JPH044324B2 - - Google Patents

Info

Publication number
JPH044324B2
JPH044324B2 JP57033049A JP3304982A JPH044324B2 JP H044324 B2 JPH044324 B2 JP H044324B2 JP 57033049 A JP57033049 A JP 57033049A JP 3304982 A JP3304982 A JP 3304982A JP H044324 B2 JPH044324 B2 JP H044324B2
Authority
JP
Japan
Prior art keywords
ethylene
weight
propylene
units
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57033049A
Other languages
Japanese (ja)
Other versions
JPS58152038A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3304982A priority Critical patent/JPS58152038A/en
Publication of JPS58152038A publication Critical patent/JPS58152038A/en
Publication of JPH044324B2 publication Critical patent/JPH044324B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、射出成形用に適した低温耐衝撃性、
剛性が優れしかも流れ性の良好な組成物に関す
る。 結晶性ポリプロピレンの低温で脆いという欠点
を改良する方法についてはすでに多くの検討がな
され、ポリエチレン或はエチレンプロピレンゴム
をブレンドする方法、或は、プロピレンと他のオ
レフイン類を共重合する方法が提案されており、
中でもプロピレンと他のオレフイン特にエチレン
と共重合する方法は、工業的規模で実施されてお
り、すでに多くの製品が市場に供給されている。
一方成形時のサイクルを短縮すること或は必要エ
ネルギーを低減することが要望されており、それ
に対しては流れ性を改良することが行われている
が、単にメルトフローインデツクスを大きくする
ために重合体の分子量を低くするだけでは耐衝撃
性の低下が大きく、さらには実際の成形品を作つ
た場合に成形品の耐衝撃性に大きな影響をもつと
される破断時ののび(ASTM−D638)が極めて
小さくなる。即ち通常の耐衝撃性の試験法、例え
ばシヤルピー衝撃(ASTM−D256−56)又はデ
ユポン衝撃(JIS−K−6718)では良い結果であ
つても破断時の伸びが小さい場合には、実際の成
形品では耐衝撃性が劣る結果となる。従つて比較
的伸びの大きい組成物が望まれる。 本発明者らは種々の検討を行つた結果、特定の
フラクシヨンを特定割合含有するプロピレン組成
物が上記の望ましい物性を保有するものであるこ
とを見い出し本発明を完成した。 本発明の目的は比較的大きいメルトフローイン
デツクスを有し、しかも高い剛性、耐衝撃性を有
し、しかも破断時の伸びが比較的大きなポリプロ
ピレン樹脂組成物を提供することにある。 本発明は、 a 30℃灯油可溶分の極限粘度数が1.5〜5.0であ
り、エチレン含量が30〜70重量%、13C NMR
で測定したプロピレン単位が2個以上連続した
連鎖と孤立したプロピレン単位との比率が2〜
10、エチレン単位が2個以上連続した連鎖と孤
立したエチレン単位との比率が2〜10であり、 b 30℃の灯油に不溶で沸騰n−ヘプタン可溶分
の極限粘度数が0.3〜2であり、エチレン含量
が8〜50重量%、13C NMRで測定した全プロ
ピレン単位のなかで孤立したプロピレン単位が
10%以下、全エチレン単位の中で孤立したエチ
レン単位が20%以下であり、 c 30℃の灯油に不溶で沸騰n−ヘプタン不溶分
の極限粘度数が0.5〜1.5であり、エチレン含量
が5重量%以下であり、13C NMRで測定した
アイソタクテイクトリアツドが0.95以上であ
り、 a)、b)、c)各成分をそれぞれ5〜15重量
%、10〜30重量%、60〜80重量%の比率で含有
し、メルトフローインデツクスが10より大きい耐
衝撃性と成形時の流れ性の優れた射出成形用ポリ
プロピレン組成物である。 本発明に於ける各フラクシヨンは、組成物を白
灯油に130〜180℃で完全に溶解した後、除々に30
℃に降温し、可溶分を分離し、次いで30℃で不溶
な部分をソツクスレー抽出器を用いて沸騰n−ヘ
プタンで8時間抽出し、沸騰n−ヘプタンに対す
る可溶部と不溶部に分離される。 上記操作によつて前述のa)、b)、c)のフラ
クシヨンに分離されるが、上記分離操作は白灯油
及びn−ヘプタンに酸化防止剤を添加し、窒素気
流下で行うことが、各フラクシヨンを精度よく分
離するために好ましい。 本発明の組成物に於てて、フラクシヨンa)
