JPH05239149A - Production of highly fluidic polypropylene resin for injection molding - Google Patents

Production of highly fluidic polypropylene resin for injection molding

Info

Publication number
JPH05239149A
JPH05239149A JP33497992A JP33497992A JPH05239149A JP H05239149 A JPH05239149 A JP H05239149A JP 33497992 A JP33497992 A JP 33497992A JP 33497992 A JP33497992 A JP 33497992A JP H05239149 A JPH05239149 A JP H05239149A
Authority
JP
Japan
Prior art keywords
molecular weight
polymerization
catalyst
compound
hydrogen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33497992A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
浅沼  正
Ichiro Fujikage
一郎 藤隠
Shigeru Kimura
茂 木村
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP33497992A priority Critical patent/JPH05239149A/en
Publication of JPH05239149A publication Critical patent/JPH05239149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the subject resin with high elongation at break, suitable for injection molding by multistage polymerization of propylene using a stereoregular catalyst with the respective stages differing in hydrogen concentration from one another. CONSTITUTION:The objective resin can be obtained by (A) multistage polymerization using a stereoregular catalyst with the respective stages differing in hydrogen concentration from one another, (B) polymerization using a catalyst with solid catalytic component being a Ti compound treated with a halogenated compound (pref. a carbon halide), or (C) polymerization under addition of an oxygen-contg. compound (pref. organic acid ester). This resin has the following characteristics: (1) melt flow index: >=10; and (2) in the molecular weight distribution curve determined by gel permeation chromatography (GPC) expressed by rectangular coordinates with the ordinate representing elution and the abscissa with natural logarithm of molecular weight, the curve is divided into high- molecular weight, low-molecular weight, and medium molecular weight regions around its peak and Mw/Mn in the high-molecular weight region approximated by Gaussian distribution from this distribution is >=6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメルトフローインデック
スが10以上の高流動性でしかも破断時の伸びの大きい
射出成形用ポリプロピレン樹脂の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polypropylene resin for injection molding which has a high melt flow index of 10 or more and has a high elongation at break.

【0002】[0002]

【従来の技術】ポリプロピレンは剛性に優れしかも軽量
であることから、多くの用途に用いられており、さらに
近来省資源、省エネルギーのため樹脂の高流動性化及び
成形物の薄肉化が計られている。
2. Description of the Related Art Polypropylene has been used in many applications because of its excellent rigidity and light weight. In recent years, high fluidity of resin and thin wall molding have been attempted to save resources and energy. There is.

【0003】ポリプロピレン樹脂を高流動性化するため
に分子量を下げるのが最も簡便であり、プロピレンを重
合してポリプロピレンを得る際に水素などの連鎖移動剤
を添加して分子量を下げるか、或いは、有機過酸化物な
どのラジカル発生剤と加熱混合して分子量を下げる方法
によって高流動性化することが知られている。
It is most convenient to lower the molecular weight in order to make the polypropylene resin highly fluid, and when the propylene is polymerized to obtain polypropylene, a chain transfer agent such as hydrogen is added to lower the molecular weight, or It is known that high fluidity is achieved by a method of heating and mixing with a radical generator such as an organic peroxide to lower the molecular weight.

【0004】しかしながら上記のような方法で単に分子
量を低下させてポリプロピレン樹脂を高流動性化させる
と、得られた樹脂の破断時の伸びが極めて小さくなり、
そのため実際に成形物とした時の実用上の強度が劣る結
果となっている。
However, if the polypropylene resin is made highly fluid by simply lowering the molecular weight by the above-mentioned method, the elongation at break of the obtained resin becomes extremely small,
Therefore, the practical strength of the molded product is inferior.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は高流動
性でしかも破断時の伸びが大きいポリプロピレン樹脂の
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polypropylene resin having high fluidity and large elongation at break.

