価値の高い方法
である。 次に本発明を実施例よりさらに詳しく説明す
る。 実施例1〜2および比較例1〜10 (1) 固体触媒成分の製造 n−ヘプタン50ml中にマグネシウムジエトキ
シド1.0g(8.8ミリモル)および市販の無水硫
酸マグネシウム1.06g(8.8ミリモル)を懸濁
させ、さらに四塩化ケイ素1.5g(8.8ミリモ
ル)とエタノール1.6g(35.2ミリモル)を加
えて80℃で1時間反応を行なつた。次いで四塩
化チタン5ml(45ミリモル)を加えて98℃で3
時間反応させた。反応後、冷却静置し上澄液を
傾斜法により除去した。次いで、新たにn−ヘ
プタン100mlを加えて撹拌、静置、上澄液除行
の洗浄操作を3回行なつた後、n−ヘプタン
200mlを加えて固体触媒成分の分散液を得た。
このもののチタン担持量を比色法により求めた
結果、42mg−Ti/g−担体であつた。 (2) エチレン共重合体の製造 2容のステンレス製オートクレープを乾燥
窒素で置換した後、乾燥ヘキサン0.5、上記
(1)で製造した固体触媒成分を0.08ミリモル(チ
タン濃度0.16ミリモル/)、トリエチルアル
ミニウム0.21ミリモルおよびジエチルアルミニ
ウムクロライドを0.59ミリモル加えた。 次いで、エチレン重合体が第1表に示す極限
粘度〔η〕になるように計量された水素および
反応器の全圧が8.7Kg/cm3Gとなるようにエチ
レンを連続的に供給し、第1表に示す所定温度
で25分撹拌しながら反応を行なつた。 次いで第2段階では反応器を40℃まで冷却し
た後、エチレン、プロピレンおよび第1表に示
す極限粘度〔η〕となるように計量された水素
を加え全圧8.3Kg/cm3G、第1表に示す所定温
度で120分間撹拌しながら反応を行なつた。 第3段階では、0.5の乾燥ヘキサンを追加
投入し、エチレン、プロピレン、ブテン−1お
よび第1表に示す極限粘度となるように計量さ
れた水素を加え、全圧6Kg/cm3、第1表に示す
所定温度で30分間撹拌しながら反応を行なつ
た。 反応終了後、得られたエチレン共重合体組成
物を洗浄乾燥し、その物性を測定した。結果を
第1および2表に示す。
The present invention relates to a method for producing an ethylene polymer or a copolymer thereof, and more specifically, a method for producing an ethylene polymer or a copolymer thereof with excellent mechanical strength, moldability, etc. continuously for a long period of time with high productivity. Concerning how it can be done. Generally, high-density ethylene polymers are produced using Ziegler type catalysts, and those with high molecular weights are produced in order to improve the mechanical strength of products. In this case, if the molecular weight distribution of the product is narrow, fluidity will be poor during molding, leading to a decrease in productivity, and the resin pressure for molding will be high, so it is necessary to increase the required power. For this reason, conventional attempts have been made to divide the ethylene polymerization process into two or more stages to obtain a product with a wide molecular weight distribution. However, ethylene polymers produced by multi-stage polymerization have a lower die swell than normal ethylene polymers, so when blow molded, the wall thickness becomes thinner, making it difficult to obtain products of consistent quality. . In order to adjust the wall thickness, it is necessary to replace the die, which reduces productivity and is industrially disadvantageous. In addition, moldability is poor due to low melt tension, etc.
