JPS60195111A - High-fluidity impact-resistant polypropylene resin composition - Google Patents

High-fluidity impact-resistant polypropylene resin composition

Info

Publication number
JPS60195111A
JPS60195111A JP5101784A JP5101784A JPS60195111A JP S60195111 A JPS60195111 A JP S60195111A JP 5101784 A JP5101784 A JP 5101784A JP 5101784 A JP5101784 A JP 5101784A JP S60195111 A JPS60195111 A JP S60195111A
Authority
JP
Japan
Prior art keywords
molecular weight
ethylene
propylene
polymerization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5101784A
Other languages
Japanese (ja)
Other versions
JPH0443927B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shigeru Kimura
茂 木村
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5101784A priority Critical patent/JPS60195111A/en
Publication of JPS60195111A publication Critical patent/JPS60195111A/en
Publication of JPH0443927B2 publication Critical patent/JPH0443927B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled composition of good balance between rigidity and impact resistance with high elongation at break, having both specific melt flow index (MFI) and molecular weight distribution. CONSTITUTION:The objective composition can be obtained by (co)polymerization using a stereoregular catalyst [e.g. (C2H5)2 AlCl-TiCl3], of either propylene singly or propylene with a small amount of ethylene followed by, pref. in the same system, reaction between ethylene and propylene so that the weight ratio of the ethylene to the propylene falls between 20/80 and 95/5. The resulting composition has the following characteristics: (1) MFI >=20; (2) kerosene-soluble (at 30 deg.C) fraction (A) accounts for 5-20wt%; (3) ethylene content of the fraction (A) 20- 70wt%; (4) kerosene-insoluble (at 30 deg.C) and boiling n-heptane-insoluble fraction (B) accounts for 50-90wt%; (5) MW/MN values for both the fractions (A) and (B) >=5.0, respectively. This ratio is calculated by the following procedures: said fractions (A) and (B) are each subjected to gel permeation chromatography (GPC) to determine molecular weight distribution curve, the high-molecular weight region of which is approximated with Gaussian distribution.

Description

【発明の詳細な説明】 +5J IIF目汁J Il+ kフ円−ノ・74 カ
づ詰jり八1〜 Lの高流動性でしかも破断時の伸びの
太きい射出成形用耐衝撃性ポリプロピレン樹脂組成物に
関する。
[Detailed Description of the Invention] +5J IIF Eye Juice J Il+ kFen-no・74 Kazutsuji81~L Impact-resistant polypropylene resin for injection molding with high fluidity and large elongation at break Regarding the composition.

ポリノロピレンは軽量で剛性にすぐれた安価な樹脂であ
り多くの用途に用いられており特に71?リプロピレン
の欠点である耐衝撃性を改良したエチレンとのブロック
共重合体は剛性と側撃性のバランスが良好であり特に射
出成形用樹脂として多くの用途に用いられている。一方
近来の省資源、省エネルギーの要望により成形時の流動
性の向上及び成形物を薄肉化することが心太とされてい
る。
Polynolopyrene is a lightweight, highly rigid, and inexpensive resin that is used for many purposes, especially 71? Block copolymers with ethylene have improved impact resistance, which is a drawback of lipropylene, and have a good balance between rigidity and side impact resistance, and are used in many applications, especially as resins for injection molding. On the other hand, due to recent demands for saving resources and energy, it has become important to improve fluidity during molding and to reduce the thickness of molded products.

成形時の流動性を向上させるためには樹脂の分子量を低
下させることが行われている。しかしながら樹脂の分子
量を低下させると成形物の実用上の耐衝撃性と相関する
破断時の伸びが大きく低下するという問題があった。
In order to improve the fluidity during molding, the molecular weight of the resin is reduced. However, when the molecular weight of the resin is lowered, there is a problem in that the elongation at break, which correlates with the practical impact resistance of the molded product, decreases significantly.

本発明の目的は、剛性と耐衝撃性の物性バランスが良好
でしかも破断時の伸びの大きい高流動性Iリプロピレン
樹脂組成物を提供することにある。
An object of the present invention is to provide a highly fluid I-lipropylene resin composition that has a good balance of physical properties between rigidity and impact resistance and has a high elongation at break.