【0006】[0006]

【課題を解決するための手段】本発明は、立体規則性触
媒を用いて重合を多段階で行い各段の重合を水素濃度を
変えて行うか、或いはハロゲン化合物で処理して得たチ
タン化合物を固体触媒成分とする触媒を用いて重合する
か、或いは重合の際に含酸素化合物を添加して重合する
ことによって、メルトフローインデックス(MFI)が
10以上であり、ゲルパーミェーションクロマトグラフ
ィー(GPC)で測定して縦軸を溶出量で、横軸を分子
量の自然対数で表わした分子量分布曲線のピーク位置を
中心として高分子量域、低分子量域、中間領域にわけ、
高分子量域をガウス分布で近似した時のMw/Mnが
6.0以上である破断時の伸びの大きい高流動性ポリプ
ロピレン樹脂を製造する方法に関する。
The present invention provides a titanium compound obtained by carrying out polymerization in multiple stages using a stereoregular catalyst and varying the hydrogen concentration in each stage of the polymerization, or by treating with a halogen compound. The polymer has a melt flow index (MFI) of 10 or more, which is obtained by polymerizing using a catalyst having a solid catalyst component, or by adding an oxygen-containing compound during the polymerization, and gel permeation chromatography. Measured by (GPC), the vertical axis is the elution amount, and the horizontal axis is the natural logarithm of the molecular weight.
The present invention relates to a method for producing a highly fluid polypropylene resin having a large elongation at break, which has Mw / Mn of 6.0 or more when a high molecular weight region is approximated by a Gaussian distribution.

【0007】本発明のポリプロピレン樹脂の製造方法と
しては、通常の重合条件、即ち気相部の水素濃度を一定
とし一定濃度で重合して得たポリプロピレンの分子量分
布を測定し、後述の方法で分子量分布曲線を三分割して
高分子量側の境界点の分子量を求め、その分子量より大
きい分子量域にピークをもつような分子量分布曲線とな
る如き分子量のポリプロピレンを得るための重合条件が
設定される。通常は気相部の水素濃度及び重合温度の条
件を設定すればよい。本発明のポリプロピレン樹脂はこ
うして定められた水素濃度と重合温度の2つの条件(必
要ならばさらに高分子量のポリプロピレンを得る条件を
加えて)を同一重合系でたとえば水素濃度を変え乍ら二
段重合を行うことによって得られる。目安としてより高
分子量のポリプロピレンの全重合体に対する割合は30
wt%以下、通常30wt%ないし5wt%となる様に
重合が行われる。
As the method for producing the polypropylene resin of the present invention, the molecular weight distribution of polypropylene obtained by polymerizing at a constant concentration under ordinary polymerization conditions, that is, with a constant hydrogen concentration in the gas phase is measured, and the molecular weight is determined by the method described below. The distribution curve is divided into three to obtain the molecular weight at the boundary point on the high molecular weight side, and the polymerization conditions are set so as to obtain polypropylene having a molecular weight such that the molecular weight distribution curve has a peak in the molecular weight range higher than the molecular weight. Usually, the conditions of the hydrogen concentration in the gas phase and the polymerization temperature may be set. The polypropylene resin of the present invention is subjected to two-stage polymerization in which the two conditions of hydrogen concentration and polymerization temperature thus determined (additional conditions for obtaining a higher molecular weight polypropylene) are used in the same polymerization system, for example, the hydrogen concentration is changed. It is obtained by doing. As a guide, the ratio of higher molecular weight polypropylene to the total polymer is 30.
Polymerization is carried out so as to be less than wt%, usually 30 wt% to 5 wt%.

