JPH041761B2 - - Google Patents

Info

Publication number
JPH041761B2
JPH041761B2 JP59051018A JP5101884A JPH041761B2 JP H041761 B2 JPH041761 B2 JP H041761B2 JP 59051018 A JP59051018 A JP 59051018A JP 5101884 A JP5101884 A JP 5101884A JP H041761 B2 JPH041761 B2 JP H041761B2
Authority
JP
Japan
Prior art keywords
molecular weight
weight range
polypropylene
polymerization
break
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59051018A
Other languages
Japanese (ja)
Other versions
JPS60195109A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Shigeru Kimura
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5101884A priority Critical patent/JPS60195109A/en
Publication of JPS60195109A publication Critical patent/JPS60195109A/en
Publication of JPH041761B2 publication Critical patent/JPH041761B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明はメるトロフローインデツクスが10以上
の高流動性でしかも破断時の伸びの大きい射出成
形用ポリプロピレン樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polypropylene resin for injection molding which has a high flowability with a Meltflow index of 10 or more and has a large elongation at break.

ポリプロピレンは剛性に優れしかも軽量である
ことから、多くの用途に用いられており、さらに
近来省資源、省エネルギーのため樹脂の高流動化
及び成形物の薄肉化が計られている。
Since polypropylene has excellent rigidity and is lightweight, it is used for many purposes, and in recent years, efforts have been made to make resins more fluid and molded products thinner in order to save resources and energy.

ポリプロピレン樹脂を高流動化するためには分
子量を下げるのが最も簡便であり、プロピレンを
重合してポリプロピレンを得る際に水素などの連
鎖移動剤を添加して分子量を下げるか或いは、有
機過酸化物などのラジカル発生剤と加熱混合し分
子量を下げる方法によつて高流動化することが行
われている。
The easiest way to make polypropylene resin highly fluid is to lower its molecular weight. High fluidity is achieved by heating and mixing with a radical generator such as to lower the molecular weight.

しかしながら上記のような方法で単に分子量を
低下させてポリプロピレン樹脂を高流動化させる
と、得られた樹脂の破断時の伸びが極めて小さく
なり、そのため実際に成形物とした時の実用上の
強度が劣る結果となつている。
However, if polypropylene resin is made to have high fluidity by simply lowering its molecular weight using the method described above, the elongation at break of the resulting resin will be extremely small, and as a result, the practical strength of the molded product will be low. The results are inferior.

本発明の目的は高流動性でしかも破断時の伸び
が大きいポリプロピレン樹脂を提供することにあ
る。
An object of the present invention is to provide a polypropylene resin with high fluidity and high elongation at break.

本発明は、ソツクスレー抽出器を用いて沸騰n
−ヘプタンで10時間抽出した時の沸騰n−ヘプタ
ン抽出残率が70%以上、98.0%未満のプロピレン
単独重合体であつて、メルトフローインデツクス
(MFI)が10以上であり、ゲルパーミエーシヨン
クロマトグラフイー(GPC)で測定して縦軸を
溶出量で、横軸を分子量の自然対数で表した分子
量分布曲線のピーク位置を中心として高分子量
域、低分子量域、中間量域にわけ、高分子量域を
ガウス分布で近似した時のMW/MNが6.0以上で
あることを特徴とする破断時の伸の大きい高流動
性ポリプロピレン樹脂に関する。
The present invention uses a Soxhlet extractor to
- A propylene homopolymer with a boiling n-heptane extraction residue of 70% or more and less than 98.0% when extracted with heptane for 10 hours, a melt flow index (MFI) of 10 or more, and a gel permeation Measured by chromatography (GPC), the vertical axis is the elution amount and the horizontal axis is the natural logarithm of the molecular weight.The molecular weight distribution curve is divided into high molecular weight range, low molecular weight range, and intermediate weight range around the peak position. The present invention relates to a highly fluid polypropylene resin with high elongation at break, characterized in that M W /M N is 6.0 or more when the high molecular weight region is approximated by a Gaussian distribution.