Various problems arose. Therefore, the present inventors conducted intensive research on a method for efficiently producing ethylene polymers or copolymers with excellent physical properties by solving the above problems, and after specifying the conditions for each step, three-stage polymerization was carried out. The inventors have discovered that the object can be achieved by carrying out the following steps, and have completed the present invention. That is, the present invention produces an ethylene polymer or copolymer by three-step polymerization using (A) a solid catalyst component containing at least titanium, magnesium, and a halogen, and (B) a catalyst whose main component is an organoaluminium compound. In the method of (g) in a proportion of 12 to 23% by weight of the total polymerization amount, followed by step (b): other α-olefins at a temperature of 70 to 100°C. Step (c) of producing an ethylene polymer or copolymer having a content of 0.5% by weight or less and an intrinsic viscosity [η] of 0.25 to 1.6 dl/g: At a temperature of 60 to 90°C The two steps of producing an ethylene copolymer having a content of other α-olefins of 2 to 30% by weight and an intrinsic viscosity [η] of 2.9 to 5.1 dl/g are carried out in any order. The ratio of polymerization amounts in step (b) and step (c) is (b) step: (c) step =
1: Intrinsic viscosity [η] 2.5-5.2 dl/g, density 0.939-
The present invention provides a method for producing an ethylene polymer or copolymer with a yield of 0.965 g/cm 3 . The catalyst used in the present invention is a catalyst whose main components are (A) a solid catalyst component containing at least titanium, magnesium, and halogen, and (B) an organoaluminum compound component. Here, component (A), a solid catalyst component containing at least titanium, magnesium, and a halogen, is obtained by contacting a magnesium compound and a halogen-containing titanium compound, or an addition compound of this compound and an electron donor, stepwise or primarily. It is a composite solid formed by, and various known types can be used without particular limitation. For example, it can be obtained by reacting a magnesium compound and a chlorine-containing titanium compound in a hydrocarbon solvent with stirring. Some other examples of manufacturing methods include:
No. 34092, Japanese Patent Publication No. 1984-32270, Japanese Patent Publication No. 1987-95382
No., JP-A-54-41985, JP-A-55-729, JP-A-55-13709, JP-A-57-12006, JP-A-57-
There are methods disclosed in various publications such as No. 141409. Magnesium compounds that can be used in the production of component (A) include various compounds that are commonly used as carriers for Ziegler-type catalysts. For example, magnesium chloride, magnesium bromide, magnesium iodide,
Magnesium halides such as magnesium fluoride, magnesium hydroxide, magnesium oxide, magnesium sulfate, magnesium carbonate, hydroxymagnesium halides such as hydroxymagnesium chloride, hydroxymagnesium bromide, hydroxymagnesium iodide, methoxymagnesium, ethoxymagnesium, propoxymagnesium , alkoxymagnesium such as ptoxymagnesium, methoxymagnesium chloride,
Alkoxymagnesium halides such as methoxymagnesium bromide, ethoxymagnesium chloride, ethoxymagnesium bromide, propoxymagnesium chloride, propoxymagnesium bromide, butoxymagnesium chloride, butoxymagnesium bromide,
Allyloxymagnesium halides such as allyloxymagnesium, allyloxymagnesium chloride, allyloxymagnesium bromide, as well as methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium chloride, ethylmagnesium bromide, propylmagnesium chloride, propylmagnesium bromide, butylmagnesium chloride, Examples include alkylmagnesium halides such as butylmagnesium bromide, and mixtures thereof. Furthermore, although the magnesium compound described above can be used as it is, it is more preferable to use one modified with a silicon halide or the like.
