JPS59149907A - Crystalline polypropylene and its production - Google Patents

Crystalline polypropylene and its production

Info

Publication number
JPS59149907A
JPS59149907A JP2200583A JP2200583A JPS59149907A JP S59149907 A JPS59149907 A JP S59149907A JP 2200583 A JP2200583 A JP 2200583A JP 2200583 A JP2200583 A JP 2200583A JP S59149907 A JPS59149907 A JP S59149907A
Authority
JP
Japan
Prior art keywords
polypropylene
crystalline
polymerization
stage
limiting viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2200583A
Other languages
Japanese (ja)
Other versions
JPH0375562B2 (en
Inventor
Shunichi Kasahara
俊一 笠原
Tsutomu Nishikawa
西川 孜
Makoto Iida
信 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2200583A priority Critical patent/JPS59149907A/en
Publication of JPS59149907A publication Critical patent/JPS59149907A/en
Publication of JPH0375562B2 publication Critical patent/JPH0375562B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce crystalline PP having high melt tension and rigidity and good moldability, by using a stereoregular polymerization catalyst and effecting the polymerization in two stages in each of which the produced PP has a limiting viscosity in a specified range. CONSTITUTION:Crystalline PP having a limiting viscosity of 2-6dl/g, a melt index of 0.01-5g/10min, and an isotactic pentad fraction of 0.940 or above is produced by using a stereoregular polymerization catalyst (e.g., a diethylaluminum chloride/titanium trichloride mixture), to produce 50-85wt%, based on the total polymer formed, PP of a limiting viscosity of 0.5-3.0dl/g in the first stage and produce 50-15wt%, based on the total polymer formed, PP of a limiting viscosity of 9dl/g or above in the second stage. While conventional PP is difficult to process by blow forming, sheet molding, etc. because of its low melt tension, the crystalline PP having the above properties obtained by the process of this invention can be processed by the above-mentioned molding methods because it has high melting tension and rigidity.

Description

【発明の詳細な説明】 本発明は結晶性ポリプロピレンおよびその製造方法に関
し、詳しくは溶融張力、剛性が高く、成形性が良好な結
晶性ポリプロピレンおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystalline polypropylene and a method for producing the same, and more particularly to a crystalline polypropylene having high melt tension, high rigidity, and good moldability, and a method for producing the same.

結晶性ボ4ノプロピレンは剛性、耐熱性2表面光沢など
の性質が侵れているが、溶融張力が低いためブロー成形
、シート成形などを行なうことが困難であった。一般的
には、ポリプロピレンの分子量を大きくすれば溶融張力
は高くなるが、その場合、剛性および成形性が著しく低
下するという問題かある。そこで、この欠点を解消する
ために低密度ポリエチレンをブレンドする方法(特公昭
47−80614号公報、特開昭50−884 ’8号
公報)が提案されている。しかし、この方法では均一分
散が困難であり、結晶性ポリプロピレンの特徴である剛
性、耐熱性等が著しく低下するという欠点がある。また
、分子量分布を広げるため、多段階で重合する方法(特
開昭54−58389号公報、特開昭54−14444
8号公報)も提案されているが、得られるポリプロピレ
ンは十分満足できる溶融張力と成形性を有していない。
Although crystalline bo4nopropylene has poor properties such as rigidity, heat resistance, and surface gloss, it has been difficult to perform blow molding, sheet molding, etc. due to its low melt tension. Generally, increasing the molecular weight of polypropylene increases the melt tension, but in this case there is a problem in that the rigidity and moldability are significantly reduced. Therefore, in order to solve this drawback, a method of blending low density polyethylene has been proposed (Japanese Patent Publication No. 47-80614, Japanese Patent Application Laid-Open No. 50-884 '8). However, this method has the drawback that uniform dispersion is difficult and the characteristics of crystalline polypropylene, such as rigidity and heat resistance, are significantly reduced. In addition, in order to widen the molecular weight distribution, multi-stage polymerization methods (JP-A-54-58389, JP-A-54-14444)
No. 8) has also been proposed, but the resulting polypropylene does not have sufficiently satisfactory melt tension and moldability.