本発明はメルトフローインデックス(MFI ) カ2
0以上で30℃の白灯油に可溶な部分(A)が全体の5
ないし20重ft %で核部のエチレン含有量が20〜
70重”rik%であり、30℃の白灯油に不溶でしか
も沸騰n−へブタンに不溶な部分(B)が全体の50な
いし90重量%であシしかも(4)部及び(B)部ラブ
ルパーミェーションクロマトグラフィー(GPC)で測
定し縦軸を溶出量で、横軸を分子量の自然対数で表わし
た分子量分布曲線のピークの位置を中心として高分子量
域、低分子量域、中間量域にわけ高分子量域をガウス分
布で近似した時のMW/MNが(4)部と(B)部につ
いてそれぞれ5.0以上であることを特徴とする破断時
の伸びの大きい高流動性ポリゾロピレン樹脂組成物に関
する。
The present invention has a melt flow index (MFI) of
The part (A) that is soluble in white kerosene at 30°C above 0 is 5% of the total.
or 20% by weight, and the ethylene content in the core is 20~20% by weight.
70% by weight, and the part (B) which is insoluble in white kerosene at 30°C and insoluble in boiling n-hebutane accounts for 50 to 90% by weight of the total, and parts (4) and (B). The high molecular weight range, low molecular weight range, and intermediate weight range are centered on the peak position of the molecular weight distribution curve measured by rubble permeation chromatography (GPC) and the vertical axis is the elution amount and the horizontal axis is the natural logarithm of the molecular weight. Highly fluid polyzolopyrene with high elongation at break, characterized in that MW/MN of parts (4) and (B) are each 5.0 or more when the high molecular weight region is approximated by a Gaussian distribution. The present invention relates to a resin composition.

本究明においてメルトフローインデックス(■゛工)は
230℃、2.16kgの荷重でASTM D1238
−62Tの方法に準じて測定される。■゛Iが20未満
では薄肉の射出成形物を製造すると流れむらが生じ成形
物表面が均一とならず好ましくない。
In this study, the melt flow index (■゛engineering) was determined according to ASTM D1238 at 230℃ and a load of 2.16kg.
Measured according to the method of -62T. (2) When I is less than 20, when a thin injection molded product is manufactured, flow irregularities occur and the surface of the molded product is not uniform, which is undesirable.

本発明においてGPCは135℃で1.2.4−トリク
ロロベンゼンを媒体として用い測定される。分子量の算
出はポリスチレンの標準分子量のものを用いQファクタ
ー比として0.639(ポリプロピレンのQファクター
/ポリスチレンのQファクター)を用いめた。またエチ
レンとプロピレンとの共重合体もポリプロピレンと同じ
屈折率、Qファクター値であるとして算出した。
In the present invention, GPC is measured at 135°C using 1,2,4-trichlorobenzene as a medium. The molecular weight was calculated using the standard molecular weight of polystyrene, and 0.639 (Q factor of polypropylene/Q factor of polystyrene) was used as the Q factor ratio. Further, the calculation was made assuming that a copolymer of ethylene and propylene also has the same refractive index and Q factor value as polypropylene.

本発明におけるMy/M Nは以下のようにして算出さ
れる;図1に示すように横軸を分子量の自然対数で表わ
し、縦軸を溶出量で表わしだ分子i(分布曲線を三分割
し高分子側の分子量分布曲線についてガウス分布に近似
してめる。
My/M N in the present invention is calculated as follows; as shown in Figure 1, the horizontal axis is expressed as the natural logarithm of the molecular weight, and the vertical axis is expressed as the elution amount. The molecular weight distribution curve on the polymer side is approximated to a Gaussian distribution.

分子量分布をガウス分布で近似する方法は例えばJou
rnal of Chromatographic 5
cience、vo120+June 1982,25
2に詳細に説明しである。即ち分子量分布曲線を下式で
近似する。
For example, the method of approximating the molecular weight distribution with a Gaussian distribution is
rnal of chromatographic 5
science, vo120+June 1982, 25
2 is explained in detail. That is, the molecular weight distribution curve is approximated by the following formula.

Y = Ym −exp (−(X−Xm)2/2S2
)Y;分子量の自然対数(tn(分子量))Xの時の高
さYm:ピーク分子量の自然対数(tn(ピーク分子量
))Xmの時の高さ又は三分割した時の境界点に一致す
るように算出したピーク高さ。
Y = Ym -exp (-(X-Xm)2/2S2
) Y: Height when natural logarithm of molecular weight (tn (molecular weight)) The peak height calculated as follows.

