JPH0253811A - Ethylene copolymer - Google Patents

Ethylene copolymer

Info

Publication number
JPH0253811A
JPH0253811A JP20576588A JP20576588A JPH0253811A JP H0253811 A JPH0253811 A JP H0253811A JP 20576588 A JP20576588 A JP 20576588A JP 20576588 A JP20576588 A JP 20576588A JP H0253811 A JPH0253811 A JP H0253811A
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
viscosity
olefin
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20576588A
Other languages
Japanese (ja)
Inventor
Masayuki Fujiwara
藤原 正之
Kenji Nakanaga
中長 健二
Tsutomu Akimaru
秋丸 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP20576588A priority Critical patent/JPH0253811A/en
Publication of JPH0253811A publication Critical patent/JPH0253811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the title copolymer produced from ethylene and an alpha-olefin, having each specific composition, intrinsic viscosity, density, fensile viscosity ratio and activation energy, high in tensile viscosity or melt tension when melted, and excellent in molding processability and resistance to environmental stress cracking. CONSTITUTION:Diethoxymagnesium and tetra-n-butoxytitanium are added to n-heptane followed by reaction under heating, and the resulting product is dripped into isopropanol to form a magnesium-contg. solid composite, which is then formulated with ethylalminum dichloride. Using the resultant catalyst, a copolymerization between ethylene and a >=3C alpha-olefin (e.g., butene-1) is carried out, thus obtaining the objective copolymer made up of 85-99.9wt.% of ethylene unit and 15-0.1wt.% of the alpha-olefin unit. This copolymer has the following characteristics: 1. intrinsic viscosity... 3.1-5.0 2. density... 0.940-0.960g/cm<3> 3. parameter A defined by the formula (Z10 and Z50 are values of tensile viscosity measured at 150 deg.C and at a constant strain rate 0.05sec<-1> for 10 and 50sec. respectively)... 6-50 4. flow activation energy H... <=7.5kcal/ mol.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規なエチレン共重合体に関するものである
。さらに詳しくいえば、本発明は溶融時の伸張粘度や溶
融張力が十分に高く、かつ中空成形などにおける成形加
工性や耐環境応力亀裂性(以下ESCRという)に優れ
たエチレン共重合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel ethylene copolymer. More specifically, the present invention relates to an ethylene copolymer that has sufficiently high elongational viscosity and melt tension when melted, and has excellent moldability and environmental stress cracking resistance (hereinafter referred to as ESCR) in blow molding. be.

本発明のエチレン共重合体は中空成形、特に大型中空成
形分野に好適に用いられる。
The ethylene copolymer of the present invention is suitably used in the field of blow molding, particularly large-sized blow molding.

従来の技術 近年、自動車用燃料タンクやドラム缶などの超大型容器
用としてポリエチレンが注目されているが、この用途に
用いられるポリエチレンに対しては溶融張力が大きく、
耐衝撃性やESCRの良好であることが要求されている
Background of the Invention In recent years, polyethylene has been attracting attention for use in ultra-large containers such as automobile fuel tanks and drums, but polyethylene used for this purpose has a high melt tension.
Good impact resistance and ESCR are required.

このような好適な性質を得るための条件としては、チー
グラ系触媒を用いる場合は、例えば分子量分布を広くす
ればよいことが知られ、具体的には高分子量のポリエチ
レンと低分子量のポリエチレンとを混合する方法(特公
昭45−3215号公報、特開昭57−133136号
公報)、多段重合法(特公昭46−11349号公報、
特開昭52−19788号公報)なとが提案されている
When using a Ziegler catalyst, it is known that the condition for obtaining such favorable properties is, for example, to widen the molecular weight distribution. Mixing method (Japanese Patent Publication No. 45-3215, Japanese Patent Application Laid-open No. 57-133136), multi-stage polymerization method (Japanese Patent Publication No. 46-11349,
Japanese Unexamined Patent Publication No. 52-19788) has been proposed.

他方、成形加工性やESCRを改良する方法とじては、
チーグラ系触媒を用いて製造したポリエチレンとクロム
系触媒を用いて製造したポリエチレンを混合する方法、
高密度ポリエチレンと低密度ポリエチレンを混合する方
法も知られているが(特開昭59−196345号公報
、特開昭54−100444号公報)、これらの方法は
溶融張力が不十分であるという欠点がある。
On the other hand, methods for improving moldability and ESCR include:
A method of mixing polyethylene produced using a Ziegler catalyst and polyethylene produced using a chromium catalyst,
Methods of mixing high-density polyethylene and low-density polyethylene are also known (JP-A-59-196345, JP-A-54-100444), but these methods have the disadvantage of insufficient melt tension. There is.

発明が解決しようとする課題 本発明は、このような従来のポリエチレンのもつ欠点を
克服し、溶融時の溶融張力が十分に高く、かつ中空成形
などにおける成形加工性やESCRに優れたエチレン共
重合体を提供することを目的としてなされたものである
Problems to be Solved by the Invention The present invention overcomes the drawbacks of conventional polyethylene, and creates an ethylene copolymer that has sufficiently high melt tension when melted and has excellent moldability and ESCR in blow molding. This was done for the purpose of providing integration.

課題を解決するための手段 本発明者らは、溶融張力が大きく、かつ耐衝撃性、ES
CRの優れたエチレン共重合体を開発するために種々研
究を重ねた結果、エチレンに対し所定の割合で他のα−
オレフィンを共重合させたものであって、極限粘度、パ
ラメータA及び流動の活性化エネルギーが特定の範囲に
調整されたエチレン共重合体がその目的に適合すること
を見出し、この知見に基づいて本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have developed a material with high melt tension, impact resistance, and ES.
As a result of various studies to develop an ethylene copolymer with excellent CR, we found that other α-
We discovered that an ethylene copolymer, which is a copolymer of olefins and whose intrinsic viscosity, parameter A, and flow activation energy are adjusted to specific ranges, is suitable for this purpose, and based on this knowledge, we developed this book. The invention was completed.