【0008】他の好ましい方法としては高分子量域の分
子量分布の大きい重合体を与える触媒系を用いることで
ある。多くの優れた触媒系がすでに知られているが、そ
れぞれの触媒系について得られたポリプロピレンがどの
ような分子量分布をもっているかは知られていないた
め、すべての触媒系について明らかにできないが比較的
高分子量域の分子量分布が広いポリプロピレンを与える
触媒系としては、ハロゲン化物、特にハロゲン化炭化水
素でチタン化合物を処理した固体触媒成分をチタン成分
として用いる場合、或いは、重合の際に含酸素化合物特
に有機酸エステルとか、ケトン化合物を用いる場合は理
由は明確ではないが、高分子量域の分子量分布の広い重
合体が得られる傾向がある。特に高分子量域の分子量分
布の広い重合体を与える触媒系としてハロゲン化マグネ
シウムをハロゲン化炭化水素、含酸素化合物で処理して
得た担体にハロゲン化チタンを担持して得た活性チタン
触媒と、有機アルミニウム化合物及び有機酸エステルか
らなる触媒系が挙げられる。上記のように比較的高分子
量域の分子量分布の広い重合体を与える触媒系を用いた
場合には、一定の重合条件例えば気相部の水素濃度及び
重合温度を一定に維持して重合を行っても本発明の製造
方法で目的とするポリプロピレン樹脂が得られる。
Another preferred method is to use a catalyst system which gives a polymer with a large molecular weight distribution in the high molecular weight range. Although many excellent catalyst systems are already known, the molecular weight distribution of the polypropylene obtained for each catalyst system is unknown, so it cannot be clarified for all catalyst systems, but it is relatively high. As a catalyst system which gives a polypropylene having a wide molecular weight distribution in the molecular weight range, when a solid catalyst component obtained by treating a titanium compound with a halide, particularly a halogenated hydrocarbon is used as a titanium component, or when an oxygen-containing compound, particularly an organic compound, is used during polymerization. The reason for using an acid ester or a ketone compound is not clear, but a polymer having a wide molecular weight distribution in a high molecular weight region tends to be obtained. Particularly, an active titanium catalyst obtained by supporting titanium halide on a carrier obtained by treating magnesium halide with a halogenated hydrocarbon and an oxygen-containing compound as a catalyst system which gives a polymer having a wide molecular weight distribution in a high molecular weight range, A catalyst system consisting of an organoaluminum compound and an organic acid ester may be mentioned. When a catalyst system that gives a polymer having a wide molecular weight distribution in a relatively high molecular weight range as described above is used, the polymerization is carried out while maintaining constant polymerization conditions such as hydrogen concentration in the gas phase and polymerization temperature. However, the intended polypropylene resin can be obtained by the production method of the present invention.

【0009】要するに、本発明のポリプロピレン樹脂の
製造方法は、(i) 立体規則性触媒を用いて重合を多段階
で行い各段の重合を水素濃度を変えて行うか、 (ii) ハ
ロゲン化物で処理したチタン化合物をチタン成分とする
触媒を用いて重合するか、(iii) 重合の際に含酸素化合
物を添加して重合するか、又は (iv) ハロゲン化マグネ
シウムをハロゲン化炭化水素、含酸素化合物で処理して
得た担体にハロゲン化チタンを担持して得た活性チタン
触媒と、有機アルミニウム化合物及び有機酸エステルか
らなる触媒系を用いて重合することによって、メルトフ
ローインデックス(MFI)が10以上であり、ゲルパ
ーミェーションクロマトグラフィー(GPC)で測定し
て縦軸を溶出量で、横軸を分子量の自然対数で表わした
分子量分布曲線のピーク位置を中心として高分子量域、
低分子量域、中間領域にわけ、高分子量域をガウス分布
で近似した時のMw/Mnが6.0以上である破断時の
伸びの大きい高流動性ポリプロピレン樹脂を製造する方
法である。
In short, the method for producing a polypropylene resin according to the present invention comprises (i) a multi-step polymerization using a stereoregular catalyst, and different steps of hydrogen concentration for each step, or (ii) a halide. The treated titanium compound is polymerized using a catalyst having a titanium component, (iii) the polymerization is performed by adding an oxygen-containing compound during the polymerization, or (iv) magnesium halide is a halogenated hydrocarbon or oxygen-containing compound. A polymer having a melt flow index (MFI) of 10 was obtained by polymerizing using an active titanium catalyst obtained by supporting a titanium halide on a carrier obtained by treating with a compound, and a catalyst system consisting of an organic aluminum compound and an organic acid ester. The above is the peak position of the molecular weight distribution curve measured by gel permeation chromatography (GPC), in which the vertical axis represents the elution amount and the horizontal axis represents the natural logarithm of the molecular weight. High molecular weight region,
This is a method for producing a high-fluidity polypropylene resin having a large elongation at break, which has a Mw / Mn of 6.0 or more when a high molecular weight region is approximated to a Gaussian distribution by dividing it into a low molecular weight region and an intermediate region.