For example, a mixture of magnesium dialkoxide and magnesium sulfate modified with silicon tetrachloride and alcohol can be suitably used (Japanese Patent Application Laid-Open No. 40724/1983). The halogen-containing titanium compound that can be used in the production of component (A) may be any divalent, trivalent or tetravalent halogenated titanium compound. Examples of the halogen include bromine and iodine, but chlorine is particularly preferred. For example, titanium tetrachloride (TiCl 4 ), titanium trichloride (TiCl 3 ), adduct of titanium trichloride and aluminum chloride (TiCl 3 1/3AlCl 3 ), dichloromethoxytitanium (CH 3 OTiCl 2 ), trichloroethoxytitanium (C 2 H 5 OTiCl 3 ), trichloropropoxy titanium (C 3 H 7 OTiCl 3 ), dichlorodipropoxy titanium ((C 3 H 7 O) 2 TiCl 2 ), dichlorodiethoxy titanium ((C 2 H 5 O) 2 TiCl 2 ), monochlorotriethoxytitanium ((C 2 H 5 O) 3 TiCl), etc. In the solid catalyst component (A), the above compounds are desirably blended so that the halogen/titanium ratio is in the range of 3 to 200 (mole ratio) and the magnesium/titanium ratio is in the range of 3 to 90 (mole ratio). Next, the organoaluminum compound component of component (B) is a compound having at least one aluminum-carbon bond in the molecule, for example, the general formula
R 3 Al, R 2 AlX, RAlX 2 , R 2 AlOR, RAl(OR)
X, R 3 Al 2 (X represents a halogen atom.) Preferred examples of this compound include diethylaluminum monochloride, diisopropylaluminum monochloride, diisobutylaluminum monochloride, dioctylaluminum monochloride, ethylaluminum dichloride, isopropylaluminum dichloride, ethylaluminum sesquichloride, etc. be able to. The amount of component (B) used should be 0.1 to 1000 times the amount of the titanium compound in component (A). A catalyst containing the above-mentioned components (A) and (B) as main components usually has the ability to produce 80 to 400 g of ethylene polymer per 1 mg of titanium. Among the above-mentioned catalysts, especially JP-A-54-161691
No., JP-A-55-40724 and JP-A-55-149307
The catalysts disclosed in each of the publications of No. 1 are suitable. The method of the present invention is carried out by polymerizing ethylene in three stages using the catalyst as described above. First, as the first stage of polymerization, the above-mentioned step (a) is carried out, and the temperature condition for this step should be usually 40°C or higher, preferably 50 to 80°C. If the temperature is less than 40°C, the polymerization reaction will not proceed sufficiently, resulting in low productivity. On the other hand, if the temperature exceeds 80°C, it will be difficult to control the intrinsic viscosity [η] of the resulting polymer, making it difficult to obtain an ethylene polymer with the desired properties or It becomes impossible to obtain a copolymer. Also this (a)
In the process, the content of α-olefins other than ethylene, such as propylene, butene-1, pentene-1, hexene-1, etc., is 0.5% by weight or less, and the intrinsic viscosity [η] is 11 to 26 dl/g, preferably 12-24
Conditions are set to produce dl/g of ethylene polymer or copolymer. In order to realize such conditions, in addition to the above-mentioned temperature, the pressure, the amount of ethylene supplied, the amount of other α-olefins supplied, the amount of hydrogen supplied, etc. may be appropriately selected. Especially the limiting viscosity [η]
can be easily adjusted by using a molecular weight regulator such as hydrogen. In the ethylene polymer or copolymer obtained in step (a), if the content of other α-olefins exceeds 0.5% by weight, it becomes necessary to lower the polymerization temperature, leading to a decrease in productivity. Furthermore, if the intrinsic viscosity [η] of the ethylene polymer or copolymer is less than 11 dl/g, the swell ratio of the ethylene polymer or copolymer finally obtained will be small and unsuitable for blow molding. If it exceeds 26 dl/g, continuous operation becomes difficult and the product becomes unusable due to the appearance of shark skin. Furthermore, in step (a), (a),
It is necessary to adjust the polymerization amount within the range of 12 to 23% by weight, preferably 14 to 20% by weight of the total polymerization amount of the three steps (b) and (c). This is carried out by appropriately selecting the polymerization time depending on the polymerization conditions. If the polymerization amount is less than 12% by weight of the total polymerization amount, the swell ratio of the finally obtained ethylene polymer or copolymer will decrease, and at the same time, the compatibility of the polymers or copolymers produced in each step will deteriorate. Furthermore, the bulk density of the produced polymer is also low, leading to problems such as continuous operation being impossible.