そこで、本発明者らは上記従来技術の欠点を除いて優れ
た溶融張力、成形性、剛性等を有する結晶性ホ゛リブロ
ビレンを開発すべく鋭意研死した結果、本発明を完成す
るに至った。
Therefore, the present inventors have worked diligently to develop crystalline polypropylene that has excellent melt tension, moldability, rigidity, etc. without the drawbacks of the above-mentioned conventional techniques, and as a result, they have completed the present invention.

すなわち不発・明は、極限粘度が2〜6 dt/ f 
In other words, the intrinsic viscosity of unexplored and bright materials is 2 to 6 dt/f.
.

メルトイ〉デツクス(M工)がo、cN〜55’/1o
分およびアイソタクチックペンタッド分率が0.940
以上である結晶性ポリプロピレン (第1発明)であり
、さらに立体規則性触媒を用いて2段階重合によシポリ
プロピレンを製造する方法において、第1段階では極限
粘度がα5〜xoaz7’yのポリプロピレンを全重合
量の50〜85重量%生成させ、第2段階では極限粘度
が9eLt/P以上の4?リプロピレンを全重合量の5
0〜15重量%生成させることを特徴とする極限粘度が
2〜6at/i。
Meltoy〉Decks (M engineering) is o, cN ~ 55'/1o
minute and isotactic pentad fraction is 0.940
The above-mentioned crystalline polypropylene (first invention) is a method for producing polypropylene by two-step polymerization using a stereoregular catalyst, in which polypropylene with an intrinsic viscosity of α5 to xoaz7'y is produced in the first step. 50 to 85% by weight of the total polymerization amount is produced, and in the second stage, 4? 5 of the total polymerized amount of lippropylene
It has an intrinsic viscosity of 2 to 6 at/i, characterized by being produced in an amount of 0 to 15% by weight.

M工が0.01〜55’/Io分およびアイソタクチッ
クペンタッド分率が0940以上である結晶性ぎりプロ
ビレ〉の製造方法(第2発明)である。
This is a method (second invention) for producing a crystalline polypropylene which has an M ratio of 0.01 to 55'/Io and an isotactic pentad fraction of 0940 or more.

第1発明に係る結晶性q IJプロビレ〉は極限粘度が
2〜6dL/ff、好ましくは5〜5dt/fである。
The crystalline q IJ Probile according to the first invention has an intrinsic viscosity of 2 to 6 dL/ff, preferably 5 to 5 dt/f.

極限粘度が2dt/P未満であると溶融張力が低下した
ものとなシ、また6dt/ffを超えると成形性が低下
するので好ましくない。また、M工は0.01〜57/
10分、特に[105〜2 jil−/10分のものが
好ましい。M工値が0.01p/10分未満であると成
形性が低下し、SP/1o分を超えるとドローダウンが
大きくなる。さらに、結晶性ピリプロプレンはアイソタ
クチックベ〉タツド分率がα940以上、好ましくは0
.945〜0.985のものである。アイソタクチック
ペンタッド分率がα940未満では剛性が低下するため
好ましくない。ここでアイソタクチックペンタッド分率
とはA、zambillらによってMacromole
cules、 6.925(1’975年)に発表され
た方法、すなわち130−NMRを使用する方法で測定
されるざリプロピレン分子鎖中のペンタッド単位でのア
イソタクチック分率である。換言すれば、アイソタクチ
ックペ〉タツド分率ハプロピレンモノマ一単位が5個連
続してメソ結合した連鎖の中心にあるプロピレンモノマ
一単位の分率である。ただし、ピークの帰属に関しては
、Macromolecules 、 8.687 (
1975年)に記載の上記文献の訂正法に基づいて行な
つ/ヒ。具体的にハ、c13−NMRスペクトルのメチ
ル炭素領域の全吸収ピーク中のmmmmピークの強度分
率としてアイソタクチックペンタッド単位を測定する。
If the intrinsic viscosity is less than 2 dt/P, the melt tension will be lowered, and if it exceeds 6 dt/ff, the moldability will be lowered, which is not preferable. Also, M work is 0.01~57/
10 minutes, especially [105 to 2 jil-/10 minutes is preferred. If the M value is less than 0.01 p/10 minutes, the moldability will decrease, and if it exceeds SP/10 minutes, the drawdown will increase. Furthermore, the crystalline pyripropylene has an isotactic base fraction of α940 or more, preferably 0.
.. 945 to 0.985. If the isotactic pentad fraction is less than α940, the rigidity decreases, which is not preferable. Here, the isotactic pentad fraction is defined by A, Macromole et al.
This is the isotactic fraction in pentad units in the molecular chain of Zaripropylene measured by the method published in J. C. Cules, 6.925 (1'975), that is, the method using 130-NMR. In other words, the isotactic fraction is the fraction of one propylene monomer unit at the center of a chain in which five consecutive meso-bonded hapropylene monomer units are formed. However, regarding peak assignment, Macromolecules, 8.687 (
This is done based on the correction method of the above-mentioned document described in 1975). Specifically, the isotactic pentad unit is measured as the intensity fraction of the mmmm peak among the total absorption peaks in the methyl carbon region of the c13-NMR spectrum.