は、組成物の耐衝撃性、特に低温に於ける耐衝撃
性を高く保つために必要な成分であり、エチレン
含量が30重量%以下では低温耐衝撃性が不充分で
あり、70重量%以上では、組成物の流れ性が不良
となる。13C NMRで測定(各ピークの帰属は、
Macromolecules vol 11 33〜36ページ(1978)
及びRubb、chem、Tech.vol44 781(1971)によ
つた)された、プロピレン及びエチレン単位が2
個以上連続した連鎖と弧立したプロピレン単位及
びエチレン単位との比率が2〜10と適度なランダ
ム性でエチレンとプロピレンが結合したものであ
る必要があり、2未満の比較的孤立したモノマー
単位が多い場合には、流れ性が低下する問題があ
り、10を超える比較的エチレン又はプロピレン単
位が長いものである場合には耐衝撃性が不良であ
り好ましくない。極限粘度数(135℃テトラリン
溶液で測定)が1.5未満では耐衝撃性が不良であ
り5.0を超える場合は流れ性が不良となる。 フラクシヨンb)は、耐衝撃性及び破断時の伸
びを大きく保つために必要な成分であるエチレン
含量が50重量%を超える場合は剛性が不良であ
り、8重量%未満では破断時の伸び耐衝撃性が不
良である。又、13C NMRで測定した孤立したプ
ロピレン単位が10%を超える場合では剛性が不良
であり、又孤立したエチレン単位が20%を超える
場合は流れ性及び剛性が不良であるので何れの場
合も好ましくない。極限粘度数が0.3未満では破
断時の伸びが不良であり、2以上では剛性が不良
であり好ましくない。 フラクシヨンc)は、剛性を高く保つために必
要な成分であり、極限粘度数が0.5未満では、破
断時の伸びが不良であり、1.5を超えるときは流
れ性及び剛性が不良であり、エチレン含量が5重
量%を超えるときは剛性が不良である。又、13C
NMRで測定したアイソタクテイクトリアツドが
0.95未満では剛性が不良である。 上記a)b)c)の比率はフラクシヨンa)が
5重量%未満では耐衝撃性が不良であり、15重量
%を超えるときは剛性が不良である。又フラクシ
ヨンb)が10重量%未満では破断時の伸びが不良
であり、30重量%を超えるときは剛性が不良であ
る。又フラクシヨンc)が60重量%未満では剛性
が不良であり、又80重量%を超えるときは破断時
の伸び、及び耐衝撃性が不良である。 本発明の組成物のメルトフーインデツクス
(MI)は、10より大きいことが必須であり、この
値より小さいと流れ性が不良となり、本発明の目
的に適さない。 本発明の組成物は、流れ性が良好で、しかも耐
衝撃性、剛性がともに優れ破断時の伸びが大きく
特に射出成形用に優れた樹脂であり工業的価値が
高い。 本発明の組成物は上記a)、b)、c)各フラク
シヨンを重合反応で製造し上記量比でブレンドす
る方法、或は同一反応系でa)、b)、c)各フラ
クシヨンが上記量比で得られるように重合するこ
とによつても得られる。重合反応条件は、例え
ば、ポリマー ハンドブツク(POLYMER
HANDBOOK 2nd Ed.,(1974))第−105お
よび第−193頁、ハイポリマーズ(HIGH
POLYMERS)第18巻、コポリメリゼーシヨン
(COPLYMERIZATION)第126、127、134頁に
記載の条件を参考にし、使用する触媒、反応温度
に応じてエチレンとプロピレンの反応比率r1,r2
を適宜採用し定めることができる。例えばフラク
シヨンa)は、三塩化チタン、ジエチルアルミニ
ウムクロライドからなる触媒等の立体規則性触媒
を用いて、前記文献記載の条件を参考にして決め
られる適当な比率のエチレン、プロピレンの混合
物を用いて重合することによつて得られる。又フ
ラクシヨンc)は、高立体規則性触媒、例えば上
記の組み合せの触媒にさらに立体規則性向上剤を
加えてプロピレンを上記の適当な範囲の分子量の
ポリプロピレンを製造し、次いで沸騰n−ヘプタ
ンで低立体規則性ポリマーを抽出して製造され
る。さらにフラクシヨンb)は、上記フラクシヨ
ンc)を製造する際に得られた沸騰n−ヘプタン
可溶分から室温でn−ヘプタンに溶解する部分を
除去することによつて得られる成分と、前述立体
規則性触媒を用いてエチレン含量が70〜80重量%
含有するポリマーを得、次いで一度灯油に溶解し
可溶分を除去することによつて得られるポリマー
とを適当な比率で混合することによつて得られ
る。又、同一反応系で得るためには、高立体規則
性触媒を用い、しかも低分子量の立体規則性ポリ
マーを溶解しない重合媒体を用いて最初にプロピ
レン単独或は少量のエチレンとプロピレンの共重
合体を得、次いで比較的エチレンの多い条件でエ
チレンとプロピレンを共重合し、次いで適当な条
件で前述のa)、b)、c)フラクシヨンが適当な
比率になるように抽出することによつて得られ
る。 以下に実施例を示し本発明の効果を具体的に説
明する。 なお、実施例及び比較例での各種物性の測定は
下記によつた。 破断時の伸び:ASTM D638による。 極限粘度数(η):135℃テトラリン溶液で測