【0010】本発明で製造されるポリプロピレン樹脂と
しては、ポリプロピレン樹脂本来の特徴である高剛性で
あるために比較的高立体規則性のポリプロピレンである
ことが必要である。立体規則性の程度としては例えば造
粒前のパウダー状態でソックスレー抽出器を用いて沸騰
n−ヘプタンで10時間抽出した時 で算出した沸騰n−ヘプタン抽出残率(II)が70%以
上〜98.0%未満のポリプロピレン又はプロピレンと
少量の例えばエチレン、ブテン−1、ヘキセン−1との
共重合体であることが好ましい。98.0%以上では、
耐衝撃性が不良となり好ましくない。
The polypropylene resin produced by the present invention is required to be a polypropylene having a relatively high stereoregularity because of the high rigidity which is the original characteristic of the polypropylene resin. The degree of stereoregularity is, for example, when a powder state before granulation is extracted with boiling n-heptane using a Soxhlet extractor for 10 hours. It is preferable that the boiling n-heptane extraction residual rate (II) calculated in step 7 is 70% or more and less than 98.0% of polypropylene or a copolymer of propylene and a small amount of ethylene, butene-1, or hexene-1. .. Above 98.0%,
The impact resistance is poor, which is not preferable.

【0011】本発明においてMFIは、ASTM D1
238に従って230℃で測定してg/10min 単位で
表わした値であり、MFIが10以下では流れ性が不良
であり、射出成形の際の成形サイクルの短縮、射出圧力
の低下などの省エネルギーの効果が実現できない。MF
Iの範囲は好ましくは15〜100である。
In the present invention, MFI is ASTM D1.
Measured at 230 ° C according to 238 and expressed in units of g / 10 min. When MFI is 10 or less, the flowability is poor, and the effect of energy saving such as shortening of the molding cycle during injection molding and lowering of injection pressure. Cannot be realized. MF
The range of I is preferably 15-100.

【0012】本発明においてGPCは135℃で1,
2,4−トリクロロベンゼンを溶媒として用い、例えば
昭和電工株式会社製Shodex A−80M(商品
名)を2本連結したカラムを用いて測定され、溶出量は
屈折率の差として測定される。
In the present invention, GPC at 135 ° C.
The elution amount is measured as a difference in refractive index, using 2,4-trichlorobenzene as a solvent, for example, a column in which two Shodex A-80M (trade name) manufactured by Showa Denko KK is connected.

【0013】本発明におけるMw/Mnは以下のように
して算出される。第1図に示すように横軸を分子量の自
然対数で表わし、縦軸を溶出量で表わした分子量分布曲
線を三分割し高分子量域の分子量分布曲線についてガウ
ス分布に近似して求める。
Mw / Mn in the present invention is calculated as follows. As shown in FIG. 1, the molecular weight distribution curve in which the horizontal axis is the natural logarithm of the molecular weight and the vertical axis is the elution amount is divided into three parts, and the molecular weight distribution curve in the high molecular weight range is approximated to a Gaussian distribution.