本発明においてポリプロピレン樹脂としてはポ
リプロピレン樹脂本来の特性である高剛性である
ために比較的高立体規則性のポリプロピレンであ
ることが必要である。立体規則性の程度としては
例えば造粒前のパウダー状態でソツクスレー抽出
器を用いて沸騰n−ヘプタンで10時間抽出した時 抽出残パウダー重量/抽出前パウダー重量×100(%)
で算出した沸騰 n−ヘプタン抽出残率()が70%以上〜98.0%
未満のプロピレン単独重合体であることが好まし
い。98.0%以上では、耐衝撃性が不良となり好ま
しくない。
In the present invention, the polypropylene resin needs to be a polypropylene with relatively high stereoregularity because it has high rigidity, which is an inherent property of polypropylene resin. The degree of stereoregularity is, for example, when the powder state before granulation is extracted with boiling n-heptane using a Soxhlet extractor for 10 hours, the weight of the extracted powder remaining / the weight of the powder before extraction x 100 (%)
Boiling n-heptane extraction residual rate () calculated by 70% or more - 98.0%
It is preferable that the propylene homopolymer is less than or equal to If it exceeds 98.0%, the impact resistance will be poor, which is not preferable.

本発明においてMFIはASTM D1238に従い
230℃で測定しg/10min単位で表わした値であ
り、MFIが10以下では流れ性が不良であり、射
出成形の際の成形サイクルの短縮、射出圧力の低
下などの省エネルギーの効果が実現できない。
MFIの特に好ましい範囲としては15〜100であ
る。
In this invention, MFI is in accordance with ASTM D1238.
It is a value measured at 230℃ and expressed in units of g/10min. If the MFI is less than 10, flowability is poor, and energy saving effects such as shortening the molding cycle and lowering the injection pressure during injection molding cannot be achieved. .
A particularly preferred range of MFI is 15-100.

本発明においてGPCは135℃で1,2,4−ト
リクロロベンゼンを溶媒として測定され、例えば
昭和電工株式会社製Shodex A−80M(商品名)
を2本連結したカラムで溶出量は、屈折率の差と
して測定される。
In the present invention, GPC is measured at 135°C using 1,2,4-trichlorobenzene as a solvent; for example, Shodex A-80M (trade name) manufactured by Showa Denko K.K.
The elution amount is measured as the difference in refractive index using two columns connected together.

本発明におけるMW/MNは以下のようにして算
出される。第1図に示すように横軸を分子量の自
然対数で表わし、縦軸を溶出量で表わした分子量
分布曲線を三分割して高分子量域の分子量分布曲
線についてガウス分布に近似して求める。
M W /M N in the present invention is calculated as follows. As shown in FIG. 1, the molecular weight distribution curve in which the horizontal axis represents the natural logarithm of the molecular weight and the vertical axis represents the elution amount is divided into three parts, and the molecular weight distribution curve in the high molecular weight range is determined by approximating a Gaussian distribution.

分子量分布をガウス分布で近似する方法は、例
えばJournl of Chromatographic Science vol20
June 1982 252 に詳細に説明してある。即ち分
子量分布曲線を下式で近似する。
The method of approximating the molecular weight distribution with a Gaussian distribution is described in, for example, Journal of Chromatographic Science vol20.
June 1982 252 describes this in detail. That is, the molecular weight distribution curve is approximated by the following formula.

Y=Ym・exp〔−(X−Xm)2/2S2〕 Y;分子量の自然対数(ln(分子量))Xの時の高
さ Ym;ピーク分子量の自然対数(ln(ピーク分子
量)) Xmの時の高さ又は三分割した時の境界点に一
致するように算出したピーク高さ。) S=√(重量平均分子量数平均分子量) 上記によつて重量平均分子量/数平均分子量、
即ちMW/MNが算出される。
Y=Ym・exp [−(X−Xm) 2 /2S 2 ] Y: Natural logarithm of molecular weight (ln (molecular weight)) Height at X Ym; Natural logarithm of peak molecular weight (ln (peak molecular weight)) Xm The peak height calculated to match the height at , or the boundary point when divided into thirds. ) S = √ (weight average molecular weight number average molecular weight) According to the above, weight average molecular weight / number average molecular weight,
That is, M W /M N is calculated.