本発明におけるアイツククチツクペンタッド分率の値は
、得られた結晶性ポリマーそのままの値であって、抽出
1分別等をした後のポリマーについての値ではない。第
1発明の結晶性ポリプロヒレ〉は以上の如き物性を有す
るものであるか、さらにゲル浸透クロマトグラフィー(
Gpa法)Kよる重量平均分子Hkl数平均分千厄(M
W/Mn)  の比が10以上、判に15〜50のもの
が成形性の点から好ましい。10未満のものは成形性が
低下する。
The value of the pentad fraction in the present invention is the value of the obtained crystalline polymer as it is, and is not the value of the polymer after extraction, fractionation, etc. The crystalline polypropylene of the first invention has the above-mentioned physical properties, or is further subjected to gel permeation chromatography (
Gpa method) Weight average molecule Hkl number average by K (M
From the viewpoint of moldability, it is preferable that the ratio of W/Mn is 10 or more, and the size is 15 to 50. If it is less than 10, moldability will decrease.

本発明の結晶性ぎりプロピレンは溶融張力、剛性が高く
、かつ成形性に優れている。
The crystalline propylene of the present invention has high melt tension, high rigidity, and excellent moldability.

以上の如き物性を有する結晶性g IJプロビレ〉の効
率の良い製造方法が第2発明の方法である。
The method of the second invention is an efficient method for producing crystalline IJ-problem having the above-mentioned physical properties.

この第2発明は立体規則性触媒を用いて2段階重合によ
やポリプロピレンを製造する方法である。
This second invention is a method for producing polypropylene by two-step polymerization using a stereoregular catalyst.

ここで用いられる立体規則性触媒とはエチレン。The stereoregular catalyst used here is ethylene.

プロビレ〉などの立体規則性重合反応に一般的に使用さ
れる触媒であシ、通常は遷移金属ハロゲン化合物成分と
有機アルミニウム化合物成分とからなる混合物が用いら
れる。ここで遷移金属ハロゲン化合物としてはチタンの
ハロゲン化物が好ましく、特に三塩化チタンが好適であ
る。三塩化チタンとしては、四塩化チタンを種々の方法
で還元したもの、これらをさらにボールミル処理および
/または溶媒洗浄(たとえば不活性溶媒および/または
極性化合物含有不活性溶媒を用いて洗浄)により活性化
したもの、三塩化チタンまたは三塩化チタン共晶体(た
とえばTiC4・τAtO4)をさらにアミン、エーテ
ル、エステル、イオウ、ハロゲンの誘導体、有機もしく
は無機の窒素またはリン化合物等と共粉砕処理したもの
等を挙げることができる。また、チタンのハロゲン化物
をマグネシラム上に担持したものを用いることができる
。一方為有機アルミニウム化合物としては、一般式AZ
RnXs −21(ただし、RはC7〜c、oのアルキ
ル基。
The catalyst is a catalyst commonly used for stereoregular polymerization reactions such as Probile, and usually a mixture of a transition metal halide component and an organoaluminum compound component is used. As the transition metal halide compound, a titanium halide is preferred, and titanium trichloride is particularly preferred. Titanium trichloride is obtained by reducing titanium tetrachloride by various methods, which are further activated by ball milling and/or solvent washing (for example, washing with an inert solvent and/or an inert solvent containing a polar compound). Titanium trichloride or titanium trichloride eutectic (e.g. TiC4/τAtO4) is further co-pulverized with amines, ethers, esters, sulfur, halogen derivatives, organic or inorganic nitrogen or phosphorus compounds, etc. be able to. Furthermore, a material in which a titanium halide is supported on magnesium lam can be used. As an organoaluminum compound, the general formula AZ
RnXs -21 (R is a C7-c, o alkyl group.