【0014】分子量分布をガウス分布で近似する方法は
例えばJournal of ChromatographicScience vol. 20 Ju
ne 1982、252 に詳細に説明してある。即ち、分子量分
布曲線を下式で近似する: Y=Ym・exp〔−(X−Xm)2/2S2 〕 Y:分子量の自然対数(ln(分子量))Xの時の高さ、 Ym:ピーク分子量の自然対数(ln(ピーク分子量))
Xmの時の高さ又は三分割した時の境界点に一致するよ
うに算出したピーク高さ、 S=√(ln(重量平均分子量/数平均分子量)) 上記によって重量平均分子量/数平均分子量、即ちMw
/Mnが算出される。
A method for approximating the molecular weight distribution by a Gaussian distribution is described in, for example, Journal of Chromatographic Science vol. 20 Ju
See ne 1982, 252 for more details. That is, the molecular weight distribution curve is approximated by the following formula: Y = Ym · exp [− (X−Xm) 2 / 2S 2 ] Y: height at natural logarithm (ln (molecular weight)) X of Ym: Natural logarithm of peak molecular weight (ln (peak molecular weight))
Peak height calculated so as to correspond to the height at Xm or the boundary point when dividing into three, S = √ (ln (weight average molecular weight / number average molecular weight)) By the above, the weight average molecular weight / number average molecular weight, That is, Mw
/ Mn is calculated.

【0015】本発明において上記測定法で測定算出され
た高分子量域のMw/Mnが6.0以上であることは破
断時の伸びを大きく保つために必要であり、6.0未満
では例えばASTM D 638−64Tで測定される
破断時の伸びが200%以下、特にIIが90%以上の高
立体規則性ポリプロピレンでは100%以下となり好ま
しくない。高分子量域のMw/Mnが破断時の伸びに大
きな影響を与える様子を第2図に示す。第2図にはMF
Iが17〜20でIIが96%の(プロピレンを単独重合
した)ポリプロピレンに関してMw/Mnが6のところ
で破断時の伸びが大きく変化することが示されている。
In the present invention, it is necessary that Mw / Mn in the high molecular weight region measured and calculated by the above-mentioned measurement method is 6.0 or more in order to keep the elongation at break large, and if it is less than 6.0, for example, ASTM. The elongation at break as measured by D 638-64T is 200% or less, and particularly the high stereoregular polypropylene having II of 90% or more is 100% or less, which is not preferable. FIG. 2 shows how Mw / Mn in the high molecular weight range has a great influence on the elongation at break. MF is shown in FIG.
It has been shown that for polypropylene with I of 17 to 20 and II of 96% (propylene homopolymerized), the elongation at break changes significantly at Mw / Mn of 6.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明をさらに説明す
る。実施例及び比較例において物性は次の方法で測定し
た値である: MFI(g/10min) ASTM D12
38 引張り降伏強さ(kg/cm2) ASTM D63
8−64T 破断時の伸び(%) ASTM D63
8−64T 曲げ剛性度(kg/cm2) ASTM D74
7−63 アイゾット衝撃強さ(ノッチ付) ASTM D25
6−56 MFIは230℃で、その他の物性は射出成形機で8cm
×16cm×2mmの射出成形シートを製造し23℃で測定し
た。
EXAMPLES The present invention will be further described below with reference to examples. Physical properties in Examples and Comparative Examples are values measured by the following methods: MFI (g / 10 min) ASTM D12
38 Tensile Yield Strength (kg / cm 2 ) ASTM D63
8-64T Elongation at break (%) ASTM D63
8-64T Flexural Rigidity (kg / cm 2 ) ASTM D74
7-63 Izod Impact Strength (With Notch) ASTM D25
6-56 MFI is 230 ℃, other properties are 8cm by injection molding machine.
An injection-molded sheet of x16 cm x 2 mm was produced and measured at 23 ° C.

【0017】実施例1〜3及び比較例1〜2 実施例及び比較例で用いた触媒は次の通りであった: 触媒(A): 塩化マグネシウム20g、オルソ酢酸エ
チル1ml及び1,2−ジクロロエタン4mlを共粉砕した
ものに4塩化チタンを接触処理し、次いでn−ヘプタン
で洗浄する操作を3回繰り返して得た活性チタン触媒; 触媒(B): 市販の高活性三塩化チタン触媒、丸紅ソ
ルヴェー社製TBN−05(ロット番号)をそのまま使
用。
Examples 1-3 and Comparative Examples 1-2 The catalysts used in the Examples and Comparative Examples were as follows: Catalyst (A): 20 g magnesium chloride, 1 ml ethyl orthoacetate and 1,2-dichloroethane. An active titanium catalyst obtained by contacting titanium tetrachloride with 4 ml of co-pulverized powder and then washing with n-heptane three times; Catalyst (B): Commercially available highly active titanium trichloride catalyst, Marubeni Solvay The company's TBN-05 (lot number) is used as it is.