定。 曲げ剛性度:ASTM D747による。 デユポン衝撃:JIS K6718に準ず。 シヤルピー衝撃:ASTM D256による。 メルトフローインデツクス(MI):JIS K7210
に基づいて、230℃、荷重2.16Kgで測定。 破断時の伸びと曲げ剛性度は20℃で、また、デ
ユポン衝撃とシヤルピー衝撃は−10℃、20℃で測
定した。 実施例 1 市販の高立体規則性のポリプロピレンを与える
三塩化チタン触媒(丸紅ソルヴエー社製)10gと
ジエチルアルミニウムクロライド50mlからなる触
媒を用い、内容積300のオートクーブ中でプロ
ピレンとエチレンのブロツク共重合を行つた。 オートクレーブ中に上記触媒とn−ヘキサン
150を入れ、プロピレンの単独重合を気相水素
濃度14.5容量%、全圧5Kg/cm2ゲージ、重合温度
50℃で2時間行い、次いで気相水素濃度4容量
%、気相エチレン濃度20容量%、全圧3Kg/cm2
ージ、重合温度50℃で第1段の共重合を1時間行
い、最後に気相水素濃度5容量%、気相エチレン
濃度70容量%、全圧1Kg/cm2ゲージ、重合温度50
℃として第2段の共重合を30分間行つた。 重合終了後、オートクレーブ中にメタノール50
を加え、40℃で30分間攪拌して触媒の活性を殺
した後、濾過し、50/回の水で3回洗浄し、次
いで乾燥してポリマー組成物を得た。 得られたポリマー組成物を本文中の記載に従つ
て、a)30℃の白灯油可溶分、b)30℃の白灯油
不溶でかつ沸騰n−ヘプタン可溶分及びc)30℃
の白灯油不溶でかつ沸騰n−ヘプタン不溶分に分
割し、各フラクシヨンの重量比及び物性を測定
し、結果を第1表に示した。 また、得られたポリマー組成物の上記各種物性
を測定し、結果を第2表に示した。 実施例2、3及び比較例1〜3 実施例1において、各段階の気相水素濃度及び
気相エチレン濃度を変化させ、第1表に示す各フ
ラクシヨンを得られるようなポリマー組成物を実
施例1と同様にして製造した。 例えば、比較例3ではプロピレン単独の重合時
の気相水素濃度は13.0容量%、気相エチレン濃度
1.5容量%であり、第1段の共重合ではそれぞれ
2.5容量%、40容量%であり、第2段の共重合で
はそれぞれ2.5容量%、45容量%であつた。 これらポリマー組成物の各フラクシヨンの分析
結果を第1表に、またこれらポリマー組成物の各
種物性の測定結果を第2表に示した。 ブレンドによつて本願発明の組成物を製造する
例を以下に示す。 実施例 4 まず、実施例1に記載の方法と同様にしてプロ
ピレン単独重合部のみ行つた。すなわち、気相水
素濃度14.5容量%、全圧5Kg/cm2ゲージ、重合温
度50℃で2時間重合し、次いでメタノール50を
加え、40℃で30分間攪拌して触媒の活性を殺した
後、濾過し、50/回の水で3回洗浄した。次い
で第8頁に記載したc)部とb)部の一部に分離
するため、ポリマーを沸騰n−ヘプタンで抽出し
た。沸騰n−ヘプタンに可溶の部分として0.6Kg、
不溶分として5.3Kgを得た。この不溶分はc)部
に相当し、ηは1.19、エチレン0、アイソタクテ
イクトリアツド0.98であつた。 一方、a)部とb)部の1部は実施例1に記載
の方法と同様に共重合部のみを行うことで得た。
すなわち、上述のc)部を製造するのと同一の触
媒を用い、気相水素濃度4容量%、気相エチレン
濃度20容量%、全圧3Kg/cm2ゲージで50℃1時
間、次いで気相水素濃度5容量%、気相エチレン
濃度70容量%、全圧1Kg/cm2ゲージ、重合温度50
℃として第2段の共重合を30分間行つた。次いで
メタノールで失活し、さらに水洗した後、n−ヘ
プタンを蒸発して共重合を6.1Kg得た。この共重
合体を加熱下に灯油に溶解し、次いで30℃の灯油
に可溶な部分として、5.7Kg、不溶な部分として
0.4Kgを得た。可溶な部分はa)部に相当し、エ
チレン含量41.5%、プロピレン連鎖比率3.7、エ
チレン連鎖比率3.4であつた。不溶な部分と上記
沸騰n−ヘプタン可溶分0.6Kgと、灯油不溶分0.3
gを混合してb)部とした。b)部はエチレン
14.2%、孤立プロピレン比率2、孤立エチレン比
率5であつた。こうして得た各部をa:b:cが
10:20:70となるように混合して物性を測定した
ところ、MI38、曲げ剛性14200、デユポン37(20
℃)、23(−10℃)、シヤルピー6.3(30℃)、3.4(−
10℃)、伸び280%であつた。
The present invention provides low-temperature impact resistance suitable for injection molding,
The present invention relates to a composition having excellent rigidity and good flowability. Many studies have already been conducted on ways to improve the drawback of crystalline polypropylene being brittle at low temperatures, and methods have been proposed such as blending polyethylene or ethylene propylene rubber, or copolymerizing propylene with other olefins. and