本発明において上記測定法で測定算出された高
分子量域のMW/MNが6.0以上であることは破断
時の伸びを大きく保つために必要であり6.0未満
では例えばASTM D 638−64Tで測定される
破断時の伸びが200%以下、特にが90%以上の
高立体規則性ポリプロピレンでは100%以下とな
り好ましくない。高分子領域のMW/MNが破断時
の伸びに大きな影響を与える様子を第2図に示
す。第2図にはMFIが17〜20でが96%の(プ
ロピレンを単独重合した)ポリプロピレンにかん
してMW/MNが6のところで破断時に伸びが大き
く変化していることが示されている。
In the present invention, it is necessary for M W /M N in the high molecular weight range measured and calculated by the above measurement method to be 6.0 or more in order to maintain a large elongation at break. Highly stereoregular polypropylene whose elongation at break is 200% or less, particularly 90% or more, is unfavorable because it is 100% or less. Figure 2 shows how M W /M N of the polymer region has a large effect on the elongation at break. Figure 2 shows that for polypropylene with an MFI of 17 to 20 and 96% (propylene homopolymerized), the elongation at break changes significantly when M W /M N is 6. .

本発明のポリプロピレン樹脂の製造法としては
得られるポリプロピレンが前述の条件を満足する
ものであれば良く特に限定はないが、1例を示す
通常の重合条件、即ち気相部の水素濃度を一定と
し一定の温度で重合して得たポリプロピレンの分
子量分布を測定し前述の方法で分子量分子曲線を
三分割し高分子量側の境界点の分子量を求め、そ
の分子量より大きい分子量域にピークをもつよう
な分子量分布曲線となる如き分子量のポリプロピ
レンを得るための重合条件が設定される。通常は
気相部の水素濃度及び重合温度の条件を設定すれ
ばよい。本発明のポリプロピレン樹脂はこうして
定められた水素濃度と重合温度の2つの条件(必
要ならばさらに高分子量のポリプロピレンを得る
条件を加えて)を同一重合系でたとえば水素濃度
を変え乍ら二段重合を行うことによつて得られ
る。目安としてより高分子量のポリプロピレンの
全組成物に対する割合が30wt%以下、通常30wt
%ないし5wt%となる様に重合が行われる。
The method for producing the polypropylene resin of the present invention is not particularly limited as long as the polypropylene obtained satisfies the above-mentioned conditions, but one example is the usual polymerization conditions, that is, the hydrogen concentration in the gas phase is constant. Measure the molecular weight distribution of polypropylene obtained by polymerizing at a constant temperature, divide the molecular weight curve into three parts using the method described above, find the molecular weight at the boundary point on the high molecular weight side, and calculate the molecular weight distribution that has a peak in the molecular weight range larger than that molecular weight. Polymerization conditions are set to obtain polypropylene having a molecular weight that conforms to a molecular weight distribution curve. Usually, the conditions such as the hydrogen concentration in the gas phase and the polymerization temperature may be set. The polypropylene resin of the present invention is subjected to two-stage polymerization under the two conditions of hydrogen concentration and polymerization temperature determined in this manner (adding conditions for obtaining higher molecular weight polypropylene if necessary) in the same polymerization system, for example, while changing the hydrogen concentration. It can be obtained by doing As a guideline, the proportion of higher molecular weight polypropylene in the total composition should be 30wt% or less, usually 30wt%.
% to 5wt%.