【0018】実施例及び比較例で用いた重合条件は次の
通りであった: 重合条件(i): 上記活性チタン触媒(A)2g、ト
リエチルアルミニウム6ml、ジエチルアルミニウムクロ
ライド8.5ml及びp−トルイル酸メチル4mlからなる
触媒を用い、プロピレン自身を媒体とする塊状重合法に
おいて、水素濃度を実施例1では7.0 vol%の一定
に、実施例2では10.1 vol%の一定に維持し(表1
中では前段重合の欄に記載してある)、1m3 の重合機
を用いて75℃で重合し、次いでイソプロパノールで触
媒を失活させた後プロピレンで40℃で3回洗浄してポ
リプロピレンを得た。ポリプロピレンの収量は活性チタ
ン触媒1g当たり約20000gであった。
The polymerization conditions used in the examples and comparative examples were as follows: Polymerization conditions (i): 2 g of the above active titanium catalyst (A), 6 ml of triethylaluminum, 8.5 ml of diethylaluminum chloride and p-toluyl. In the bulk polymerization method using propylene itself as a medium and using a catalyst composed of 4 ml of methyl acid, the hydrogen concentration was kept constant at 7.0 vol% in Example 1 and 10.1 vol% in Example 2. (Table 1
It is described in the section of the first-stage polymerization in the above.) Polymerization was carried out at 75 ° C. using a 1 m 3 polymerization machine, and then the catalyst was deactivated with isopropanol, followed by washing with propylene 3 times at 40 ° C. to obtain polypropylene. It was The yield of polypropylene was about 20000 g / g of activated titanium catalyst.

【0019】重合条件(ii): 上記活性チタン触媒
(B)100g及びジエチルアルミニウムクロライド8
00mlからなる触媒を用い、n−ヘプタンを媒体として
全圧10kg/cm2・ゲージ、70℃で重合した。この際比
較例1では水素濃度を21.0vol%の一定に維持し
(表1中では前段重合の欄に記載してある)、実施例3
では前段重合で水素濃度3.0 vol%で全重合体量の8
重量%を重合させ、後段重合で水素濃度25.0 vol%
で全重合体量の92重量%を重合させ、また、比較例2
では前段重合で水素濃度15.0 vol%で全重合体量の
20重量%を重合させ、後段重合で水素濃度22.0 v
ol%で全重合体量の80重量%を重合させ、2時間の重
合の後メタノールで触媒を失活させ、その後水で繰り返
し洗浄し、n−ヘプタン層を濾過によって除去してポリ
プロピレンを得た。
Polymerization conditions (ii): 100 g of the activated titanium catalyst (B) and diethylaluminum chloride 8
Polymerization was carried out at a total pressure of 10 kg / cm 2 · gauge and 70 ° C. using n-heptane as a medium, using a catalyst consisting of 00 ml. At this time, in Comparative Example 1, the hydrogen concentration was kept constant at 21.0 vol% (described in the column of the first-stage polymerization in Table 1), and Example 3 was used.
Then, in the first-stage polymerization, the hydrogen concentration was 3.0 vol% and the total polymer amount was 8%.
Polymerization of 2% by weight, hydrogen concentration of 25.0 vol% in the second stage polymerization
92% by weight of the total polymer was polymerized with
In the first-stage polymerization, the hydrogen concentration was 15.0 vol% and 20% by weight of the total amount of the polymer was polymerized.
80% by weight of the total polymer was polymerized with ol%, the catalyst was deactivated with methanol after polymerization for 2 hours, and then repeatedly washed with water, and the n-heptane layer was removed by filtration to obtain polypropylene. ..