X Jd ハロゲン、nはO(n≦3の数である。)で
表わされる化合物が適当であり、たとえばジメチルアル
ミニウムクロリド、ジエチルアルミニウムクロリド、エ
チルアルミニウムセスキクロリド。
Compounds represented by X Jd halogen, where n is O (n≦3) are suitable, such as dimethylaluminum chloride, diethylaluminum chloride, and ethylaluminum sesquichloride.

エチルアルミニウムジクロリド、トリエチルアルミニウ
ムなどがあり、これらは混合物で用いることもできる。
Examples include ethylaluminum dichloride and triethylaluminum, and these can also be used in mixtures.

これら触媒成分は通常、道移金属化合物1モルに対して
有機アルミニウム化合物1〜100モルの割合で混合す
る。以上の如き立木規則性触媒は通常用いられるfjt
および組み合せ等によシ、各段階において用いられる。
These catalyst components are usually mixed in a ratio of 1 to 100 moles of the organoaluminum compound per 1 mole of the metal compound. The above-mentioned standing tree regular catalyst is commonly used fjt
and combinations etc. are used at each stage.

第2発明の方法における第1段階のプロピレンの重合は
、温度40〜90℃、好ましくは50〜80℃、圧力1
〜50 kg/crd % 好ましくけ1〜15kg/
c++!の条件下で行ない、極限粘度がα5〜50dt
/Li−1好ましくは1.0〜2. s dt/Pのポ
リプロピレンを全重合量の50〜85重量%、好ましく
は55〜86重量%生成せしめる。ポリプロピレジの極
限粘度が(L 5 eLt/f未満であると、得られる
結晶性ポリプロピレンの衝撃強度が低下し、五〇仏々を
超えると剛性が低下するので好ましくない。
The first stage of polymerization of propylene in the method of the second invention is carried out at a temperature of 40 to 90°C, preferably 50 to 80°C, and a pressure of 1
~50 kg/crd% Preferably 1~15 kg/
c++! The intrinsic viscosity is α5 to 50 dt.
/Li-1 preferably 1.0 to 2. s dt/P polypropylene is produced in an amount of 50 to 85% by weight, preferably 55 to 86% by weight of the total polymerization amount. If the intrinsic viscosity of the polypropylene resin is less than (L 5 eLt/f), the impact strength of the resulting crystalline polypropylene decreases, and if it exceeds 50 degrees, the rigidity decreases, which is not preferable.

第2段階の重合を行なうにあたり、温度および圧力条件
は前記第1段階の場合と同様であシ、極限粘度が9 d
t、Q (J、上、好ましくは10〜15 u/pのポ
リプロビレ〉を全重合量の50〜15重量%、好ましく
は45〜17重量%生成せしめる。第2段階で得られる
ポリプロビレ〉の極限粘度が9 dt/f未満であると
得られる結晶性ポリプロピレンの溶融張力が低下する。
In carrying out the second stage polymerization, the temperature and pressure conditions were the same as those in the first stage, and the intrinsic viscosity was 9 d.
t, Q (J, above, preferably 10 to 15 u/p polypropylene) is produced in an amount of 50 to 15% by weight, preferably 45 to 17% by weight of the total polymerization amount. The limit of the polypropylene obtained in the second stage When the viscosity is less than 9 dt/f, the melt tension of the crystalline polypropylene obtained decreases.