Among them, the method of copolymerizing propylene with other olefins, especially ethylene, has been carried out on an industrial scale, and many products are already available on the market.
On the other hand, there is a desire to shorten the cycle during molding or to reduce the required energy, and in response, improvements in flowability are being carried out, but in order to simply increase the melt flow index, Simply lowering the molecular weight of the polymer will significantly reduce the impact resistance, and furthermore, when making actual molded products, the elongation at break (ASTM-D638 ) becomes extremely small. In other words, even if good results are obtained using normal impact resistance testing methods such as Charpy impact (ASTM-D256-56) or Dupont impact (JIS-K-6718), if the elongation at break is small, the actual molding This results in poor impact resistance. Therefore, a composition with relatively high elongation is desired. As a result of various studies, the present inventors have discovered that a propylene composition containing a specific fraction in a specific proportion possesses the above-mentioned desirable physical properties, and has completed the present invention. An object of the present invention is to provide a polypropylene resin composition that has a relatively large melt flow index, high rigidity and impact resistance, and has a relatively large elongation at break. The present invention is characterized in that: (a) the 30°C kerosene soluble component has an intrinsic viscosity of 1.5 to 5.0, an ethylene content of 30 to 70% by weight, and 13 C NMR
The ratio of chains of two or more consecutive propylene units to isolated propylene units measured in
10. The ratio of chains of two or more consecutive ethylene units to isolated ethylene units is 2 to 10, b) The intrinsic viscosity of the kerosene-insoluble part at 30°C but soluble in boiling n-heptane is 0.3 to 2. Yes, the ethylene content is 8-50% by weight, and there are only isolated propylene units among the total propylene units measured by 13 C NMR.