S= tn(重量平均分子量/数平均分子量)ことによ
って、重量平均分子量/数平均分子量即ちMw/Msが
算出される。
S=tn (weight average molecular weight/number average molecular weight), weight average molecular weight/number average molecular weight, ie, Mw/Ms is calculated.

本発明において30℃の白灯油に可溶な部分(6)の分
離は次のとおり行われる。樹脂組成物を130℃の白灯
油に溶解し次いで3時間かけてゆっくりと30℃に降温
し30℃で12時間保った後濾過して不浴部と分離する
In the present invention, separation of the portion (6) soluble in white kerosene at 30° C. is carried out as follows. The resin composition is dissolved in white kerosene at 130°C, then the temperature is slowly lowered to 30°C over 3 hours, maintained at 30°C for 12 hours, and then filtered to separate it from the non-bathed portion.

不溶部は灯油で繰り返し洗浄して洗浄液はp液とともに
可溶部とする。洗浄された不溶部はさらにn−へブタン
で洗11)シだ後さらにンソクスレー抽出器を用いて沸
114・n−へブタンで6時間抽出し抽出残分を得る。
The insoluble part is washed repeatedly with kerosene, and the cleaning liquid is used as a soluble part together with the p liquid. The washed insoluble portion is further washed with n-hebutane (11) and then sieved and further extracted with boiling 114.n-hebutane for 6 hours using a Soxhlet extractor to obtain an extracted residue.

核部を(B)とする。The core is designated as (B).

本究明において」二連の30℃の白灯油に可溶な部分(
4)は全体の5ないし20重量−である必要があり5軍
M%未満では耐衝撃性が充分でな(20爪量チより多い
と剛性が不良となる。核部のエチレン含量が20重量%
よシ少ないと耐衝撃性が不良であシス70重量−以上で
は成形品とした時表面の光沢が不良となり好ましくない
。好ましくは25重景−〜60i精チである。
In this investigation, the portion soluble in white kerosene at 30°C (
4) must be 5 to 20% by weight of the whole, and if it is less than 5% by weight, the impact resistance will be insufficient (if it is more than 20% by weight, the rigidity will be poor.If the ethylene content of the core is 20% by weight) %
If it is less than 70% by weight, the impact resistance will be poor, and if it is more than 70% by weight, the surface gloss will be poor when it is made into a molded product, which is not preferable. Preferably, the resolution is 25cm to 60cm.

本発明において上述の30℃の白灯油に不溶でしかも沸
騰n−ヘゾタンに不溶な部分(B)が全体の50ないし
90重量である必要があり50重量%未満では剛性が不
良であり、90重量%より多いと耐衝撃性が不良となる
In the present invention, the above-mentioned portion (B) which is insoluble in white kerosene at 30°C and insoluble in boiling n-hezotane must account for 50 to 90% by weight of the whole, and if it is less than 50% by weight, the rigidity is poor and 90% by weight. If it exceeds %, the impact resistance will be poor.

本発明において肝要なのは上記(4)部及び(B)部の
前述の方法で測定されたMW/MNが5.0以上、特に
好ましくは5.5以上であることである。(A)部及び
(B1部についてそれぞれの全体のMW/MHが大きく
ても高分子量域のMW/MNが5.0未満では本発明の
効果が達成されず又逆に全体のMW/MNが小さくても
高分子量域のMyy/MNが5.0以上であれば破断時
の伸びが大きくなる。
What is important in the present invention is that the MW/MN of parts (4) and (B) as measured by the method described above is 5.0 or more, particularly preferably 5.5 or more. Even if the overall MW/MH of parts (A) and (B1) is large, if the MW/MN in the high molecular weight range is less than 5.0, the effects of the present invention cannot be achieved, and conversely, the overall MW/MN is Even if it is small, if Myy/MN in the high molecular weight range is 5.0 or more, the elongation at break will be large.