他の好ましい方法としては高分子量域の分子量
分布の大きい重合体を与える触媒系を用いること
である。多くの優れた触媒系がすでに知られてい
るが、それぞれの触媒系について得られたポリプ
ロピレンがどのような分子量分布をもつているか
は知られていないため、すべての触媒系について
明らかにできないが比較的高分子量域の広い分子
量分布を与える触媒系としては、ハロゲン化物、
特にハロゲン化炭化水素でチタン化合物を処理し
た固体触媒成分をチタン成分として用いる場合或
は、重合の際に含酸素化合物特に有機酸エステル
とか、ケトン化合物を用いる場合は理由は明確で
はないが、高分子量域の分子量分布の広い重合体
が得られる傾向がある。特に高分子量域の広い重
合体を与える触媒系としてハロゲン化マグネシウ
ムをハロゲン化炭化水素、含酸素化合物で処理し
て得た担体にハロゲン化チタを担持して得た活性
チタン触媒と、有機アルミニウム化合物及び有機
酸エステルからなる触媒系が挙げられる。上記の
ように比較的高分子量領域の分子量分布の広い重
合体を与える触媒系を用いた場合には、一定の重
合条件例えば気相部の水素濃度及び重合温度を一
定に維持して重合を行つても本発明のポリプロピ
レン樹脂が得られる。
Another preferred method is to use a catalyst system that provides a polymer with a wide molecular weight distribution in the high molecular weight range. Many excellent catalyst systems are already known, but it is not known what kind of molecular weight distribution the polypropylene obtained with each catalyst system has, so although it is not possible to clarify all catalyst systems, it is not possible to make a comparison. Catalyst systems that provide a wide molecular weight distribution in a high molecular weight range include halides,
Although the reason is not clear, especially when a solid catalyst component prepared by treating a titanium compound with a halogenated hydrocarbon is used as the titanium component, or when an oxygen-containing compound, especially an organic acid ester or a ketone compound is used during polymerization, high There is a tendency to obtain a polymer with a wide molecular weight distribution in the molecular weight range. In particular, an active titanium catalyst obtained by supporting titanium halide on a support obtained by treating magnesium halide with a halogenated hydrocarbon and an oxygen-containing compound, and an organoaluminum compound as a catalyst system that provides a polymer with a wide range of high molecular weights. and a catalyst system consisting of an organic acid ester. When using a catalyst system that produces a polymer with a wide molecular weight distribution in a relatively high molecular weight region as described above, the polymerization is carried out under certain polymerization conditions, such as keeping the hydrogen concentration in the gas phase and the polymerization temperature constant. However, the polypropylene resin of the present invention can be obtained.

本発明のポリプロピレン樹脂は射出成形用ポリ
プロピレンとして成形時の流動性に優れしかも得
られた成形物の破断時の伸びが大きいという優れ
た特性を有するものであり、工業的に価値のある
ものである。
The polypropylene resin of the present invention has excellent properties as a polypropylene for injection molding, such as excellent fluidity during molding and high elongation at break of the molded product obtained, and is industrially valuable. .

以下に実施例を挙げ本発明をさらに説明する。
実施例及ひ比較例において物性は次の方法で測定
される。
The present invention will be further explained with reference to Examples below.
In Examples and Comparative Examples, physical properties are measured by the following method.

MFI(g/10min) ASTM D1238 引張り降伏強さ(Kg/cm2) ASTM D638−64T 破断時の伸び(%) ASTM D638−64T 曲げ剛性度(Kg/cm2) ASTM D747−63 アイゾツト衝撃強さ(ノツチ付)
ASTM D256−56 MFIは230℃で、その他の物性は射出成形機で
8cm×16cm×2cmの射出成形シートを製造し23℃
で測定した。
MFI (g/10min) ASTM D1238 Tensile yield strength (Kg/cm 2 ) ASTM D638-64T Elongation at break (%) ASTM D638-64T Bending stiffness (Kg/cm 2 ) ASTM D747-63 Izot impact strength (With notch)
ASTM D256-56 MFI is 230℃, and other physical properties are 8cm x 16cm x 2cm injection molded sheet manufactured using an injection molding machine at 23℃.
It was measured with