Moreover, if it exceeds 23% by weight, moldability deteriorates, which is not preferable. In the method of the present invention, after the above-mentioned step (a) is completed, steps (b) and (c) are performed in any order. In other words,
In the method of the present invention, the polymerization reaction is carried out in the order of (a) step → (b) step → (c) step, or in the order of (a) step → (c) step → (b) step. Here, in step (b), polymerization is carried out under temperature conditions of 70 to 100°C, preferably 75 to 95°C, as described above. If the temperature condition of this (b) step is less than 70℃, the polymerization reaction will not proceed sufficiently,
Therefore, productivity decreases, and conversely, if the temperature exceeds 100°C, part of the polymer melts and becomes agglomerated, making continuous operation difficult. Further, in this step (b), the properties of the ethylene polymer or copolymer to be produced are determined as well as the above-mentioned temperature conditions. In other words, in step (b), the content of α-olefin other than ethylene is 0.5% by weight or less, and the intrinsic viscosity [η] is
Conditions are set that allow production of ethylene polymer or copolymer at 0.25 to 1.6 dl/g, preferably 0.3 to 1.4 dl/g. Here the content of other olefins is
If it exceeds 0.5% by weight, the amount of solvent-soluble components in the resulting ethylene polymer or copolymer will increase, which is undesirable. Furthermore, under conditions where the intrinsic viscosity [η] is less than 0.25 dl/g, the solvent-soluble components of the obtained ethylene polymer or copolymer increase;
Conditions exceeding 1.6 dl/g are impractical because the fluidity and environmental stress cracking resistance (ESCR) of the ethylene polymer or copolymer decreases. Note that these conditions can only set the properties of the ethylene polymer or copolymer produced when unreacted ethylene monomer or other α-olefin monomer is supplied to step (b) and polymerized. ,(a)
The ethylene polymer or copolymer produced when a mixture (monomer, oligomer, polymer, copolymer mixture) containing a polymer that has undergone some degree of polymerization through step (c) is introduced into step (b). It does not set properties. This also applies to step (c). Therefore, the conditions in step (b) can be independently and easily set without being influenced by the conditions in step (a) or the properties of the produced polymer. In other words,
The polymerization conditions for step (b) (same for step (c)) are determined based on the properties of the polymer and copolymer produced from the monomer raw materials, and are those that are actually produced in step (b). It does not specify the properties of the polymers and copolymers used. Therefore, the conditions for step (b) are the same as those for step (a) or
It can be set in advance regardless of the properties of the polymer etc. produced in step (c). The conditions for this step (b) can be easily set by appropriately selecting the reaction pressure, the amount of ethylene supplied, the amount of hydrogen supplied, etc., as in the case of setting the conditions of the step (a). Next, in step (c), as mentioned above, polymerization is carried out at a temperature of 60 to 90°C, preferably 65 to 85°C. If the temperature condition for this step (c) is less than 60°C, the polymerization rate will be slow and productivity will decrease, and if it exceeds 90°C, a part of the polymer will melt and become agglomerated, making continuous operation difficult. In this step (c), the content of α-olefin other than ethylene is 2 to 15% by weight, preferably 4 to 10% by weight, and the intrinsic viscosity [η]
Conditions are set so as to produce an ethylene polymer or copolymer with a weight of 2.9 to 5.1 dl/g, preferably 3.1 to 4.7 dl/g. Such condition settings are (a)
Step (b) may be carried out by appropriately selecting the pressure, the amount of ethylene supplied, the amount of other α-olefins supplied, the amount of hydrogen supplied, etc., as in the case of step (b). In addition, the conditions for step (c) are set based on the properties of the copolymer produced using ethylene monomer and other α-olefin monomers as raw materials, as in step (b). Using a mixture containing polymers, etc. that has undergone the step or further step (b) as a raw material, actually (c)
It is not based on the properties of the polymer or copolymer itself produced in the process. The conditions for the ethylene copolymer to be produced in step (c) above include other α-olefins (e.g. propylene, butene-1, pentene-1, hexene-1).