また重合量が50重社%を超えると得られる結晶性ぎり
プロピレン+7)剛性や成形性が低下し、15重7量%
未満であると溶融張力が低下する。
In addition, if the polymerization amount exceeds 50% by weight, the resulting crystalline propylene + 7) stiffness and moldability will decrease, resulting in 15% by weight and 7% by weight.
If it is less than that, the melt tension will decrease.

本発明の方法で極限粘度〔η〕の調節は分子量調節剤(
H2など)の濃度を適宜変化させることによって行なう
ことが可能である。
In the method of the present invention, the limiting viscosity [η] can be adjusted using a molecular weight regulator (
This can be done by appropriately changing the concentration of H2, etc.).

本発明の方法は種々の重合手段、たとえば2槽以上の重
合槽を用いて連続的に行なう方法や1槽以上の重合槽を
用いて回分式に行なう方法、さらにはこれら連続的方法
と回分式方法を組合せて行なう方法などを適用すること
ができる。(た、各段階の反応を2槽以上の重合槽で行
なうごともできる。この場合は、各槽生成物の極限粘度
[?)の平均116が所定の範囲にあれば良・い。
The method of the present invention is applicable to various polymerization methods, such as a continuous method using two or more polymerization tanks, a batch method using one or more polymerization tanks, and furthermore, these continuous methods and batch methods. A combination of methods can be applied. (Also, each step of the reaction may be carried out in two or more polymerization tanks. In this case, it is sufficient that the average intrinsic viscosity (?) of the products in each tank is within a predetermined range.

重合方法についても特に制限はなく、懸濁重合。There are no particular restrictions on the polymerization method, and suspension polymerization is used.

溶液重合、気相重合などを採用することができる。Solution polymerization, gas phase polymerization, etc. can be employed.

なお、懸濁重合を行なう際に用いる不活性溶媒としては
へキサン、ヘプタンなどの脂肪族炭化水素;シクロヘキ
サンなどの脂環式炭化水素;ヘンゼン、トルエンなどの
芳香族炭化水素などを挙げることができる。
In addition, examples of inert solvents used in suspension polymerization include aliphatic hydrocarbons such as hexane and heptane; alicyclic hydrocarbons such as cyclohexane; and aromatic hydrocarbons such as Hensen and toluene. .

以上の如き製造方法により第1発明の結晶性ボIJ ’
7’ロビレ〉を効率良く製造することができる。
By the manufacturing method as described above, the crystalline foam IJ' of the first invention is produced.
7'Robilet> can be efficiently produced.

本発明の結晶性ポリプロピレンは溶融張力および剛性が
高く、成形性に優れているため、家電製品、自動車部品
等の素材としてきわめて有用である。
The crystalline polypropylene of the present invention has high melt tension, high rigidity, and excellent moldability, so it is extremely useful as a material for home appliances, automobile parts, etc.

次に本発明を実施例によシ詳しく説明する。Next, the present invention will be explained in detail using examples.

実施例1〜3 内容積5tの攪拌機付オートクレーブに脱水n−へブタ
>21を投入し、ジエチルアルミニウムクロライド2.
51と三塩化チタン0.209−を加えた。
Examples 1-3 Dehydrated n-hebuta>21 was charged into an autoclave with an internal volume of 5 tons and equipped with a stirrer, and diethylaluminum chloride 2.
51 and 0.209 of titanium trichloride were added.

第1段階の重合反応は、液相温度を60°Cに保持し、
生成するy +)プロピレンが所定の極限粘度〔η〕に
なるように計量された水素および反応圧力が6に9/c
dになるようにプロピレンを連続的に供給し、120分
間攪拌しながら重合を行なった。
In the first stage polymerization reaction, the liquidus temperature was maintained at 60 °C,
Produced y +) Hydrogen measured so that the propylene has a predetermined intrinsic viscosity [η] and the reaction pressure is 6 to 9/c
Propylene was continuously supplied so that the amount of the polymer was d, and polymerization was carried out with stirring for 120 minutes.