【0020】上記の重合条件(i)及び(ii)で得たパ
ウダーを乾燥した後、フェノール系抗酸化剤(パウダー
の重量基準で0.2%)及びステアリン酸カルシウム
(パウダーの重量基準で0.1%)を加えて造粒し、次
いで射出成形シートを作り物性を測定した。その結果を
表1に示す。
After drying the powder obtained under the above polymerization conditions (i) and (ii), a phenolic antioxidant (0.2% based on the weight of the powder) and calcium stearate (0.2% based on the weight of the powder). 1%) was added and granulated, then an injection-molded sheet was prepared and the physical properties were measured. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の製造方法で得られるポリプロピ
レン樹脂は射出成形用ポリプロピレンとして成形時の流
動性に優れ、しかも得られた成形物の破断時の伸びが大
きいという優れた特性を有するものであり、工業的に価
値のあるものである。
Industrial Applicability The polypropylene resin obtained by the production method of the present invention has excellent fluidity at the time of molding as polypropylene for injection molding, and has excellent characteristics that the obtained molded article has a large elongation at break. Yes, it is of industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】分子量分布曲線及びその分割法を示す図面であ
りaは高分子量域、bは中間量域、cは低分子量域を示
す。
FIG. 1 is a drawing showing a molecular weight distribution curve and its dividing method, where a is a high molecular weight region, b is an intermediate molecular weight region, and c is a low molecular weight region.

【図2】高分子量域のMw/Mnと破断時の伸びの関係
を示すグラフでありMw/Mn=6.0のところを破線
で示している。
FIG. 2 is a graph showing the relationship between Mw / Mn in the high molecular weight region and elongation at break, where Mw / Mn = 6.0 is indicated by a broken line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 立体規則性触媒を用いて重合を多段階で
行い各段の重合を水素濃度を変えて行うか、或いはハロ
ゲン化合物で処理して得たチタン化合物を固体触媒成分
とする触媒を用いて重合するか、或いは重合の際に含酸
素化合物を添加して重合することによって、メルトフロ
ーインデックス(MFI)が10以上であり、ゲルパー
ミェーションクロマトグラフィー(GPC)で測定して
縦軸を溶出量で、横軸を分子量の自然対数で表わした分
子量分布曲線のピーク位置を中心として高分子量域、低
分子量域、中間領域にわけ、高分子量域をガウス分布で
近似した時のMw/Mnが6.0以上である破断時の伸
びの大きい高流動性ポリプロピレン樹脂を製造する方
法。
1. A catalyst comprising a titanium compound as a solid catalyst component, which is obtained by performing polymerization in multiple stages using a stereoregular catalyst and varying the hydrogen concentration in each stage of the polymerization, or treating with a halogen compound. The polymer has a melt flow index (MFI) of 10 or more when polymerized by using or by adding an oxygen-containing compound at the time of polymerization, and the melt flow index (MFI) is measured by gel permeation chromatography (GPC). Mw when the high molecular weight region is approximated by a Gaussian distribution by dividing the high molecular weight region, the low molecular weight region, and the intermediate region around the peak position of the molecular weight distribution curve where the axis is the elution amount and the horizontal axis is the natural logarithm of the molecular weight. A method for producing a high-fluidity polypropylene resin having a large elongation at break with / Mn of 6.0 or more.
JP33497992A 1992-11-24 1992-11-24 Production of highly fluidic polypropylene resin for injection molding Pending JPH05239149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33497992A JPH05239149A (en) 1992-11-24 1992-11-24 Production of highly fluidic polypropylene resin for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33497992A JPH05239149A (en) 1992-11-24 1992-11-24 Production of highly fluidic polypropylene resin for injection molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5101884A Division JPS60195109A (en) 1984-03-19 1984-03-19 Polypropylene resin composition for high-fluidity injection molding

Publications (1)

Publication Number Publication Date
JPH05239149A true JPH05239149A (en) 1993-09-17

Family

ID=18283370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33497992A Pending JPH05239149A (en) 1992-11-24 1992-11-24 Production of highly fluidic polypropylene resin for injection molding