すなわち、本発明は、エチレン単位85〜99.9重量
%と炭素数3以上のび一オレフィン単位15〜0.1重
量%から成る共重合体であって、極限粘度が3.1〜5
.0、密度が0.940〜0.96h/ cm3、式%
式% (Z+o及び250は測定温度+50°C1歪速度00
5sec−’の一定歪速度伸長粘度のそれぞれ1Qse
c及び50secにおける値である) で定義されるパラメータAが6〜50及び流動の活性化
エネルギー△Hが7.5KcaQ/ moQ以下である
ことを特徴とするエチレン共重合体を提供するものであ
る。
That is, the present invention provides a copolymer consisting of 85 to 99.9% by weight of ethylene units and 15 to 0.1% by weight of olefin units having 3 or more carbon atoms, and having an intrinsic viscosity of 3.1 to 5.
.. 0, density 0.940-0.96h/cm3, formula %
Formula % (Z+o and 250 are measurement temperature +50°C1 strain rate 00
5 sec-' constant strain rate extensional viscosity 1Qse respectively
The present invention provides an ethylene copolymer characterized by having a parameter A defined by 6 to 50 (value at c and 50 sec) and a flow activation energy ΔH of 7.5 KcaQ/moQ or less. .

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のエチレン共重合体は、エチレンとaオレフィン
との共重合体であって、炭素数3以上のα−オレフィン
単位を0.1〜15重量%、好ましくは0.2〜5重量
%の割合で含有することか必要である。α−オレフィン
単位の割合がこれよりも少一 なくなると共重合体としての好ましい性質が得られにく
いし、またこれよりも多くなると共重合体の剛性が低下
する。
The ethylene copolymer of the present invention is a copolymer of ethylene and a-olefin, and contains 0.1 to 15% by weight, preferably 0.2 to 5% by weight of α-olefin units having 3 or more carbon atoms. It is necessary to contain it in a certain proportion. If the proportion of α-olefin units is less than this, it is difficult to obtain desirable properties as a copolymer, and if it is greater than this, the rigidity of the copolymer decreases.

また、本発明の共重合体は、デカリン中135°Cで測
定した極限粘度3.1〜5.0d12/g、好ましくは
3.5〜4.5d12/gを有することが必要である。
Further, the copolymer of the present invention needs to have an intrinsic viscosity of 3.1 to 5.0 d12/g, preferably 3.5 to 4.5 d12/g, measured in decalin at 135°C.

極限粘度が3.1’dfl/g未満の場合は強度が低下
し、成形性も好ましくないし、また、5.0607gを
越えると成形加工性が低下する。
If the intrinsic viscosity is less than 3.1'dfl/g, the strength will decrease and the moldability will be unfavorable, and if it exceeds 5.0607g, the moldability will decrease.

また、本発明の共重合体は、伸張粘度と時間との関係を
示す伸張粘度曲線において、下式により定義されるパラ
メータAが6〜50、好ましくは9〜15であることが
必要である。
Further, in the copolymer of the present invention, in the extensional viscosity curve showing the relationship between extensional viscosity and time, the parameter A defined by the following formula must be 6 to 50, preferably 9 to 15.

A = Z s。/Zt。A = Z s. /Zt.

(z 、。及びZs’oは測定温度150℃、歪速度帆
05sec−’の一定歪速度伸長粘度のそれぞれ10s
ec及び50secにおける値である。) この伸張粘度は伸張変形時の溶融張力に大きく影響する
物質定数であり、通常、歪速度(変形速度)と時間との
関数で表わされる。このA値が6未満の場合は、分子間
の絡み合いかほぐれ易く、伸張時の粘度増加が小さく、
成形時の偏肉か大きくなり、また50を越えると溶融時
に延伸切れが生じる。
(z, . and Zs'o are measured at a temperature of 150°C and a constant strain rate of 05 sec-' for each 10 s of elongational viscosity.
These are the values at ec and 50 sec. ) This extensional viscosity is a material constant that greatly affects the melt tension during extensional deformation, and is usually expressed as a function of strain rate (deformation rate) and time. If this A value is less than 6, the entanglement or unraveling between molecules is easy, and the increase in viscosity during elongation is small.
Thickness deviation during molding becomes large, and if it exceeds 50, stretching breaks occur during melting.

さらに、本発明の共重合体においては、下式により定義
される流動の活性化エネルギー△■]が7.5Kca1
2/ moα以下、好ましくは5.9−7.2Kca1
2/mo12゜さらに好ましくは5.9〜6.9Kca
O/ mocであることが必要である。
Furthermore, in the copolymer of the present invention, the flow activation energy Δ■] defined by the following formula is 7.5 Kca1
2/moα or less, preferably 5.9-7.2Kca1
2/mo12°, more preferably 5.9 to 6.9 Kca
Must be O/moc.

△H= 13−6X QogB (ここでBは、周波数範囲10 ”−6X 102ra
d/sec、測定温度150℃、220°Cで得られる
貯蔵弾性率G1′−周波数W曲線を、通常の「重ね合わ
せの原理」により重ね合わせた時の周波数軸移動量を示
す) この△Hが7.5Kcal/ moQを越えると粘弾性
量の温度依存性が大きく、また残留応力も大きく、ES
CRが悪化する。
△H= 13-6X QogB (where B is the frequency range 10”-6X 102ra
d/sec, storage modulus G1'-frequency W curves obtained at measurement temperatures of 150°C and 220°C are superimposed using the usual "superposition principle". This indicates the amount of frequency axis movement) If it exceeds 7.5 Kcal/moQ, the temperature dependence of the viscoelasticity is large, the residual stress is also large, and the ES
CR worsens.

また、本発明の共重合体は、密度0.940〜0.96
0g/’cm3、好ましくは帆945− (L955g
/ cm3を有するものか好ましい。この密度か帆94
0g/cm3未満の場合は剛性が低下するし、また、0
.960g/ cm3を越えると衝撃強度が低下する。
Further, the copolymer of the present invention has a density of 0.940 to 0.96.
0g/'cm3, preferably sail 945- (L955g
/cm3 is preferred. This density is sail 94
If it is less than 0g/cm3, the rigidity will decrease and
.. If it exceeds 960 g/cm3, the impact strength will decrease.