その後、未反応プロビレ〉ガスを除去し、液相温度を5
0°Cまで゛下げた。
Then, remove unreacted gas and lower the liquidus temperature to 5.
The temperature was lowered to 0°C.

次に、第2段階の重合反応は、温度50°C1圧力qk
y/滅を維持しながら所定の極限粘kcη〕になるよう
に計量された水素およびプロビレ〉を連続供給し、60
分間攪拌しながら、重合を行なった。
Next, the second stage polymerization reaction is carried out at a temperature of 50°C and a pressure of qk.
Continuously supply hydrogen and proviso〉 measured to reach a predetermined ultimate viscosity kcη〕 while maintaining 60
Polymerization was carried out with stirring for minutes.

重合終了後、未反応ガスを除去し、重合生成物   ′
にn−ブタノール5Qm/を加え、80℃で1時間攪拌
して触媒分解を行なった。しかる後、ポリプロピレンを
分離し、洗浄、乾燥して白色粉末状ボリマーを得た。得
られたポリマーについて測定した物性を第1表に示す。
After the polymerization is completed, unreacted gas is removed and the polymerization product ′
5 Qm/n-butanol was added to the mixture, and the mixture was stirred at 80°C for 1 hour to perform catalytic decomposition. Thereafter, the polypropylene was separated, washed and dried to obtain a white powdery polymer. Table 1 shows the physical properties measured for the obtained polymer.

比較レリ1および2 各段階におりる生成ポリマーのネr限粘度と重合量を変
化させたこと以外は実′IAL例と同様の操作を行なっ
た。結果を第1表に示す。
Comparative Reli 1 and 2 The same operations as in the actual IAL examples were carried out except that the Ner limiting viscosity of the polymer produced at each stage and the amount of polymerization were varied. The results are shown in Table 1.

比較例6 第2段階を行なわないこと以外は実施例と同様の操作を
行なった。結果を第1表に示す。
Comparative Example 6 The same operation as in Example was performed except that the second stage was not performed. The results are shown in Table 1.

/ 申1・・・ 165°Clデカリン中での測定値欅2・
−・ J工S K675Bに準拠牟3・・・ ASTM
D747に準拠 ・4・・・東洋精機製メルトテンションテスターを使用
、オリフィスD ・= 2.10 m / n’L 、
 L =8.00772 / tn 、温度250°C
1プランジヤ一降下速度1ont/分、糸d1取速度2
 Or、p、mの条件下での迎j定値 喝・・・ ASTM D 1705に準拠、島津製フロ
ーテスターを使用、オリフィスD = 0.76 m/
 m 。
/ Shin 1... Measured value in 165°Cl decalin Keyaki 2.
-・Compliant with J Engineering S K675B 3... ASTM
Compliant with D747・4...Using Toyo Seiki melt tension tester, orifice D・=2.10 m/n'L,
L = 8.00772/tn, temperature 250°C
1 plunger 1 descending speed 1 ton/min, thread d 1 take-up speed 2
Constant value pumping under the conditions of Or, p, m... Based on ASTM D 1705, using Shimadzu flow tester, orifice D = 0.76 m/
m.