Country Status (1)

Country Link
JP (1) JPH05239149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045463A1 (en) * 1996-05-27 1997-12-04 Mitsui Chemicals, Inc. Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article
US6110986A (en) * 1997-12-11 2000-08-29 Sumitomo Chemical Company, Limited Propylene-based polymer composition and foamed article thereof
US6403708B2 (en) * 1996-05-27 2002-06-11 Mitsui Chemicals Inc Crystalline polypropylenes, process for preparing thereof, polypropylene compositions, and thermoformed products
JP2008121030A (en) * 1997-08-15 2008-05-29 Chisso Corp Polydisperse propylene polymer and its production method
JP4119607B2 (en) * 1997-08-15 2008-07-16 チッソ株式会社 Polydispersed propylene polymer and process for producing the same
US7732532B2 (en) 2004-03-31 2010-06-08 Prime Polymer Co., Ltd. Multi-stage propylene polymer, process for producing the same, and propylene resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961278A (en) * 1972-09-26 1974-06-13
JPS5486587A (en) * 1977-12-23 1979-07-10 Showa Denko Kk Propylene polymer for injection molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961278A (en) * 1972-09-26 1974-06-13
JPS5486587A (en) * 1977-12-23 1979-07-10 Showa Denko Kk Propylene polymer for injection molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045463A1 (en) * 1996-05-27 1997-12-04 Mitsui Chemicals, Inc. Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article
KR100289227B1 (en) * 1996-05-27 2001-05-02 나까니시 히로유끼 Crystalline polypropylene, a process for producing the same, a polypropylene composition,
US6403708B2 (en) * 1996-05-27 2002-06-11 Mitsui Chemicals Inc Crystalline polypropylenes, process for preparing thereof, polypropylene compositions, and thermoformed products
JP2008121030A (en) * 1997-08-15 2008-05-29 Chisso Corp Polydisperse propylene polymer and its production method
JP4119607B2 (en) * 1997-08-15 2008-07-16 チッソ株式会社 Polydispersed propylene polymer and process for producing the same
US6110986A (en) * 1997-12-11 2000-08-29 Sumitomo Chemical Company, Limited Propylene-based polymer composition and foamed article thereof
US7732532B2 (en) 2004-03-31 2010-06-08 Prime Polymer Co., Ltd. Multi-stage propylene polymer, process for producing the same, and propylene resin composition

Similar Documents

Publication Publication Date Title
JPH05202152A (en) Production of polypropylene molding material
JP2000063422A (en) Manufacture of polyethylene with improved mechanical characteristics
JPH05239149A (en) Production of highly fluidic polypropylene resin for injection molding
JPH0317845B2 (en)
JPH078890B2 (en) Olefin continuous polymerization
WO2000058375A1 (en) Production of polyethylene
CN112142895B (en) Application of organosilane, random copolymer polypropylene and preparation method thereof
JP2018530659A (en) Use of organosilane, polyolefin resin and method for producing the same
JP2000026524A (en) Production of polyethylene
JPH0318644B2 (en)
JPH0348926B2 (en)
JPS60195111A (en) High-fluidity impact-resistant polypropylene resin composition
JP3312801B2 (en) Propylene ethylene copolymer and method for producing the same
JP2007504293A (en) Highly stereoregular polybutylene polymer and process for preparing it with high activity
JPH041761B2 (en)
JPS6035364B2 (en) Production method of propylene block copolymer
JPH07100730B2 (en) High flow impact polypropylene resin
US4434279A (en) High swell resins
JPH01217015A (en) Production of propylene polymer
KR100420724B1 (en) Resin composition for shape memory
JPH01272612A (en) Production of propylene copolymer composition
EP1297029B1 (en) Method of ethylene polymerization
CN106632781B (en) Process for producing ethylene/propylene copolymer having branched structure and the copolymer
JPS6381114A (en) Production of propylene block copolymer
JPS6225109A (en) Continuous polymerization of olefin