本発明の樹脂組成物の製造法については特に制限はなく
、適当に重合設計されたノロピレンとエチレンの反応比
を変えた多段重合による方法あるいは、(4)部及び(
B)部が前述の規定された組成比になるように両者を混
練する方法があるが、好ましくは同−重合系で公知の立
体規則性触媒を用いて初めにゾロピレン単独で重合を或
は少量のエチレント共重合を行い次いでエチレンとゾロ
ピレンの反応比20/80〜9515重量比となるよう
反応を行ってブロック共重体を得る方法である。
There are no particular limitations on the method for producing the resin composition of the present invention, and there may be a multi-stage polymerization method in which the reaction ratio of nolopyrene and ethylene is changed in an appropriately designed polymerization method, or a method using part (4) and (
There is a method of kneading both parts so that part B has the above-specified composition ratio, but it is preferable to first polymerize zolopyrene alone or in a small amount using a known stereoregular catalyst in the same polymerization system. In this method, a block copolymer is obtained by carrying out ethylene copolymerization, and then carrying out a reaction such that the reaction ratio of ethylene and zolopyrene is 20/80 to 9515 by weight.

用いる触媒によって同一の反応を行っても上記(A)部
及び(B)部の割合も相異するし又MW/MNも相異す
るため、上述の(4)部及び(B)部の割合がそれぞれ
5ないし20那量チ及び50〜90重量%である条件及
び(4)部のエチレン含量が20〜70重量%である条
件を使用する触媒について定めておく必要がある。
Even if the same reaction is carried out depending on the catalyst used, the proportions of the above parts (A) and (B) will be different, and the MW/MN will also be different, so the proportions of the above parts (4) and (B) will be different. It is necessary to specify conditions for the catalyst to be used in which the ethylene content of part (4) is 5 to 20% by weight and 50 to 90% by weight, respectively, and the ethylene content of part (4) is 20 to 70% by weight.

又場合によっては得られた共重合体を過酸化物と加熱混
合し熱減成することによってMFIを大きくすることも
できるが熱減成を行うと、Mw/MNが小さくなるため
熱減成に使用するブロック共重合体は、MW/MNがか
なり大きいものを用いる必要がある。
In some cases, it is also possible to increase the MFI by heating and mixing the obtained copolymer with a peroxide and thermally degrading it, but if thermally degrading, the Mw/MN becomes smaller, resulting in thermal deterioration. The block copolymer used must have a considerably large MW/MN.

本発明において肝要である(4)部及び(B)部の高分
子量域のMw/MNを50以上にする方法としては通常
の重合条件、即ち気相部の水素濃度を一定とし一定の温
度で重合して得た共重合体の分子量分布を測定し前述の
方法で分子量分子曲線を三分割し高分子量(II+の境
界点の分子量をめ、その分子量より大きい分子量域にピ
ークをもつような分子量分布曲線となる如き分子量の共
重合体を得るだめの重合条件が設定される。通常は気相
部の水素濃度及び、重合温度の条件を設定すればよい。
In order to make the Mw/MN of the high molecular weight range of parts (4) and (B), which are important in the present invention, to be 50 or more, the usual polymerization conditions are used, that is, the hydrogen concentration in the gas phase is constant and the temperature is constant. Measure the molecular weight distribution of the copolymer obtained by polymerization, divide the molecular curve into three parts using the method described above, find the molecular weight at the boundary point of high molecular weight (II+), and find the molecular weight that has a peak in a molecular weight range larger than that molecular weight. Polymerization conditions are set to obtain a copolymer with a molecular weight that shows a distribution curve.Usually, the hydrogen concentration in the gas phase and the polymerization temperature may be set.

こうして定められた水素濃度と温度の2つの条件(心太
ならばさらに高分子量の共重合体を得る条件を加えて)
を同−重合系で行うことによって所望の共重合体が得ら
れる。
The two conditions determined in this way are hydrogen concentration and temperature (in the case of Shinta, conditions for obtaining a copolymer with an even higher molecular weight are added)
A desired copolymer can be obtained by carrying out the following in the same polymerization system.