10% or less, isolated ethylene units account for 20% or less of all ethylene units, c) Insoluble in kerosene at 30℃ and insoluble in boiling n-heptane, the intrinsic viscosity is 0.5 to 1.5, and the ethylene content is 5. % by weight or less, and the isotactic triad measured by 13 C NMR is 0.95 or more, and each component of a), b), and c) has a content of 5 to 15% by weight, 10 to 30% by weight, and 60 to 80% by weight, respectively. This polypropylene composition for injection molding has a melt flow index of more than 10 and has excellent impact resistance and flowability during molding. Each fraction in the present invention is prepared by completely dissolving the composition in white kerosene at 130~180℃, and then gradually adding 30%
The temperature was lowered to ℃, the soluble portion was separated, and then the insoluble portion was extracted at 30℃ with boiling n-heptane using a Soxhlet extractor for 8 hours to separate the soluble portion and the insoluble portion in boiling n-heptane. Ru. By the above operation, the fractions a), b), and c) are separated, but the above separation operation is performed by adding an antioxidant to white kerosene and n-heptane and carrying out under a nitrogen stream. Preferable for separating fractions with high precision. In the composition of the invention, the fraction a)
is a necessary component to maintain high impact resistance of the composition, especially impact resistance at low temperatures.If the ethylene content is less than 30% by weight, the low-temperature impact resistance is insufficient, and if the ethylene content is less than 30% by weight, the low-temperature impact resistance is insufficient. In this case, the flowability of the composition becomes poor. Measured by 13 C NMR (the assignment of each peak is
Macromolecules vol 11 pages 33-36 (1978)
and Rubb, chem, Tech.vol44 781 (1971)), the propylene and ethylene units are 2
It must be a combination of ethylene and propylene with a moderate randomness, with a ratio of 2 or more consecutive chains to erect propylene units and ethylene units, and less than 2 relatively isolated monomer units. If the number is too large, there is a problem of decreased flowability, and if the number of ethylene or propylene units is relatively long, exceeding 10, the impact resistance is undesirable. If the intrinsic viscosity number (measured with a tetralin solution at 135°C) is less than 1.5, the impact resistance will be poor, and if it exceeds 5.0, the flowability will be poor. Fraction b) has poor rigidity if the ethylene content, which is a necessary component to maintain high impact resistance and elongation at break, exceeds 50% by weight, and if it is less than 8% by weight, the elongation at break has poor impact resistance. The quality is poor. Furthermore, if the number of isolated propylene units measured by 13 C NMR exceeds 10%, the rigidity is poor, and if the number of isolated ethylene units exceeds 20%, the flowability and stiffness are poor, so in either case, Undesirable. If the intrinsic viscosity is less than 0.3, the elongation at break will be poor, and if it is 2 or more, the rigidity will be poor, which is not preferred. Fraction c) is a necessary component to maintain high rigidity; if the intrinsic viscosity is less than 0.5, the elongation at break is poor, and if it exceeds 1.5, the flowability and rigidity are poor, and the ethylene content If it exceeds 5% by weight, the rigidity is poor. Also, 13 C
The isotactic triad measured by NMR is
If it is less than 0.95, the rigidity is poor. Regarding the ratios a) b) c) above, if the fraction a) is less than 5% by weight, the impact resistance is poor, and if it exceeds 15% by weight, the rigidity is poor. Further, if the fraction b) is less than 10% by weight, the elongation at break is poor, and if it exceeds 30% by weight, the rigidity is poor. If the fraction c) is less than 60% by weight, the rigidity will be poor, and if it exceeds 80% by weight, the elongation at break and impact resistance will be poor. It is essential that the melt index (MI) of the composition of the present invention is greater than 10, and if it is less than this value, the flowability will be poor and it will not be suitable for the purpose of the present invention. The composition of the present invention has good flowability, excellent impact resistance and rigidity, and has a large elongation at break, making it an excellent resin particularly for injection molding, and has high industrial value. The composition of the present invention can be produced by a method in which the above a), b), and c) fractions are produced by a polymerization reaction and blended in the above quantitative ratio, or in the same reaction system, each fraction a), b), and c) is produced in the above amount. It can also be obtained by polymerization as obtained by ratio. Polymerization reaction conditions can be found, for example, in the Polymer Handbook (POLYMER
HANDBOOK 2nd Ed., (1974)) No. 105 and No. 193, High Polymers (HIGH
The reaction ratio of ethylene and propylene r 1 , r 2 depending on the catalyst used and the reaction temperature, with reference to the conditions described in Volume 18 of Copolymerization (COPLYMERS), pages 126, 127, and 134 of Copolymerization (COPLYMERIZATION).