前記パラメータA及び△Hを制御するには、例えばある
種の触媒を用いたり、多段重合におけるある段の重合器
中で分子量1,000,000以上のものを2〜20%
生成させるなどの方法がある。
In order to control the parameters A and ΔH, for example, a certain type of catalyst may be used, or a polymer having a molecular weight of 1,000,000 or more may be added by 2 to 20% in a certain stage polymerization vessel in multistage polymerization.
There are ways to generate it.

次に、本発明の共重合体は、エチレン85重量%以上と
炭素数3以上のα−オレフィンとを共重合させることに
より製造される。この炭素数3以」二のα−オレフィン
としては、様々なものがあるか、例えば炭素数3〜10
、好ましくは3〜6のα−オレフィン、具体的にはプロ
ピレン、ブテン−11ヘキセン−11オクテン−1など
が挙げられる。
Next, the copolymer of the present invention is produced by copolymerizing 85% by weight or more of ethylene with an α-olefin having 3 or more carbon atoms. There are various kinds of α-olefins having 3 or more carbon atoms, for example, 3 to 10 carbon atoms.
, preferably 3 to 6 α-olefins, specifically propylene, butene-11hexene-11octene-1, and the like.

この共重合反応に使用する触媒としては、例えば、Ti
−ZrやTi−Vなどの二元系遷移金属触媒、TEA/
 DEACやTIBA/DEACなどの混合助触媒及び
エステル等の第三成分から成る触媒などが用いられる。
Examples of catalysts used in this copolymerization reaction include Ti
- Binary transition metal catalysts such as Zr and Ti-V, TEA/
A catalyst consisting of a mixed promoter such as DEAC or TIBA/DEAC and a third component such as an ester is used.

具体的には、チーグラー型のもの、例えば特開昭57−
12006号公報、特開昭57−12007号公報、特
開昭5!If−227913号公報、特願昭62−13
7712号なとに記載されたものを用いることができる
。すなわち、このような触媒としては、例えは(A)少
なくともチタン、マグネシウム及びハロゲンを含有する
化合物とテトラアルコキシジルコニウム及び/又はジル
コニウムテトラハライドを反応させて生成する固形分に
、アルコキシ基を含有してもよいハロゲン含有チタン化
合物を反応させて得られる固体生成物及び(B)有機ア
ルミニウム化合物を有効成分とするもの、(A)少なく
ともチタン、マグネシウム及びハロゲンを含有する化合
物とテトラアルコキシジルコニウムを反応させて生成す
る固形分に、有機ハロゲン化アルミニウムを反応させて
得られる固体生成物及び(B)有機アルミニウム化合物
を有効成分とするもの、(A)少なくともチタン、マグ
ネシウム及びハロゲンを含有する固体触媒成分と(B)
有機アルミニウム化合物を主成分とするもの、(A)マ
グ不シウムジアルコギシドとチタンテトラアルコキシド
との混合物をインプロパノ−フ ル等のアルカノールと接触させ、マグネシウム含有固体
複合体を生成させ、次いでこれにジルコニラムチI・ラ
アルコキシド又はジルコニウムテトラハライドあるいは
その両方を反応させ、得られた反応生成物にさらに有機
ハロゲン化アルミニウムを加えて反応させることにより
調製した固体触媒成分及び(B)有機アルミニウム化合
物成分から成るものなどが挙げられる。
Specifically, the Ziegler type, for example, JP-A-57-
12006, JP-A-57-12007, JP-A-5! If-227913 Publication, Patent Application 1986-13
Those described in No. 7712 can be used. That is, as such a catalyst, for example, (A) a solid content produced by reacting a compound containing at least titanium, magnesium and a halogen with tetraalkoxyzirconium and/or zirconium tetrahalide contains an alkoxy group. A solid product obtained by reacting a good halogen-containing titanium compound and (B) a product containing an organoaluminum compound as an active ingredient, and (A) a solid product obtained by reacting a compound containing at least titanium, magnesium, and a halogen with tetraalkoxyzirconium. A solid product obtained by reacting an organoaluminum halide with the solid content produced; (B) a product containing an organoaluminum compound as an active ingredient; (A) a solid catalyst component containing at least titanium, magnesium, and a halogen; B)
A compound containing an organoaluminum compound as a main component, (A) a mixture of magunsium dialkogide and titanium tetraalkoxide, is brought into contact with an alkanol such as Impropanoflu to form a magnesium-containing solid composite, which is then injected with zirconyl aluminum compound. A product consisting of a solid catalyst component prepared by reacting I.ra alkoxide or zirconium tetrahalide, or both, and further adding organic aluminum halide to the resulting reaction product and reacting the same, and (B) an organoaluminum compound component. Examples include.

これらの中では、特にZrとT1のモル比を0.5〜2
0としたものが好ましい。
Among these, in particular, the molar ratio of Zr and T1 is 0.5 to 2.
It is preferable to set it to 0.

前記の少なくともチタン、マグネシウム及びハロゲンを
含有する化合物としては、例えば酸化マグネシウム、水
酸化マグネシウム、炭酸マグネシウム、硫酸マグネシウ
ム、ハロゲン化マグネシウム等のマグネシウム無機化合
物にハロゲン化チタンを反応させて得られる固体物質、
又は各種のマグネシウム化合物にハロゲン化ケイ素、ア
ルコール及びハロゲン化チタンを順次反応させて得られ
る固体物質、あるいはマグネシウムジェトキシド等のジ
アルコキシマグネシウムと硫酸マグネシラム、ハロゲン
化チタンを反応させて得られる固体物質を挙げることが
できる。また、酸化マグネシウム、水酸化マグネシウム
、炭酸マグネシウム等のMg−0結合金有無機化合物に
硫酸マグネシウム、ハロゲン化ケイ素及びアルコールを
順次反応させて生ずる沈殿物にハロゲン化ケイ素もしく
は有機ケイ素化合物(例えば5icQ4. CH30S
ICI23、(CH30)2−5iC122、(CH3
0)3SiC(2,Si(OCH3)イC2H503I
CI23、(CJaO)2SiC02、(C2HaO)
ssic12.5i(OCJs)4など)ならびにハロ
ゲン化チタンを反応させて得られる固体物質を用いるこ
ともできるし、その他ジアルコキシマグネシウムとMg
C42・6C2H,OHなどのハロゲン化マグネシウム
のアルコール付加物を反応させ、次いでアルコール処理
して得られる生成物にハロゲン化チタンを反応させて得
られる固体物質を用いることもできる。
Examples of the above-mentioned compounds containing at least titanium, magnesium and halogen include solid substances obtained by reacting titanium halides with magnesium inorganic compounds such as magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium sulfate, and magnesium halides;
Or a solid substance obtained by reacting various magnesium compounds with silicon halide, alcohol, and titanium halide, or a solid substance obtained by reacting dialkoxymagnesium such as magnesium jetoxide with magnesium sulfate and titanium halide. can be mentioned. In addition, a silicon halide or organosilicon compound (for example, 5icQ4. CH30S
ICI23, (CH30)2-5iC122, (CH3
0)3SiC(2,Si(OCH3)iC2H503I
CI23, (CJaO)2SiC02, (C2HaO)
ssic12.5i (OCJs)4, etc.) and a solid material obtained by reacting titanium halides, and other materials such as dialkoxymagnesium and Mg
It is also possible to use a solid substance obtained by reacting an alcohol adduct of magnesium halide such as C42.6C2H,OH, and then reacting the product obtained by alcohol treatment with titanium halide.