更に好ましい方法としてブロック共重合体を得るに当っ
て、初めのノロピレン単独の重合或は少量のエチレンと
共重合を行う段階をさらに上記の方法に従って水素濃度
を変える2段階に分け、またエチレンとプロピレンの反
応比が20/80〜9515重量比の範囲で共重合反応
を行う段階も水素濃度を変えて2段階に分けることによ
シ高分子量域のMW/MNを所望の値にすることができ
る。
A more preferable method is to obtain a block copolymer by dividing the initial step of polymerizing noropylene alone or copolymerizing it with a small amount of ethylene into two steps in which the hydrogen concentration is changed according to the above method, and then polymerizing ethylene and propylene. By changing the hydrogen concentration and dividing the copolymerization reaction into two stages in which the reaction ratio is in the range of 20/80 to 9515 weight ratio, the MW/MN in the high molecular weight range can be set to the desired value. .

他の好ましい方法としては高分子量域の分子量分布の大
きい共重合体を与える触媒系を用いることである。多く
の侵れた触媒系がすでに知られているが、それぞれの触
媒系について得られた共重合体がどのような分子量分布
をもっているかは知られていないため、すべての触媒系
について明らかにできないが比較的高分子量域の広い分
子量分布を与える触媒系としては、ハロゲン化物、特に
ハロダン化炭化水素でチタン化合物を処理した自体触媒
成分をチタン成分として用いる場合或は、重合の除に含
酸素化合物特に有機酸エステルとが、ケトン化合物を用
いる場合は理由は明確ではないが、高分子量域の分子量
分布の広い共重合体が得られる傾向がある。特に高分子
量域の広い共重合体を与える触媒系としてハロゲン化マ
グネシウムをハロダン化炭化水素、含酸素化合物で処理
した担体にハロゲン化チタンを担持して得た活性チタン
触媒と有機アルミニウム化合物及び有機酸エステルから
なる触媒系が挙げられる。
Another preferred method is to use a catalyst system that provides a copolymer with a wide molecular weight distribution in the high molecular weight range. Many eroded catalyst systems are already known, but it is not known what kind of molecular weight distribution the copolymers obtained for each catalyst system have, so it cannot be determined for all catalyst systems. As a catalyst system that provides a wide molecular weight distribution in a relatively high molecular weight range, a titanium compound prepared by treating a titanium compound with a halide, especially a halodanized hydrocarbon, is used as the titanium component, or an oxygen-containing compound, especially an oxygen-containing compound, is used during polymerization. When a ketone compound is used as the organic acid ester, a copolymer with a wide molecular weight distribution in a high molecular weight range tends to be obtained, although the reason is not clear. In particular, as a catalyst system that provides a copolymer with a wide range of high molecular weights, an active titanium catalyst obtained by supporting titanium halide on a carrier prepared by treating magnesium halide with a halide hydrocarbon and an oxygen-containing compound, an organoaluminum compound, and an organic acid. Mention may be made of catalyst systems consisting of esters.

上記のように比較的高分子量域の分子量分布の広い共重
合体を与える触媒系を用いた場合にはプロ 、り−kk
、雷春ル鍔ら敢工六り陪Uだ注り^4八J−)−に2段
階にわける必要がなく、それぞれ各段階では一定の気相
部の水素濃度及び重合温度で重合を行っても本発明の組
成物が得られる。
As mentioned above, when using a catalyst system that produces a copolymer with a wide molecular weight distribution in a relatively high molecular weight range,
There is no need to divide the process into two stages, and in each stage, polymerization is carried out at a constant hydrogen concentration in the gas phase and at a constant polymerization temperature. The composition of the present invention can also be obtained.

本発明の組成物は射出成形用の高流動性の耐衝撃性ポリ
プロピレンとして成形物の破断時の伸びが大きいという
優れた特性を有するものであり工業的に価値のあるもの
である。以下に実施例を挙げ本発明をさらに説明する。
The composition of the present invention has excellent properties as a highly fluid, impact-resistant polypropylene for injection molding, such as high elongation at break of molded products, and is therefore of industrial value. The present invention will be further explained with reference to Examples below.

実施例及び比較例において物性は次の方法で測定される
In Examples and Comparative Examples, physical properties are measured by the following method.