may be adopted and determined as appropriate. For example, fraction a) is polymerized using a stereoregular catalyst such as a catalyst consisting of titanium trichloride or diethylaluminum chloride, and a mixture of ethylene and propylene in an appropriate ratio determined with reference to the conditions described in the above literature. obtained by doing. Fraction c) can also be obtained by adding a stereoregularity improver to a highly stereoregular catalyst, such as the above-mentioned combination of catalysts, to produce polypropylene with a molecular weight within the above appropriate range, and then reducing the propylene with boiling n-heptane. Manufactured by extracting stereoregular polymers. Further, fraction b) is composed of a component obtained by removing a portion soluble in n-heptane at room temperature from the boiling n-heptane soluble portion obtained when producing fraction c), and a component having the above-mentioned stereoregularity. Ethylene content 70-80% by weight using catalyst
It can be obtained by obtaining a polymer containing the above-mentioned compound, and then mixing it in an appropriate ratio with a polymer obtained by dissolving it in kerosene and removing the soluble content. In addition, in order to obtain propylene in the same reaction system, propylene alone or a small amount of a copolymer of ethylene and propylene is first produced by using a highly stereoregular catalyst and a polymerization medium that does not dissolve low molecular weight stereoregular polymers. obtained by copolymerizing ethylene and propylene under relatively ethylene-rich conditions, and then extracting the above-mentioned fractions a), b), and c) under appropriate conditions in an appropriate ratio. It will be done. EXAMPLES Below, the effects of the present invention will be specifically explained with reference to Examples. The various physical properties in the Examples and Comparative Examples were measured as follows. Elongation at break: According to ASTM D638. Intrinsic viscosity number (η): Measured with tetralin solution at 135°C. Bending stiffness: According to ASTM D747. Dupont impact: According to JIS K6718. Shalpey impact: per ASTM D256. Melt flow index (MI): JIS K7210
Measured at 230℃ and 2.16Kg load. Elongation at break and bending stiffness were measured at 20°C, and Dupont impact and Charpey impact were measured at -10°C and 20°C. Example 1 Block copolymerization of propylene and ethylene was carried out in an autocube with an internal volume of 300 ml using a catalyst consisting of 10 g of a titanium trichloride catalyst (manufactured by Marubeni Solve A Co., Ltd.) and 50 ml of diethylaluminium chloride, which yields commercially available highly stereoregular polypropylene. I went. The above catalyst and n-hexane in an autoclave
150, and the homopolymerization of propylene was carried out at a gas phase hydrogen concentration of 14.5% by volume, total pressure of 5Kg/cm 2 gauge, and polymerization temperature.
The first copolymerization was carried out at 50°C for 2 hours, then the first stage copolymerization was carried out for 1 hour at a gas phase hydrogen concentration of 4% by volume, a gaseous phase ethylene concentration of 20% by volume, a total pressure of 3 kg/cm 2 gauge, and a polymerization temperature of 50°C. Gas phase hydrogen concentration 5% by volume, gas phase ethylene concentration 70% by volume, total pressure 1Kg/cm 2 gauge, polymerization temperature 50
The second stage copolymerization was carried out for 30 minutes. After the polymerization is complete, add 50 methanol to the autoclave.
was added, stirred at 40°C for 30 minutes to kill the activity of the catalyst, filtered, washed three times with 50 parts of water, and then dried to obtain a polymer composition. The obtained polymer composition was prepared according to the description in the text: a) white kerosene soluble portion at 30°C, b) white kerosene insoluble portion at 30°C and boiling n-heptane soluble portion, and c) 30°C white kerosene soluble portion.
The fraction was divided into white kerosene-insoluble and boiling n-heptane-insoluble fractions, and the weight ratio and physical properties of each fraction were measured. The results are shown in Table 1. In addition, the above-mentioned various physical properties of the obtained polymer composition were measured, and the results are shown in Table 2. Examples 2 and 3 and Comparative Examples 1 to 3 In Example 1, the gas phase hydrogen concentration and gas phase ethylene concentration at each stage were changed, and polymer compositions were prepared such that each fraction shown in Table 1 could be obtained. It was manufactured in the same manner as 1. For example, in Comparative Example 3, the gas phase hydrogen concentration during polymerization of propylene alone was 13.0% by volume, and the gas phase ethylene concentration
1.5% by volume, and in the first stage copolymerization, each
They were 2.5% by volume and 40% by volume, and in the second stage copolymerization they were 2.5% by volume and 45% by volume, respectively. The analysis results of each fraction of these polymer compositions are shown in Table 1, and the measurement results of various physical properties of these polymer compositions are shown in Table 2. An example of producing the composition of the present invention by blending is shown below. Example 4 First, only the propylene homopolymerization portion was carried out in the same manner as in Example 1. That is, polymerization was carried out for 2 hours at a gas phase hydrogen concentration of 14.5% by volume, a total pressure of 5 kg/cm 2 gauge, and a polymerization temperature of 50°C, and then 50% methanol was added and stirred at 40°C for 30 minutes to kill the activity of the catalyst. Filter and wash 3 times with 50 times water. The polymer was then extracted with boiling n-heptane in order to separate it into parts c) and parts b) as described on page 8. 0.6Kg as the part soluble in boiling n-heptane,
5.3 kg of insoluble matter was obtained. This insoluble matter corresponded to part c), η was 1.19, ethylene was 0, and isotactic triad was 0.98. On the other hand, part a) and part b) were obtained by carrying out only the copolymerization part in the same manner as in Example 1.