L = 25 m / nt 、温度260°C1剪断
速度546sec−」の条件下での測定値 特許出願人  出光石油化学株式会社
Measured value under the conditions of L = 25 m/nt, temperature 260°C, shear rate 546 sec. Patent applicant: Idemitsu Petrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】 (11’ h、 限粘Uが2〜6シ/9.メルトインデ
ックスが001〜5P/10分およびアイソタクチック
ペンタッド分率が0940以上である結晶性ポリプロビ
レ〉。 (2)  結晶性ポリプロビレ〉が重量平均分子、1f
iZ数平均分子以の比が10以上のものである竹許Ef
j求の範囲第1項記載の結晶性ポリプロピレン。 (3)  立体規則性触媒を用いて2段階重合によりポ
”リプロピレンを製造する方法において、鎖1段階では
極限粘度が05〜AOd4/7のホ゛リプロピレンを全
重合組の50〜85重量%生成させ、第2段階では4i
ijj限粘度が9 d4/7−以上のポリプロピレンを
全重合量の50〜15重量%生成させることを特徴とす
る極性粘度2〜6dJ7ff、メルトインデックスが0
01〜51/10分およびアイソタクチックペ〉タツド
分率が0940以上である結晶性ポリプロピレンの製造
方法。
[Claims] (11' h, crystalline polypropylene having a limiting viscosity U of 2 to 6 P/9, a melt index of 001 to 5 P/10 min, and an isotactic pentad fraction of 0940 or more). 2) Crystalline polypropylene> is a weight average molecule, 1f
Bamboo shoot Ef with a ratio of iZ number average molecule or more of 10 or more
j. The crystalline polypropylene according to item 1. (3) In a method for producing polypropylene by two-stage polymerization using a stereoregular catalyst, polypropylene with an intrinsic viscosity of 05 to AOd4/7 is produced in the first stage of the chain in an amount of 50 to 85% by weight of the total polymerization set. In the second stage, 4i
It is characterized by producing polypropylene having a limiting viscosity of 9 d4/7- or more in an amount of 50 to 15% by weight of the total polymerization amount, a polar viscosity of 2 to 6 dJ7ff, and a melt index of 0.
01-51/10 minutes and isotactic polypropylene A method for producing crystalline polypropylene having a tad fraction of 0940 or more.
JP2200583A 1983-02-15 1983-02-15 Crystalline polypropylene and its production Granted JPS59149907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200583A JPS59149907A (en) 1983-02-15 1983-02-15 Crystalline polypropylene and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200583A JPS59149907A (en) 1983-02-15 1983-02-15 Crystalline polypropylene and its production

Publications (2)

Publication Number Publication Date
JPS59149907A true JPS59149907A (en) 1984-08-28
JPH0375562B2 JPH0375562B2 (en) 1991-12-02

Family

ID=12070886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200583A Granted JPS59149907A (en) 1983-02-15 1983-02-15 Crystalline polypropylene and its production

Country Status (1)