MF! (、j9/10m1n ) ASTM D12
38引張シ降伏強さ (kg/cm2) ASTM D
638−64T破断時の伸び (チ) ASTM D6
38−64T曲げ剛性度 (kF2m2) ASTM 
D747−63アイゾツト衝撃強さくノツチ付) (k
g・cy’cm2) ASTM D256−56MFI
は230℃で、その他の物性は射出成形機で8 cm 
X 16 cm X 2 tanの射出シートを製造し
23℃で、又衝撃強さは一1O℃でも測定した。
MF! (,j9/10m1n) ASTM D12
38 Tensile yield strength (kg/cm2) ASTM D
638-64T Elongation at break (H) ASTM D6
38-64T bending rigidity (kF2m2) ASTM
D747-63 Izot impact strength with notch) (k
g・cy'cm2) ASTM D256-56MFI
is 230℃, and other physical properties are 8 cm with an injection molding machine.
Injection sheets measuring 16 cm x 2 tan were prepared and measured at 23°C, and the impact strength was also measured at -10°C.

実施例 (1)活性チタン触媒の製造 1)塩化マグネシウム20g、オルソ酢酸エチルlπJ
、1.2−ジクロロエタン4m7!を共粉砕したものに
4塩化チタンを接触処理し、次いでn−へブタンで洗浄
する操作を3回繰り返して得た活性チタン触媒(a)。
Example (1) Production of active titanium catalyst 1) 20 g of magnesium chloride, ethyl orthoacetate lπJ
, 1,2-dichloroethane 4m7! Activated titanium catalyst (a) obtained by repeating three times an operation of co-pulverizing titanium tetrachloride and then washing with n-hebutane.

II)市販の高活性三塩化チタン触媒、丸紅ソルヴユー
社製TBN−05(ロット番号)をその!!ま使用。
II) A commercially available highly active titanium trichloride catalyst, TBN-05 (lot number) manufactured by Marubeni Solve U, was used as the catalyst! ! Well, use it.

活性チタン触媒(b)。Activated titanium catalyst (b).

(2) ブロック共重合体の製造 重合条件i) 充分に乾燥し窒素で置換し、さらにプロピレンで置換し
たジャケット付きの1m3のオートクレーブにプロピレ
ン250 kgを装入する。一方51のフラスコにn−
ヘノタン2.51.ジエチル、アルミニウム、クロライ
ド3.5 tnl 1. p −Fルイル酸メチル4−
上記活性チタン触媒(a) 2.9及びトリエチルアル
ミニウム3mlを加え混合したものを上記オートクレー
ブに導入し75℃で水°素濃度一定で2時間重合し次い
で内温50℃に降温しながら水素濃度を下げさらにプロ
ピレン50ゆ追加し次いでエチレンを加え気相のエチレ
ン濃度’z 35 vol %に保ってトリエチルアル
ミニウム1−を追加し5分間重合しさらにエチレン濃度
を40 vo1%になるように追加して、さらに1.5
分間重合した後、すぐにイングロパノールで触媒を失活
しプロピレンで40℃で3回スラリーを洗浄して、ポリ
ゾロピレンを得た。
(2) Production of block copolymer Polymerization conditions i) 250 kg of propylene is charged into a 1 m3 jacketed autoclave which has been thoroughly dried, purged with nitrogen, and further purged with propylene. On the other hand, n-
Henotan 2.51. Diethyl, aluminum, chloride 3.5 tnl 1. p -F Methyl ruylate 4-
A mixture of the activated titanium catalyst (a) 2.9 and 3 ml of triethylaluminum was introduced into the autoclave and polymerized at 75°C for 2 hours with a constant hydrogen concentration, and then the hydrogen concentration was decreased while lowering the internal temperature to 50°C. Then, add 50 ml of propylene, then add ethylene, maintain the ethylene concentration in the gas phase at 35 vol %, add triethylaluminum 1-, polymerize for 5 minutes, and then add until the ethylene concentration becomes 40 vol %. Another 1.5
After polymerization for a minute, the catalyst was immediately deactivated with ingropanol and the slurry was washed three times with propylene at 40°C to obtain polyzolopylene.