That is, using the same catalyst as in the production of part c) above, the gas phase hydrogen concentration was 4% by volume, the gaseous phase ethylene concentration was 20% by volume, the total pressure was 3 kg/cm2 gauge, 50°C for 1 hour, and then the gas phase was heated at 50°C for 1 hour. Hydrogen concentration 5% by volume, gas phase ethylene concentration 70% by volume, total pressure 1Kg/cm 2 gauge, polymerization temperature 50
The second stage copolymerization was carried out for 30 minutes. After deactivation with methanol and further washing with water, n-heptane was evaporated to obtain 6.1 kg of copolymer. This copolymer was dissolved in kerosene under heating, and then 5.7 kg as the soluble part and 5.7 kg as the insoluble part in kerosene at 30℃.
Obtained 0.4Kg. The soluble portion corresponded to part a), and had an ethylene content of 41.5%, a propylene chain ratio of 3.7, and an ethylene chain ratio of 3.4. The insoluble part, the boiling n-heptane soluble part 0.6 kg, and the kerosene insoluble part 0.3
g was mixed to form part b). Part b) is ethylene
The ratio of isolated propylene was 2 and the ratio of isolated ethylene was 5. The parts obtained in this way are a: b: c.
When the physical properties were measured after mixing at a ratio of 10:20:70, MI38, bending rigidity 14200, Dupont 37 (20
°C), 23 (-10 °C), Shyalpy 6.3 (30 °C), 3.4 (-
10℃), and the elongation was 280%.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 a 30℃灯油可溶分の極限粘度数が1.5〜5.0
であり、エチレン含量が30〜70重量%、
13CNMRで測定したプロピレン単位が2個以
上連続した連鎖と孤立したプロピレン単位との
比率が2〜10、エチレン単位が2個以上連続し
た連鎖と孤立したエチレン単位との比率が2〜
10であり、 b 30℃の灯油に不溶で沸騰n−ヘプタン可溶分
の極限粘度数が0.3〜2であり、エチレン含量
が8〜50重量%、13CNMRで測定した全プロピ
レン単位のなかで孤立したプロピレン単位が10
%以下、全エチレン単位のなかで孤立したエチ
レン単位が20%以下であり、 c 30℃の灯油に不溶で沸騰n−ヘプタン不溶分
の極限粘度数が0.5〜15であり、エチレン含量
が5重量%以下であり、13CNMRで測定したア
イソタクチツクトリアツドが0.95以上であり、 a)、b)、c)各成分をそれぞれ5〜15重量
%、10〜30重量%、60〜80重量%の比率で含有
し、メルトフローインデツクスが10より大きい耐
衝撃性と成形時の流れ性の優れた射出成形用ポリ
プロピレン組成物。
[Claims] 1a The intrinsic viscosity of the kerosene soluble component at 30°C is 1.5 to 5.0.
and the ethylene content is 30-70% by weight,
13 The ratio of chains of two or more consecutive propylene units to isolated propylene units measured by CNMR is 2 to 10, and the ratio of chains of two or more consecutive ethylene units to isolated ethylene units is 2 to 10.
10, b Insoluble in kerosene at 30°C, soluble in boiling n-heptane, intrinsic viscosity number of 0.3 to 2, ethylene content of 8 to 50% by weight, 13 Among all propylene units measured by CNMR. 10 isolated propylene units
% or less, the number of isolated ethylene units is 20% or less among all ethylene units, and the intrinsic viscosity of the insoluble part in kerosene at 30°C and boiling n-heptane is 0.5 to 15, and the ethylene content is 5% by weight. % or less, and the isotactic triad measured by 13 CNMR is 0.95 or more, and each component a), b), and c) contains 5 to 15% by weight, 10 to 30% by weight, and 60 to 80% by weight, respectively. A polypropylene composition for injection molding containing a melt flow index of more than 10 and having excellent impact resistance and flowability during molding.