Country Link
JP (1) JPS59149907A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000212A1 (en) * 1986-07-04 1988-01-14 Mitsui Petrochemical Industries, Ltd. Polyolefin composition for injection molding
US4950720A (en) * 1988-04-29 1990-08-21 Exxon Chemical Patents Inc. Modified polypropylene, process for making and article made from the same
US4981938A (en) * 1987-02-04 1991-01-01 Chisso Corporation Highly crystalline polypropylene
JPH03111404A (en) * 1989-09-26 1991-05-13 Chisso Corp Highly stereoregular polypropylene
JPH04120145A (en) * 1990-09-12 1992-04-21 Idemitsu Petrochem Co Ltd Resin composition for blow-molded bumper beam
JPH059226A (en) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd Polypropylene resin and its composition
JPH06210811A (en) * 1992-12-03 1994-08-02 Himont Inc Biaxially oriented propylene polymer film or sheet article
WO1998054233A1 (en) * 1997-05-30 1998-12-03 Grand Polymer Co., Ltd. Polypropylene resin composition and injection-molded article
JP2003073507A (en) * 2001-09-06 2003-03-12 Sumitomo Chem Co Ltd Polypropylene-based resin composition
JP2008545054A (en) * 2005-07-01 2008-12-11 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Propylene polymer with broad molecular weight distribution
WO2013125702A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
WO2013125700A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670014A (en) * 1979-11-13 1981-06-11 Mitsui Toatsu Chem Inc Propylene copolymer for forming sheet
JPS57185304A (en) * 1981-05-11 1982-11-15 Mitsubishi Chem Ind Ltd Preparation of propylene polymer
JPS58201806A (en) * 1982-05-19 1983-11-24 Chisso Corp High-melting viscoelastic polypropylene for post-processing sheet and blow molding, and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670014A (en) * 1979-11-13 1981-06-11 Mitsui Toatsu Chem Inc Propylene copolymer for forming sheet
JPS57185304A (en) * 1981-05-11 1982-11-15 Mitsubishi Chem Ind Ltd Preparation of propylene polymer
JPS58201806A (en) * 1982-05-19 1983-11-24 Chisso Corp High-melting viscoelastic polypropylene for post-processing sheet and blow molding, and its preparation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000212A1 (en) * 1986-07-04 1988-01-14 Mitsui Petrochemical Industries, Ltd. Polyolefin composition for injection molding
US4981938A (en) * 1987-02-04 1991-01-01 Chisso Corporation Highly crystalline polypropylene
US4950720A (en) * 1988-04-29 1990-08-21 Exxon Chemical Patents Inc. Modified polypropylene, process for making and article made from the same
JPH03111404A (en) * 1989-09-26 1991-05-13 Chisso Corp Highly stereoregular polypropylene
JPH04120145A (en) * 1990-09-12 1992-04-21 Idemitsu Petrochem Co Ltd Resin composition for blow-molded bumper beam
JPH059226A (en) * 1991-06-28 1993-01-19 Idemitsu Petrochem Co Ltd Polypropylene resin and its composition
JP2521382B2 (en) * 1991-06-28 1996-08-07 出光石油化学株式会社 Polypropylene resin
JP2007185964A (en) * 1992-12-03 2007-07-26 Basell North America Inc Biaxially oriented propylene polymer film or sheet articles
JPH06210811A (en) * 1992-12-03 1994-08-02 Himont Inc Biaxially oriented propylene polymer film or sheet article
WO1998054233A1 (en) * 1997-05-30 1998-12-03 Grand Polymer Co., Ltd. Polypropylene resin composition and injection-molded article
US6320009B1 (en) 1997-05-30 2001-11-20 Grand Polymer Co Ltd Polypropylene resin composition and injection-molded article
JP2003073507A (en) * 2001-09-06 2003-03-12 Sumitomo Chem Co Ltd Polypropylene-based resin composition
JP2008545054A (en) * 2005-07-01 2008-12-11 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Propylene polymer with broad molecular weight distribution
WO2013125702A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
WO2013125700A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
US9284427B2 (en) 2012-02-23 2016-03-15 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
US9505894B2 (en) 2012-02-23 2016-11-29 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet

Also Published As

Publication number Publication date
JPH0375562B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
CN102245696B (en) Thermoplastic elastomer polyolefin in-reactor blends and molded articles therefrom
US4550143A (en) Composition comprising ethylene-based polymers
US4245062A (en) Process for producing propylene-ethylene copolymers
US5990235A (en) Olefin block copolymer and production process thereof
JPS59149907A (en) Crystalline polypropylene and its production
US4550145A (en) Process for the production of propylene block copolymers by a three step method
JPH01126354A (en) Propylene polymer composition
US4254237A (en) Process for producing propylene-ethylene block copolymers
JPH0368890B2 (en)
JPH07116251B2 (en) Method for producing modified polyethylene
JPS6150087B2 (en)
JPH0528731B2 (en)
JPH06248133A (en) Polypropylene composition and its production
JP3341568B2 (en) Propylene / ethylene block copolymer composition and method for producing the same
JP4085673B2 (en) Propylene polymer composition and foam molded article obtained using the same
JPH0379367B2 (en)
JP3582209B2 (en) Propylene (co) polymer composition and method for producing the same
JP3305485B2 (en) Method for producing ethylene copolymer
JPH01225648A (en) Propylene copolymer composition
JPH064684B2 (en) Crystalline polypropylene
JPS63202640A (en) Polypropylene resin composition
JPH0344092B2 (en)
JP2983956B2 (en) Propylene block copolymer molded product
DE10212654B4 (en) Propylene polymer composition and foamed molded articles thereof
US20210187491A1 (en) Preparation Method Of Catalyst For Ethylene Polymerization