1 etc.) is less than 2% by weight, the final ethylene polymer or copolymer
ESCR decreases, and conversely, if it exceeds 30% by weight, rigidity decreases, which is not preferable. Furthermore, the intrinsic viscosity [η] is
Under conditions where it is less than 2.9 dl/g, the ESCR of the ethylene polymer or copolymer obtained as a product decreases, while when it exceeds 5.1 dl/g, the fluidity decreases and it becomes of low practical value. . In the method of the present invention, either the above-mentioned step (b) or step (c) may be performed first, but in either case, the ratio of polymerization amount in step (b) and step (c) is (b)
Step: (c) Step = 1:0.5-1.5, preferably 1:0.6
The polymerization should be carried out while controlling the range of 1.3 to 1.3. If the polymerization in steps (b) and (c) is carried out at a polymerization ratio outside this range, the compatibility of the polymer or copolymer produced in each step will deteriorate, and the resin pressure will increase, which is undesirable. The polymerization method in each step of the method of the present invention may be suspension polymerization, solution polymerization, gas phase polymerization, etc., and continuous method or batch method is also possible.
For example, when performing suspension three-stage polymerization, an inert solvent such as pentane, n-hexane, cyclohexane, heptane, benzene, toluene, etc. can be used as the solvent. In the method of the present invention, by performing the three-stage polymerization as described above, the intrinsic viscosity [η] is 2.5 to 5.2 dl/
g, preferably 3.0 to 4.5 dl/g, density 0.939
~0.965 g/cm 3 , preferably 0.940 to 0.960 g/cm 3 of ethylene polymer or copolymer is produced. This ethylene polymer or copolymer has an intrinsic viscosity [η] in the range of 2.5 to 5.2 dl/g, so it has sufficient melt tension (30 g or more) and good moldability. In addition, since the density is within the range of 0.939 to 0.965 g/ cm3 , mechanical strength such as rigidity (Olzen rigidity
7000Kg/ cm3 or more) is also excellent. Particularly in blow molding, the melt tension is high, parison breakage can be prevented, and the swell ratio is high at 1.4 or more.
Furthermore, since the dependence of the swell ratio on the shear rate is small, the forming tolerance is wide. In inflation molding, the film has excellent bubble stability, good film appearance, and low resin pressure, resulting in excellent moldability. Furthermore, it has an excellent ESCR of over 200 hours, and has a low solvent soluble component of less than 5%.
Therefore, the ethylene polymer or copolymer obtained by the present invention can be effectively used in a wide range of applications. Furthermore, the method of the present invention has the advantage of eliminating the need for a degassing tank because the polymerization proceeds in step (a), which is the first stage of polymerization, with a small amount of hydrogen supplied. Therefore, according to the method of the present invention, an ethylene polymer or copolymer with excellent properties can be efficiently produced, and it is an extremely valuable method from an industrial perspective. Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 2 and Comparative Examples 1 to 10 (1) Production of solid catalyst component 1.0 g (8.8 mmol) of magnesium diethoxide and 1.06 g (8.8 mmol) of commercially available anhydrous magnesium sulfate were suspended in 50 ml of n-heptane. Then, 1.5 g (8.8 mmol) of silicon tetrachloride and 1.6 g (35.2 mmol) of ethanol were added, and the reaction was carried out at 80° C. for 1 hour. Next, 5 ml (45 mmol) of titanium tetrachloride was added and the mixture was heated at 98°C for 30 minutes.
Allowed time to react. After the reaction, the mixture was cooled and left to stand, and the supernatant liquid was removed by a decanting method. Next, 100 ml of n-heptane was newly added and washing operations of stirring, standing, and removing the supernatant liquid were performed three times, and then n-heptane was added.
200 ml was added to obtain a dispersion of solid catalyst components.