前記ノアルコキシ基を含有してもよいハロゲン含有チタ
ン化合物としては、例えばTiCl2いTiBr。
Examples of the halogen-containing titanium compound that may contain a noalkoxy group include TiCl2 and TiBr.

Ti(OCJ)C(28、Ti(OC2H5)2C42
、Ti(OC2H6)3c12ナトあるいはこれらの混
合物を挙げることができる。
Ti(OCJ)C(28, Ti(OC2H5)2C42
, Ti(OC2H6)3c12 nato, or a mixture thereof.

前記有機アルミニウム化合物としては、例えばトリメチ
ルアルミニウム、トリエチルアルミニウム、トリイソプ
ロピルアルミニウム、トリイソブチルアルミニウム、ジ
エチルアルミニウムモノクロリド、ジイソプロピルアル
ミニウムモノクロリド、ジイソブチルアルミニウムモノ
クロリド、ジオクチルアルミニウムモノクロリド、エチ
ルアルミニウムジクロリド、ジエチルアルミニウムモノ
エトキシド、イソプロピルアルミニウムジクロリド、エ
チルアルミニウムセスキクロリドなどを挙げることがで
きる。
Examples of the organoaluminum compounds include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, diethylaluminum monochloride, diisopropylaluminum monochloride, diisobutylaluminum monochloride, dioctylaluminum monochloride, ethylaluminum dichloride, diethylaluminum monoethoxy Examples include chloride, isopropylaluminum dichloride, and ethylaluminum sesquichloride.

前記有機ハロゲン化アルミニウムとしては、例えばジメ
チルアルミニウムモノクロリド、ジエチルアルミニウム
モノクロリド、ジイソプロピルアルミニウムモノクロリ
ド、ジイソブチルアルミニウムモノクロリド、メチルア
ルミニウムジクロリド、エチルアルミニウムジクロリド
、イソプロピルアルミニウムジクロリド、イソブチルア
ルミニウムモノクロリドなどあるいはこれらの混合物が
挙げられる。
Examples of the organic aluminum halide include dimethylaluminum monochloride, diethylaluminum monochloride, diisopropylaluminium monochloride, diisobutylaluminum monochloride, methylaluminum dichloride, ethylaluminum dichloride, isopropylaluminum dichloride, isobutylaluminum monochloride, etc., or mixtures thereof. can be mentioned.

前記チタンテトラアルコキシド又はジルコニウムアルコ
キシドとしては、一般式 %式%(1) (ただし、式中のRは炭素数1〜20のアルキル基、シ
クロアルキル基、アリール基及びアラルキル基、Mはチ
タン又はジルコニウムである)で示されるものであり、
このような化合物には、例えば、テトラメトキシチタン
、テトラエ]・キンチタン、テトラ(n−プロポキノ)
チタン、テI・う(n−ブトキシ)チタン、テトラ(n
−ペントキシ)チタン、テトラ(n−ヘキソキシ)チタ
ン、テトラ(n−ヘプトキシ)チタン、テトう(nオク
トキシ)チタン、テトラシクロペンI・キシチタン、テ
トラシクロヘキソキシチタン、テI・ラシクロエトへブ
トキシチタン、テトラシクロオクトキシチタン、テトラ
フェノキシチタンやこれらのチタン化合物に対応するジ
ルコニウム化合物を挙げることができる。
The titanium tetraalkoxide or zirconium alkoxide has the general formula % (1) (wherein R is an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group, or an aralkyl group, and M is titanium or zirconium. ), and
Such compounds include, for example, tetramethoxytitanium, tetrae]quintitanium, tetra(n-propoquino)
Titanium, Tetra(n-butoxy)titanium, Tetra(n-butoxy)
-pentoxy)titanium, tetra(n-hexoxy)titanium, tetra(n-heptoxy)titanium, tetra(n-octoxy)titanium, tetracyclopene I xytitanium, tetracyclohexoxytitanium, tetracyclopene I xytitanium, tetra(n-hexoxy)titanium, tetra(n-hexoxy)titanium Examples include cyclooctoxytitanium, tetraphenoxytitanium, and zirconium compounds corresponding to these titanium compounds.

重合方法及び条件等は特に制限はなく、溶液重合、懸濁
重合、気相重合等のいずれも可能であり、また連続重合
、非連続重合のどちらも可能であり、しかも−段重合は
もちろんのこと多段重合を行なうこともできる。反応の
媒体としては、ブタン、ペンタン、n−ヘキサン、シク
ロヘキサン、ヘプタン、ベンゼン、トルエン等の不活性
溶媒が好ましい。さらに反応圧は、0.5−15kg/
 cm2G、好ましくは1−10kg7 cm2Gとし
、反応温度は50−10000、好ましくは60〜95
°Cとして、10分〜5時間、好ましくは30分〜3時
間反応させることによって目的とするエチレン共重合体
を得ることができる。
There are no particular restrictions on the polymerization method and conditions, and solution polymerization, suspension polymerization, gas phase polymerization, etc. are all possible, as well as continuous polymerization and discontinuous polymerization, as well as stage polymerization. It is also possible to carry out multistage polymerization. As the reaction medium, inert solvents such as butane, pentane, n-hexane, cyclohexane, heptane, benzene, and toluene are preferred. Furthermore, the reaction pressure is 0.5-15kg/
cm2G, preferably 1-10 kg7 cm2G, and the reaction temperature is 50-10000, preferably 60-95
°C, the desired ethylene copolymer can be obtained by reacting for 10 minutes to 5 hours, preferably 30 minutes to 3 hours.