重合条件11) 上記活性チタン触媒(b)100g、ジエチルアルミニ
ウムクロライド800 mlからなる触媒を用いてn−
へブタンを媒体として全圧10 kg/6n2−ゲージ
、70℃で2時間重合した。この際水素濃度を一定とし
て或は水素濃度を変えて2段階で重合を行った。2時間
後50℃に降温し気相のエチレン濃度を30vo1%と
して10分間、次いで気相のエチレン濃度を40vo1
%として5分間重合した。この際エチレン濃度30yo
1%と40vo1%のそれぞれの段階の重合を、水素濃
度を一定として或は水素截度をエチレン濃度3 Qvo
1%と40vo1%の各段階では変えて(後者では、前
者の1/3の濃度)行った。重合反応後メタノールで触
媒を失活した抜水で繰り返し洗浄した後n−へブタン層
を濾過して共重合体パウダーを得た。1)及び11)で
得たパウダーは乾燥した後フェノール系抗酸化剤(対パ
ウダー 2/1000重葉比)、ステアリン酸カルシウ
ム(対パウダー1/1 (100重量比)加えて造粒し
、次いで射出成形シートを作り物性を測定した。結果は
表に示す。
Polymerization conditions 11) n-
Polymerization was carried out at 70° C. for 2 hours at a total pressure of 10 kg/6N2-gauge using hebutane as a medium. At this time, polymerization was carried out in two stages with the hydrogen concentration kept constant or with the hydrogen concentration varied. After 2 hours, the temperature was lowered to 50°C, and the ethylene concentration in the gas phase was set to 30 vol% for 10 minutes, and then the ethylene concentration in the gas phase was reduced to 40 vol.
%, polymerization was carried out for 5 minutes. At this time, the ethylene concentration is 30yo
Polymerization at each stage of 1% and 40vo 1% was carried out with the hydrogen concentration constant or the hydrogen concentration was changed to ethylene concentration 3 Qvo
The concentration was changed at each stage of 1% and 40vo1% (the latter was 1/3 of the former concentration). After the polymerization reaction, the catalyst was deactivated with methanol and washed repeatedly with drained water, and the n-hebutane layer was filtered to obtain a copolymer powder. After drying the powder obtained in 1) and 11), a phenolic antioxidant (2/1000 weight ratio of the powder) and calcium stearate (1/1 (100 weight ratio) of the powder) were added and granulated, followed by injection. A molded sheet was made and its physical properties were measured.The results are shown in the table.

なお、実施例2及び比較例1は実施例1のパウダーを造
粒する除過酸化物を対パウダー0.8/ 10000及
び2.5/10000重月、比で刊えて造粒した。該過
酸化物として脂肪族過酸化物ルパゾール101(ルシド
ール吉富社製商品名)を用い、250℃で加熱減成され
た。
In addition, in Example 2 and Comparative Example 1, the powder of Example 1 was granulated using a peroxide removal agent that was used to granulate the powder at a ratio of 0.8/10,000 and 2.5/10,000 to the powder. The aliphatic peroxide Lupazol 101 (trade name, manufactured by Lucidor Yoshitomi) was used as the peroxide, and was degraded by heating at 250°C.

実施例4は実施例3を対パウダ−1,2/10000重
量比の過酸化物を加えて造粒した。実施例3は水素濃度
をかえて重合を行なうことを除いて実施例1の士&ル/
h5+各
In Example 4, Example 3 was granulated by adding peroxide at a weight ratio of 1.2/10,000 to the powder. Example 3 was the same as Example 1 except that the hydrogen concentration was changed and the polymerization was carried out.
h5+ each

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分子量分布曲線及びその分割法を示す図面であ
りaは高分子量域、bは中間量域、Cは低分子量減を示
す。
FIG. 1 is a drawing showing a molecular weight distribution curve and its division method, in which a shows a high molecular weight range, b shows an intermediate weight range, and C shows a low molecular weight reduction.

Claims (1)