The amount of titanium supported on this product was determined by a colorimetric method and was found to be 42 mg-Ti/g-support. (2) Production of ethylene copolymer After purging a 2-volume stainless steel autoclave with dry nitrogen, add 0.5% of dry hexane and the above
0.08 mmol of the solid catalyst component produced in (1) (titanium concentration: 0.16 mmol/), 0.21 mmol of triethylaluminum, and 0.59 mmol of diethylaluminum chloride were added. Next, hydrogen was metered so that the ethylene polymer had the intrinsic viscosity [η] shown in Table 1, and ethylene was continuously supplied so that the total pressure of the reactor was 8.7 Kg/cm 3 G. The reaction was carried out at the specified temperature shown in Table 1 for 25 minutes with stirring. Next, in the second stage, after cooling the reactor to 40°C, ethylene, propylene, and hydrogen measured so as to have the intrinsic viscosity [η] shown in Table 1 were added, and the total pressure was 8.3 Kg/cm 3 G. The reaction was carried out with stirring for 120 minutes at the specified temperature shown in the table. In the third stage, 0.5 ml of dry hexane was added, ethylene, propylene, butene-1, and hydrogen measured to give the intrinsic viscosity shown in Table 1 were added, and the total pressure was 6 Kg/cm 3 , as shown in Table 1. The reaction was carried out for 30 minutes with stirring at the predetermined temperature shown in . After the reaction was completed, the obtained ethylene copolymer composition was washed and dried, and its physical properties were measured. The results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)少なくともチタン、マグネシウムおよびハ
ロゲンを含有する固体触媒成分と(B)有機アルミニ
ウム化合物を主成分とする触媒を用いて3段階重
合によりエチレン重合体あるいは共重合体を製造
する方法において、第1段階として、 (a)工程:温度50〜80℃のもとで、他のα−オレフ
イン含有量が0.5重量%以下であり、かつ極限
粘度〔η〕が11〜26dl/gであるエチレン重合
体または共重合体を全重合量の12〜23重量%の
割合で製造する工程 を行ない、続いて (b)工程:温度70〜100℃のもとで、他のα−オレ
フイン含有量が0.5重量%以下であり、かつ極
限粘度〔η〕が0.25〜1.6dl/gであるエチレ
ン重合体または共重合体を製造する工程 および (c)工程:温度60〜90℃のもとで、他のα−オレフ
イン含有量が2〜30重量%であり、かつ極限粘
度〔η〕が2.9〜5.1dl/gであるエチレン共重
合体を製造する工程 の2工程を任意の順序で行なうと共に(b)工程およ
び(c)工程における重合量の比が(b)工程:(c)工程=
1:0.5〜1.5となるように重合することを特徴と
する極限粘度〔η〕2.5〜5.2dl/g、密度0.939〜
0.965g/cm3であるエチレン重合体あるいは共重
合体の製造方法。
[Scope of Claims] 1. An ethylene polymer or copolymer is produced by three-step polymerization using (A) a solid catalyst component containing at least titanium, magnesium and halogen and (B) a catalyst whose main component is an organoaluminum compound. In the manufacturing method, as the first step, (a) step: At a temperature of 50 to 80°C, the content of other α-olefins is 0.5% by weight or less, and the intrinsic viscosity [η] is 11 to 26 dl. /g of ethylene polymer or copolymer at a proportion of 12 to 23% by weight of the total polymerization amount, followed by step (b): At a temperature of 70 to 100°C, other α - Step of producing an ethylene polymer or copolymer having an olefin content of 0.5% by weight or less and an intrinsic viscosity [η] of 0.25 to 1.6 dl/g; and (c) step: at a temperature of 60 to 90°C. Under the following conditions, the two steps of producing an ethylene copolymer having a content of other α-olefins of 2 to 30% by weight and an intrinsic viscosity [η] of 2.9 to 5.1 dl/g can be carried out in any order. At the same time, the ratio of polymerization amount in step (b) and step (c) is (b) step: (c) step =
1: Intrinsic viscosity [η] 2.5-5.2 dl/g, density 0.939-
A method for producing an ethylene polymer or copolymer having a weight of 0.965 g/cm 3 .