なお、重合に際しての分子量の調節は、公知の手段、例
えば水素処理等により行えばよい。
The molecular weight during polymerization may be controlled by known means such as hydrogen treatment.

発明の効果 本発明のエチレン共重合体は、溶融時の溶融張力が十分
に高く、かつ中空成形などにおける成形加工性やESC
Rに優れ、中空成形用材料として好適に利用しうる。
Effects of the Invention The ethylene copolymer of the present invention has sufficiently high melt tension when melted, and has good moldability and ESC in blow molding etc.
It has excellent R and can be suitably used as a material for blow molding.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

なお、各物性の測定は以下のようにして行った。In addition, the measurement of each physical property was performed as follows.

(1)  極限粘度 デカリン中135°Cで測定した。(1) Intrinsic viscosity Measurements were made in decalin at 135°C.

(2)密 度 JISK7112に準拠して測定した。(2) Density Measured in accordance with JISK7112.

(3)パラメータA 測定装置として老木製作所(株)製の延伸レオメータを
用い、東洋精機(株)製の20mm1小型押出機(回転
数5 rpm、設定温度190°C)により作成した長
さ30cm、直径3mmの円筒状試料を150°Cのシ
リコンオイル中に15分間静置した後、回転ローラーに
取り付け、試料の「たるみ」を取り除いた後、所定のロ
ーラー回転速度で延伸させ張力及び試料直径の時間変化
を測定した。この直径の時間変化より次式に従って歪速
度が算出される。
(3) Parameter A A length of 30 cm was created using a 20 mm 1 small extruder (rotation speed 5 rpm, set temperature 190°C) manufactured by Toyo Seiki Co., Ltd. using a stretching rheometer manufactured by Roki Seisakusho Co., Ltd. as a measuring device. A cylindrical sample with a diameter of 3 mm was placed in silicone oil at 150°C for 15 minutes, then attached to a rotating roller, and after removing the "sag" of the sample, it was stretched at a predetermined roller rotation speed to adjust the tension and sample diameter. Changes over time were measured. From this change in diameter over time, the strain rate is calculated according to the following equation.

(do:初期直径、d(t):を秒後の直径、L:歪速
度、なおd (し)の測定はタイマー付きビデオにより
行なった。) 次に、この歪速度より次式に従って伸長粘度が算出され
る。
(do: initial diameter, d(t): diameter after seconds, L: strain rate, and d(t) was measured using a video with a timer.) Next, from this strain rate, the extensional viscosity was determined according to the following formula. is calculated.

Z(εt )= F (t)/ S (t)M(F(t
):を秒後の張力、S (t) : d (L)より計
算される断面積) パラメータAは、測定温度150°C1上記の歪速度を
帆05sec−’の一定とした際の所定の伸張粘度を用
いて次式に従って算出される。
Z(εt)=F(t)/S(t)M(F(t
): tension after seconds, S (t): d (cross-sectional area calculated from It is calculated using the extensional viscosity according to the following formula.

A −Z s。/Z、。A-Z s. /Z,.

(2+o及びZ5oは150°C1歪速度帆05sec
−’の一定歪速度伸長粘度のそれぞれ1Qsec及び5
0 secにおける値である。) (4)流動の活性化エネルギー△H 測定装置としてレオメトリックス社製のSystem4
を用い、平行平板型の治具を用いて温度150°C12
20°Cで周波数範囲1O−2〜6X 102の貯蔵弾
性率G′を測定し、二つのG′曲線より周波数軸移動量
Bを求め、次式に従って流動の活性化エネルギー△11
を求めた。
(2+o and Z5o are 150°C1 strain speed sail 05sec
-' constant strain rate extensional viscosity of 1Qsec and 5 respectively
This is the value at 0 sec. ) (4) Flow activation energy △H As a measuring device, System 4 manufactured by Rheometrics was used.
using a parallel plate type jig at a temperature of 150°C12
Measure the storage modulus G' in the frequency range 1O-2 to 6X 102 at 20°C, find the frequency axis movement amount B from the two G' curves, and calculate the flow activation energy △11 according to the following formula.
I asked for

△H−13−6X12ogB (5)成形性 成形機として石川島播磨重工業(株)製90mrnIダ
イの1012容アキユームレータ型機を用いて、設定温
度をCI、C2,C3,アダプター、CHI、CH2及
びダイの順に、それぞれ180,190,200,22
0゜220 、220及び220°Cとして成形サイク
ル5分で5kg重の成形品としての容器を得た。
△H-13-6 In order of die, 180, 190, 200, 22 respectively.
Containers were obtained as molded articles weighing 5 kg in a molding cycle of 5 minutes at temperatures of 0°220, 220 and 220°C.

得られた容器の肉厚測定は下記のように行なつIこ。The wall thickness of the obtained container was measured as follows.

■ピンチオフ厚み 容器底部のピンチオフ部の中央をピンチオフ部に直角に
切り出し、ピンチオフ部の最小肉厚をノギスにて測定し
た。
■Pinch-off thickness The center of the pinch-off part at the bottom of the container was cut out at right angles to the pinch-off part, and the minimum thickness of the pinch-off part was measured using a caliper.

■凸部厚み 容器上部の金型凸部付近をピンチオフ部と直角方向に切
り出し、最小肉厚をノギスにて測定した。
■Protrusion thickness The area near the mold protrusion at the top of the container was cut out in a direction perpendicular to the pinch-off part, and the minimum wall thickness was measured using a caliper.