【特許請求の範囲】[Claims] メルトフローインデックスが20以上のポリゾロピレン
樹脂であって、30℃の白灯油に可溶な部分(4)が全
体の5〜20重量%で核部のエチレン含有量が20〜7
03i址チであシ、30℃の白灯油に不溶でかつ沸le
t n−へブタンに不溶な部分(B)が全体の50〜9
0重ft%であり、しかも(A)部及び(B)部をダル
パーミェーションクロマトグラフィーで測定し縦軸を溶
出量で、横軸を分子量の自然対数で表わした分子量分布
曲線のピークの位置を中心として高分子量域、低分子量
域及び中間量域に分は高分子量域をガウス分布で近似し
た時のMW/MNが回部及び(B)部についてそれぞれ
5.0以上であることを特徴とする破断時の伸びの大き
い高流動性ポリゾロピレン樹脂組成物。
A polyzolopyrene resin with a melt flow index of 20 or more, in which the portion (4) soluble in white kerosene at 30°C is 5 to 20% by weight of the total, and the ethylene content in the core is 20 to 7.
03I is not soluble in white kerosene at 30℃ and is boiling.
The part (B) insoluble in n-hebutane accounts for 50 to 9 of the total
0 weight ft%, and the peak of the molecular weight distribution curve in which parts (A) and (B) are measured by Dal permeation chromatography, and the vertical axis is the elution amount and the horizontal axis is the natural logarithm of the molecular weight. When the high molecular weight region is approximated by a Gaussian distribution for the high molecular weight region, low molecular weight region, and intermediate weight region centered on the position of A highly fluid polyzolopyrene resin composition with high elongation at break, characterized by:
JP5101784A 1984-03-19 1984-03-19 High-fluidity impact-resistant polypropylene resin composition Granted JPS60195111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101784A JPS60195111A (en) 1984-03-19 1984-03-19 High-fluidity impact-resistant polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101784A JPS60195111A (en) 1984-03-19 1984-03-19 High-fluidity impact-resistant polypropylene resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP34022191A Division JPH07100730B2 (en) 1991-11-29 1991-11-29 High flow impact polypropylene resin

Publications (2)

Publication Number Publication Date
JPS60195111A true JPS60195111A (en) 1985-10-03
JPH0443927B2 JPH0443927B2 (en) 1992-07-20

Family

ID=12875017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101784A Granted JPS60195111A (en) 1984-03-19 1984-03-19 High-fluidity impact-resistant polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS60195111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3094681B1 (en) 2014-01-15 2021-01-20 ExxonMobil Chemical Patents Inc. Propylene-based impact copolymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152038A (en) * 1982-03-04 1983-09-09 Mitsui Toatsu Chem Inc Polypropylene composition for injection molding
JPS591316A (en) * 1982-06-29 1984-01-06 矢崎化工株式会社 Packing method and packer
JPS5941316A (en) * 1982-08-31 1984-03-07 Mitsui Toatsu Chem Inc Propylene-ethylene block copolymer and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152038A (en) * 1982-03-04 1983-09-09 Mitsui Toatsu Chem Inc Polypropylene composition for injection molding
JPS591316A (en) * 1982-06-29 1984-01-06 矢崎化工株式会社 Packing method and packer
JPS5941316A (en) * 1982-08-31 1984-03-07 Mitsui Toatsu Chem Inc Propylene-ethylene block copolymer and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3094681B1 (en) 2014-01-15 2021-01-20 ExxonMobil Chemical Patents Inc. Propylene-based impact copolymers

Also Published As

Publication number Publication date
JPH0443927B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
JP4217155B2 (en) Propylene random copolymer and process for producing the same
JPS6020405B2 (en) Manufacturing method of low density polyethylene
JPH09235328A (en) High molecular weight polypropylene having wide molecular-weight distribution
US4291138A (en) Production of modified polypropylenes
CA1150883A (en) Process for producing propylene-ethylene block copolymers
US4254237A (en) Process for producing propylene-ethylene block copolymers
JPH0317845B2 (en)
JPS6225106A (en) Continuous polymerization of olefin
JPH04145105A (en) Production of ethylene polymer or copolymer
CN112142895B (en) Application of organosilane, random copolymer polypropylene and preparation method thereof
JPS60195111A (en) High-fluidity impact-resistant polypropylene resin composition
JPH05239149A (en) Production of highly fluidic polypropylene resin for injection molding
JPH044324B2 (en)
US3499060A (en) Method of manufacturing block copolymers
JPH0348926B2 (en)
JPS6035364B2 (en) Production method of propylene block copolymer
JPS5941316A (en) Propylene-ethylene block copolymer and preparation thereof
JPH0329805B2 (en)
JPS643889B2 (en)
JPH07100730B2 (en) High flow impact polypropylene resin
JPS6226328B2 (en)
JPS6138926B2 (en)
KR100583625B1 (en) Polymerization Method of Polyethylene and Ethylene Copolymer for the Pipe Material
JPS60195109A (en) Polypropylene resin composition for high-fluidity injection molding
EP1297029B1 (en) Method of ethylene polymerization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term