JP10285683A 1983-06-10 1983-06-10 Production of ethylene polymer or copolymer Granted JPS59227913A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10285683A JPS59227913A (en) 1983-06-10 1983-06-10 Production of ethylene polymer or copolymer
US06/616,601 US4550143A (en) 1983-06-10 1984-06-01 Composition comprising ethylene-based polymers
DE8484106588T DE3481313D1 (en) 1983-06-10 1984-06-08 COMPOSITION OF AETHYLENE POLYMERS.
EP84106588A EP0134427B1 (en) 1983-06-10 1984-06-08 A composition comprising ethylene-based polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285683A JPS59227913A (en) 1983-06-10 1983-06-10 Production of ethylene polymer or copolymer

Publications (2)

Publication Number Publication Date
JPS59227913A JPS59227913A (en) 1984-12-21
JPH0368890B2 true JPH0368890B2 (en) 1991-10-30

Family

ID=14338562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285683A Granted JPS59227913A (en) 1983-06-10 1983-06-10 Production of ethylene polymer or copolymer

Country Status (1)

Country Link
JP (1) JPS59227913A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116251B2 (en) * 1985-03-11 1995-12-13 東ソー株式会社 Method for producing modified polyethylene
JP2712307B2 (en) * 1987-06-23 1998-02-10 東ソー株式会社 Method for producing polyethylene
KR940008983B1 (en) * 1988-06-23 1994-09-28 도오소오 가부시끼가이샤 Process for the preparation of polyethylene
JPH0253811A (en) * 1988-08-19 1990-02-22 Idemitsu Petrochem Co Ltd Ethylene copolymer
JPH0717710B2 (en) * 1989-05-19 1995-03-01 出光石油化学株式会社 Method for producing ethylene-based polymer composition
ES2073042T3 (en) * 1990-01-17 1995-08-01 Basf Ag PROCEDURE FOR OBTAINING PROPYLENE-ETHYLENE COPOLYMERS.
JP2716615B2 (en) * 1991-10-25 1998-02-18 丸善ポリマー株式会社 Method for producing ethylene polymer composition
DE19945980A1 (en) * 1999-09-24 2001-03-29 Elenac Gmbh Polyethylene molding compound with improved ESCR stiffness ratio and swelling rate, process for its production and hollow bodies made from it
JP2004359798A (en) * 2003-06-04 2004-12-24 Mitsui Chemicals Inc Olefinic polymer and manufacturing process therefor
MX2007011386A (en) * 2005-03-17 2007-10-05 Dow Global Technologies Inc Ethylene/??-olefins block interpolymers.
GB2498936A (en) * 2012-01-31 2013-08-07 Norner Innovation As Polyethylene with multi-modal molecular weight distribution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731945A (en) * 1980-08-04 1982-02-20 Asahi Chem Ind Co Ltd Polyethylene composition and preparation of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731945A (en) * 1980-08-04 1982-02-20 Asahi Chem Ind Co Ltd Polyethylene composition and preparation of the same

Also Published As

Publication number Publication date
JPS59227913A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US4336352A (en) Blend of three ethylene polymers
EP0134427A2 (en) A composition comprising ethylene-based polymers
GB2051833A (en) Process for preparing ethylene polymers
JPS6150088B2 (en)
JPH0368890B2 (en)
JPH02305811A (en) Production of ethylene polymer composition
JPS6367811B2 (en)
JPS59149907A (en) Crystalline polypropylene and its production
JPH0112777B2 (en)
JPH0414686B2 (en)
JPS6150087B2 (en)
JP2733060B2 (en) Propylene copolymer composition
JPH0344092B2 (en)
JPH0379367B2 (en)
JPS6353206B2 (en)
JPH0329805B2 (en)
JP2646104B2 (en) Propylene copolymer composition
JPS5811448B2 (en) Manufacturing method of block copolymer
JPS623864B2 (en)
JPH0415820B2 (en)
JPH0699511B2 (en) Olefin continuous polymerization
JPH0730145B2 (en) Propylene block copolymer
JPS63202640A (en) Polypropylene resin composition
JPS58127710A (en) Production of polyethylene
JPS6259127B2 (en)