実施例1 (1)Mg含有固体複合体の製造 n−へブタン100.中にMg(OEt)z l 72
g(8,8moθ)及びTi(0−n−Bu)tl、9
J2g (5,6mo(1)を加え、100°Cで3時
間加熱し、均一溶液とする。この均一溶液全量を、イソ
プロパツール12Q中に、20°Cでかきまぜながら、
1時間で滴下し、さらに1時間、かきまぜを続ける。生
成した固体を、洗浄液中にTiが検出されなくなるまで
乾燥ヘキサンで洗浄する。得られた固体複合体の比表面
積は130+++2/g、チタン含有量は0.62重量
%であった。
Example 1 (1) Production of Mg-containing solid composite n-hebutane 100. Mg(OEt)z l 72
g(8,8moθ) and Ti(0-n-Bu)tl, 9
Add J2g (5,6mo(1)) and heat at 100°C for 3 hours to make a homogeneous solution.The entire amount of this homogeneous solution was placed in isopropanol 12Q while stirring at 20°C.
Add drops after 1 hour and continue stirring for another hour. The resulting solid is washed with dry hexane until no Ti is detected in the washing solution. The resulting solid composite had a specific surface area of 130+++2/g and a titanium content of 0.62% by weight.

(2)固体触媒成分の製造 Zr(0−n−Bu)、450g(1,2moQ)及び
Ti(0−n−Bu)+200g(0,6moα)を溶
解したヘキサン5111を、(1)で得たMg含有固体
複合体スラリーに、かきまぜながら、温度20°O″c
′15分間で滴下して、さらに還流下、90分間反応さ
せる。EtA12(42の50重量%ヘキサン希釈液1
0.2Qをかきまぜながら、20°Cで、30分間で滴
下し、さらに還流下、60分間反応させる。液中に塩素
が検出されなくなるまで乾燥ヘキサンで洗浄し、全容量
をヘキサンで500とする。固体触媒成分中のTi及び
Zrの含有量は、金属単体に換算して、1.76重量%
−Ti、 6.10重量%−Zrであった。
(2) Production of solid catalyst component Hexane 5111 in which 450 g (1,2 moQ) of Zr (0-n-Bu) and 200 g (0,6 mo α) of Ti (0-n-Bu) were dissolved was obtained in (1). The Mg-containing solid composite slurry was heated to a temperature of 20°O''c while stirring.
' It was added dropwise over 15 minutes, and the reaction was continued for 90 minutes under reflux. EtA12 (50 wt% hexane dilution of 42 1
While stirring, 0.2Q was added dropwise at 20°C over 30 minutes, and the mixture was further reacted for 60 minutes under reflux. Wash with dry hexane until no chlorine is detected in the solution, and bring the total volume to 500 with hexane. The content of Ti and Zr in the solid catalyst component is 1.76% by weight in terms of elemental metal.
-Ti, 6.10% by weight -Zr.

(3)エチレン共重合体の製造 200a容の1段目の重合反応器にエチレン972g/
11r1ヘキサン26Q/hr、ブテン−172g/ 
hr及び水素を表に示す極限粘度を有するポリマーが得
られるように連続的に供給すると共に、前記触媒をTi
換算で帆6ミリモル/hr及びトリイソブチルアルミニ
ウム18ミリモル/hrの速度で導入し、80°Cで滞
留時間3時間の条件下で重合させた。重合器内容物を所
定の速度で連続的に水素脱気槽に導き、水素を分離後、
200Q、容の2段目の重合反応器に導いた。2段目の
重合反応器には、エチレン1kg/hr、ヘキサン31
2/hrを連続的に供給し、表に示す極限粘度を有する
ポリマーが得られるような重合温度で、滞留時間25時
間の条件下で重合させた。
(3) Production of ethylene copolymer 972 g of ethylene/
11r1 hexane 26Q/hr, butene-172g/
hr and hydrogen are continuously fed to obtain a polymer having the intrinsic viscosity shown in the table, and the catalyst is
Polymerization was carried out at 80° C. with a residence time of 3 hours. The contents of the polymerization vessel are continuously led to a hydrogen degassing tank at a predetermined rate, and after separating hydrogen,
It was led to a second stage polymerization reactor with a capacity of 200Q. The second stage polymerization reactor was charged with 1 kg/hr of ethylene and 31 kg/hr of hexane.
2/hr was continuously supplied, and the polymerization was carried out under the conditions of a residence time of 25 hours at a polymerization temperature such that a polymer having the intrinsic viscosity shown in the table was obtained.

反応終了後、得られたエチレン共重合体を各種物性試験
に付した。これらの物性の測定を表に示す。
After the reaction was completed, the obtained ethylene copolymer was subjected to various physical property tests. Measurements of these physical properties are shown in the table.

実施例2 2000.容の1段目の重合反応器にエチレン1kg/
hr、ヘキサ715 Q/ hr、ブテン−120g/
hrを連続的に供給すると共に、実施例1で用いた触媒
をT1換算で0.6ミリモル/hr及びトリイソブチル
アルミニウム18ミリモル/brの速度で導入し、表に
示す極限粘度を有するポリマーが得られるような重合温
度で、滞留時間4時間の条件下で重合させた。
Example 2 2000. 1 kg of ethylene/
hr, Hexa 715 Q/ hr, Butene-120g/
hr was continuously supplied, and the catalyst used in Example 1 was introduced at a rate of 0.6 mmol/hr in terms of T1 and 18 mmol/br of triisobutylaluminum to obtain a polymer having the intrinsic viscosity shown in the table. The polymerization was carried out at a polymerization temperature of 4 hours and a residence time of 4 hours.

重合器内容物を所定の速度で連続的に200Q容の2段
目の重合反応器に導いた。2段目の重合反応器には、エ
チレン9 kg/ hr、ヘキサン1412/hr。
The contents of the polymerization vessel were continuously introduced at a predetermined rate to a second stage polymerization reactor having a capacity of 200Q. The second stage polymerization reactor was supplied with 9 kg/hr of ethylene and 1412/hr of hexane.

ブテン−150g/hr及び水素を表に示す極限粘度を
有するポリマーが得られるように連続的に供給し、80
°Cで滞留時間2.5時間の条件下で重合させIこ。
Butene-150 g/hr and hydrogen were continuously fed to obtain a polymer having the intrinsic viscosity shown in the table,
Polymerization was carried out at 1°C with a residence time of 2.5 hours.