JP3304982A 1982-03-04 1982-03-04 Polypropylene composition for injection molding Granted JPS58152038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3304982A JPS58152038A (en) 1982-03-04 1982-03-04 Polypropylene composition for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3304982A JPS58152038A (en) 1982-03-04 1982-03-04 Polypropylene composition for injection molding

Publications (2)

Publication Number Publication Date
JPS58152038A JPS58152038A (en) 1983-09-09
JPH044324B2 true JPH044324B2 (en) 1992-01-28

Family

ID=12375911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3304982A Granted JPS58152038A (en) 1982-03-04 1982-03-04 Polypropylene composition for injection molding

Country Status (1)

Country Link
JP (1) JPS58152038A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108454A (en) * 1983-11-18 1985-06-13 Japan Synthetic Rubber Co Ltd Vinyl chloride resin composition
JPS60115601A (en) * 1983-11-29 1985-06-22 Mitsui Toatsu Chem Inc Impact-resistant polypropylene resin composition
JPH07682B2 (en) * 1984-03-13 1995-01-11 三井東圧化学株式会社 Polypropylene block copolymer for injection molding
JPS60195111A (en) * 1984-03-19 1985-10-03 Mitsui Toatsu Chem Inc High-fluidity impact-resistant polypropylene resin composition
JPH0674364B2 (en) * 1985-05-22 1994-09-21 三井東圧化学株式会社 Propylene block copolymer composition
DE69426043T3 (en) * 1993-06-07 2015-06-18 Mitsui Chemicals, Inc. polypropylene
JP2008525548A (en) * 2004-12-23 2008-07-17 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Polyolefin composition having good whitening resistance
JP5175180B2 (en) * 2005-05-27 2013-04-03 サンアロマー株式会社 Polyolefin composition having good whitening resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876438A (en) * 1981-10-14 1983-05-09 モンテジソン・ソチエタ・ペル・アチオニ Polypropylene composition having improved impact resistance at low temperature and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876438A (en) * 1981-10-14 1983-05-09 モンテジソン・ソチエタ・ペル・アチオニ Polypropylene composition having improved impact resistance at low temperature and manufacture

Also Published As

Publication number Publication date
JPS58152038A (en) 1983-09-09

Similar Documents

Publication Publication Date Title
US4521566A (en) Polypropylene compositions having improved impact strength properties at low temperatures and process for preparing same
Collette et al. Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts. 1. Synthesis and properties of high molecular weight stereoblock homopolymers
US3985826A (en) Hydrogenated block copolymers of butadiene and isoprene
JP6042340B2 (en) Polyolefin containing terminal double bond and process for producing the same
JPS5847402B2 (en) Polymer composition for molding and its manufacturing method
KR20070007050A (en) Functionalized elastomer compositions
CN104177528B (en) A kind of ethylene/longer chain α-olefin copolymer and preparation method thereof
JPH044324B2 (en)
US4254237A (en) Process for producing propylene-ethylene block copolymers
JPH0343292B2 (en)
JPS5941316A (en) Propylene-ethylene block copolymer and preparation thereof
JP2733060B2 (en) Propylene copolymer composition
JPS6369809A (en) Polymerization of propylene
JPH041021B2 (en)
JPS6035364B2 (en) Production method of propylene block copolymer
JP3614243B2 (en) Polypropylene resin composition
JPH0379367B2 (en)
JP3135950B2 (en) Ethylene-propylene copolymer composition
JPS643889B2 (en)
JPS60190409A (en) Polypropylene block copolymer for injection molding
JPS5865709A (en) Polypropylene composition and its production
JPH0699532B2 (en) High gloss injection molding
JPS60195111A (en) High-fluidity impact-resistant polypropylene resin composition
CN117820528A (en) Synthesis of polybutadiene with narrow molecular weight distribution and method for preparing polyethylene-butene elastomer by hydrogenation of polybutadiene
CN116589619A (en) Polyvinyl alcohol/ethylene/1-octene terpolymer and preparation method thereof