実施例3 実施例2と同様に1段目を重合させた。重合器内容物を
所定の速度で連続的に、200Q容の2段目の重合反応
器に導いた。2段目の重合反応器には、エチレン512
g/ hr、ヘキサン20/hr及び水素を表に示す極
限粘度を倚するポリマーか得られるように連続的に供給
し、go’cで滞留時間4時間の条件下で重合さゼた。
Example 3 The first stage was polymerized in the same manner as in Example 2. The contents of the polymerization vessel were continuously introduced at a predetermined rate to a second stage polymerization reactor having a capacity of 200Q. In the second stage polymerization reactor, ethylene 512
g/hr, hexane 20/hr, and hydrogen were continuously fed to obtain a polymer having the intrinsic viscosity shown in the table, and the polymerization was carried out at a go'c with a residence time of 4 hours.

重合器内容物全所定の速度で連続的に水素脱気槽に導き
、水素を分離後、200Q容の3段目の重合反応器に導
いた。3段目の重合反応器には、エチレン3.7572
g/ hr、ヘキサン12(2/hr、ブテン−142
g/hr及び水素を表に示す極限粘度を有するポリマー
が得られるように連続的に供給し、80°Cで滞留時間
2.5時間の条件下て重合させた。
The entire contents of the polymerization vessel were continuously led to a hydrogen degassing tank at a predetermined rate, and after separating hydrogen, the contents were led to a third-stage polymerization reactor with a capacity of 200Q. In the third stage polymerization reactor, ethylene 3.7572
g/hr, hexane 12 (2/hr, butene-142
g/hr and hydrogen were continuously fed so as to obtain a polymer having the intrinsic viscosity shown in the table, and the polymerization was carried out at 80° C. with a residence time of 2.5 hours.

実施例4 (1)  固体触媒成分の製造 n−へブタン50rnQ中にマグネンウムジエトキシド
1.Okg(8,8モル)及び市販の無水硫酸マグネシ
ウム1.06kg(8,8モル)を懸濁さゼ、さらに四
塩化ケイ素1.5kg(8,8モル)とエタノール1.
6kg(35,2モル)を加えて80°Cで1時間反応
を行なった。
Example 4 (1) Preparation of solid catalyst component Magnenium diethoxide 1. 1.06 kg (8.8 mol) of commercially available anhydrous magnesium sulfate and 1.5 kg (8.8 mol) of silicon tetrachloride and 1.5 kg (8.8 mol) of silicon tetrachloride were suspended.
6 kg (35.2 mol) was added and the reaction was carried out at 80°C for 1 hour.

次いで四塩化チタン5ff(45モル)を加えて98°
Cで3時間反応させた。反応後、冷却静置し上澄液を傾
斜法により除去した。次いで、新たにnヘプタン100
ffを加えてかきまぜ、静置、上澄液除去の洗浄操作を
3回行なった後、n−へブタン200aを加えて固体触
媒成分の分散液を得た。このもののチタン担持量を比色
法により求めた結果、42mg−Ti7g−担体であっ
た。
Next, 5 ff (45 mol) of titanium tetrachloride was added and heated to 98°.
The reaction was carried out at C for 3 hours. After the reaction, the mixture was cooled and left to stand, and the supernatant liquid was removed by a decanting method. Next, add 100 ml of n-heptane
ff was added, stirred, left to stand, and the supernatant liquid removed. After washing operations were performed three times, n-hebutane 200a was added to obtain a dispersion liquid of the solid catalyst component. The amount of titanium supported on this product was determined by a colorimetric method, and as a result, it was 42 mg - 7 g of Ti - carrier.

(2)エチレン共重合体の製造 触媒成分として、上記(1)の固体触媒成分をTi換算
で1.8ミリモル/hr、ジエチルアルミニウムクロラ
イドを49.7ミリモル/h「、トリエチルアルミニウ
ムを4.3ミリモル/hrで供給したこと以外は実施例
2と同様にしてエチレン共重合体を得た。
(2) Production of ethylene copolymer As catalyst components, the solid catalyst component in (1) above was used at 1.8 mmol/hr in terms of Ti, diethylaluminium chloride at 49.7 mmol/h, and triethylaluminum at 4.3 mmol/hr. An ethylene copolymer was obtained in the same manner as in Example 2 except that the amount was supplied at mmol/hr.

比較例1 実施例4で製造した固体触媒成分を用いて、実施例3と
同様にしてエチレン共重合体を得た。このものの物性の
測定結果を表に示す。
Comparative Example 1 Using the solid catalyst component produced in Example 4, an ethylene copolymer was obtained in the same manner as in Example 3. The results of measuring the physical properties of this material are shown in the table.

比較例2 200Q容の1段目の重合反応器にエチレン572g/
br、ヘキサン15L’hr及び水素を表に示す極限粘
度を有するポリマーが得られるように連続的に供給する
と共に、実施例4で用いた固体触媒成分をT1換算で1
.4ミリモル/hr、ジエチルアルミニウムクロライド
を39.2ミリモル/hr、  l−リエチルアルミニ
ウムを3.4ミリモル/hrで供給し、重合温度80°
C1滞留時間4時間の条件下で重合さゼた。重合器内容
物をを所定の速度で連続的に水素脱気槽に導き、水素を
分離後、200Q容の2段目の重合反応器に導いた。2
段目の重合器には、エチレン5 kg/ hr、 ヘキ
サン15 Q/ br、ブテン−1100g/hr及び
水素を表に示す極限粘度を有するポリマーが得られるよ
うに連続的に供給し、80°C1滞留時間2.5時間の
条件下で重合させてエチレン共重合体を得た。このもの
の物性の測定結果を表に示す。
Comparative Example 2 572 g of ethylene was added to the first stage polymerization reactor with a capacity of 200 Q.
br, 15 L'hr of hexane, and hydrogen were continuously fed so as to obtain a polymer having the intrinsic viscosity shown in the table, and the solid catalyst component used in Example 4 was added to 15 L'hr of hexane in terms of T1.
.. 4 mmol/hr, diethylaluminum chloride at 39.2 mmol/hr, l-ethylaluminum 3.4 mmol/hr, polymerization temperature 80°.
Polymerization was carried out under conditions of a C1 residence time of 4 hours. The contents of the polymerization vessel were continuously introduced into a hydrogen degassing tank at a predetermined rate, and after hydrogen was separated, the contents were introduced into a second-stage polymerization reactor with a capacity of 200Q. 2
Ethylene 5 kg/hr, hexane 15 Q/hr, butene-1100 g/hr, and hydrogen were continuously supplied to the polymerization reactor at 80°C to obtain a polymer having the intrinsic viscosity shown in the table. Polymerization was carried out under conditions of a residence time of 2.5 hours to obtain an ethylene copolymer. The results of measuring the physical properties of this material are shown in the table.

比較例3 市販品ショーレックス4551Z (昭和電工製)を用
い、その物性を比較のため表に示した。
Comparative Example 3 A commercial product Shorex 4551Z (manufactured by Showa Denko) was used, and its physical properties are shown in the table for comparison.

Claims (1)

【特許請求の範囲】 1 エチレン単位85〜99.9重量%と炭素数3以上
のα−オレフィン単位15〜0.1重量%から成る共重
合体であつて、極限粘度が3.1〜5.0、密度が0.
940〜0.960g/cm^3、式 A=Z_5_0/Z_1_0 (Z_1_0及びZ_5_0は測定温度150℃、歪速
度0.05sec^−^1の一定歪速度伸長粘度のそれ
ぞれ10sec及び50secにおける値である) で定義されるパラメータAが6〜50及び流動の活性化
エネルギー△Hが7.5Kcal/mol以下であるこ
とを特徴とするエチレン共重合体。
[Scope of Claims] 1. A copolymer consisting of 85 to 99.9% by weight of ethylene units and 15 to 0.1% by weight of α-olefin units having 3 or more carbon atoms, and having an intrinsic viscosity of 3.1 to 5. .0, density is 0.
940 to 0.960 g/cm^3, formula A = Z_5_0/Z_1_0 (Z_1_0 and Z_5_0 are the values at 10 sec and 50 sec, respectively, of constant strain rate extensional viscosity at a measurement temperature of 150 ° C. and a strain rate of 0.05 sec^-^1. ) An ethylene copolymer having a parameter A defined by 6 to 50 and a flow activation energy ΔH of 7.5 Kcal/mol or less.
JP20576588A 1988-08-19 1988-08-19 Ethylene copolymer Pending JPH0253811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20576588A JPH0253811A (en) 1988-08-19 1988-08-19 Ethylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20576588A JPH0253811A (en) 1988-08-19 1988-08-19 Ethylene copolymer

Publications (1)

Publication Number Publication Date
JPH0253811A true JPH0253811A (en) 1990-02-22

Family

ID=16512299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20576588A Pending JPH0253811A (en) 1988-08-19 1988-08-19 Ethylene copolymer

Country Status (1)

Country Link
JP (1) JPH0253811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677265B1 (en) 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
EP1473323A1 (en) 2003-04-28 2004-11-03 Tosoh Corporation Polyethylene composition and process for producing same
US6953831B2 (en) 2000-12-21 2005-10-11 Japan Polychem Corporation Ethylene polymers
WO2009066689A1 (en) 2007-11-19 2009-05-28 Mitsui Chemicals, Inc. Bridged metallocene compound, olefin polymerization catalyst using the compound and ethylene polymer obtained by using the catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227913A (en) * 1983-06-10 1984-12-21 Idemitsu Petrochem Co Ltd Production of ethylene polymer or copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227913A (en) * 1983-06-10 1984-12-21 Idemitsu Petrochem Co Ltd Production of ethylene polymer or copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677265B1 (en) 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
US6953831B2 (en) 2000-12-21 2005-10-11 Japan Polychem Corporation Ethylene polymers
EP1473323A1 (en) 2003-04-28 2004-11-03 Tosoh Corporation Polyethylene composition and process for producing same
WO2009066689A1 (en) 2007-11-19 2009-05-28 Mitsui Chemicals, Inc. Bridged metallocene compound, olefin polymerization catalyst using the compound and ethylene polymer obtained by using the catalyst
US8785574B2 (en) 2007-11-19 2014-07-22 Mitsui Chemicals, Inc. Bridged metallocene compound, olefin polymerization catalyst containing the same, and ethylene polymer obtained with the catalyst

Similar Documents

Publication Publication Date Title
US4352915A (en) Process for the polymerization of ethylene
US5491207A (en) Process of producing high molecular weight ethylene-α-olefin elastomers with an indenyl metallocene catalyst system
CA1325004C (en) Solid catalyst component for olefin copolymerization and process for olefin copolymerization using said solid catalyst component
US5468703A (en) Titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst, and process for ethylene polymerization using the same
EP0086481B1 (en) Solid catalyst component for olefin polymerization
US4831000A (en) Catalyst composition for preparing high density or linear low density olefin polymers of controlled molecular weight distribution
JPS5920681B2 (en) polymerization catalyst
JP2005520040A (en) Polyethylene film with improved physical properties
NO301332B1 (en) Catalyst composition, process for its preparation and polymerization of olefins
NO310112B1 (en) Process for the preparation, mixing and use of a mixture containing ethylene polymers
EP3294781B1 (en) Polymerization process
US4199476A (en) Olefin polymerization catalyst
US4210559A (en) Catalyst for the preparation of polyalpha-olefins having broad molecular weight distributions
JP3034219B2 (en) Catalyst components and their use in olefin polymerization
NO161263B (en) PROCEDURE FOR BLOCK COPOLYMERIZATION FOR PREPARING EFFECTIVE ETHYLENE PROPYLENE BLOCK POLYMERS.
JPH0253811A (en) Ethylene copolymer
JPH0721005B2 (en) Catalyst composition for (co) polymerization of ethylene
US4284739A (en) Block copolymerization process
JPH02132109A (en) Ethylene copolymer
US20040038806A1 (en) Supported catalyst and process for olefin polymerization
US4211671A (en) Olefin polymerization catalyst
EP0754706B1 (en) Supported polymerization-catalyst and its use for olefin polymerization
EP0137224B1 (en) Solid catalyst component for olefin polymerization
WO2002064647A1 (en) Process for the polymerization of olefins
US5349033A (en) Process for the preparation of polyolefin