実施例 (1) 活性チタン触媒の製造 () 塩化マグネシウム20g、オルソ酢酸エチ
ル1ml、1,2−ジクロロエレタン4mlを共
粉砕したものに4塩化チタンを接触処理し次
いでn−ヘプタンで洗浄する操作を3回繰り
返して得た活性チタン触媒(A)。
Example (1) Production of active titanium catalyst () 20 g of magnesium chloride, 1 ml of ethyl orthoacetate, and 4 ml of 1,2-dichloroethane were co-pulverized and treated with titanium tetrachloride, followed by washing with n-heptane. Activated titanium catalyst obtained by repeating three times (A).

() 市販の高活性三塩化チタン触媒丸紅ソル
ヴエー社製TBN−05(ロツト番号)をそのま
ま使用。活性チタン触媒(B)。
() A commercially available highly active titanium trichloride catalyst TBN-05 (lot number) manufactured by Marubeni Solve A was used as is. Activated titanium catalyst (B).

(2) ポリプロピレンの製造 重合条件() 上記活性チタン触媒(A)2g、ト
リエチルアルミニウム6ml、ジエチルアルミ
ニウムクロライド8.5ml、p−トルイル酸メ
チル4mlからなる触媒を用いてプロピレン自
身を媒体とする塊状重合法において、水素濃
度一定で1m3の重合機を用いて75℃で重合
し、次いでイソプロパノールで触媒を失活し
た後プロピレンで40℃で3回洗浄してポリプ
ロピレンを得た。活性チタン触媒当り約
20000g/g−catである。
(2) Production of polypropylene Polymerization conditions () Bulk polymerization method using propylene itself as a medium using a catalyst consisting of 2 g of the above activated titanium catalyst (A), 6 ml of triethylaluminum, 8.5 ml of diethylaluminum chloride, and 4 ml of methyl p-toluate. Polymerization was carried out at 75°C using a 1 m 3 polymerization machine with a constant hydrogen concentration, and then the catalyst was deactivated with isopropanol and washed three times with propylene at 40°C to obtain polypropylene. Approximately per activated titanium catalyst
20000g/g-cat.

重合条件() 上記活性チタン触媒(B)100g、
ジエチルアルミニウムクロライド800mlから
なる触媒を用いてn−ヘプタンを媒体として
全圧10Kg/cm2−ゲージ、70℃で重合した。こ
の際水素濃度を一定とするか或は水素濃度を
かえて2段階で行う2段重合の方法で重合
し、2時間の重合の後メタノールで触媒を失
活した後水で繰り返し洗浄した後n−ヘプタ
ン層を過してポリプロピレンを得た。
Polymerization conditions () 100g of the above activated titanium catalyst (B),
Polymerization was carried out using a catalyst consisting of 800 ml of diethylaluminium chloride and n-heptane as a medium at a total pressure of 10 Kg/cm 2 -gauge and 70°C. At this time, the hydrogen concentration is kept constant or the hydrogen concentration is changed, and the polymerization is carried out in two stages. After 2 hours of polymerization, the catalyst is deactivated with methanol, and then washed repeatedly with water. - Polypropylene was obtained by passing through a heptane layer.

上記()及び()で得たパウダーは乾燥し
た後、フエノール系抗酸化剤(対パウダー2/
1000 重量比)、ステアリン酸カルシウム(対パ
ウダー1/1000 重量比)を加えて造粒し次いで
射出成形シートを作り物性を測定した。
After drying the powder obtained in () and () above, phenolic antioxidant (powder 2/
1000 weight ratio) and calcium stearate (1/1000 weight ratio to the powder) were added and granulated, and then an injection molded sheet was made and the physical properties were measured.

結果は表に示す。実施例2は実施例1の方法の
水素濃度をかえて同様に行われた。
The results are shown in the table. Example 2 was carried out in the same manner as in Example 1 except that the hydrogen concentration was changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、、分子量分布曲線及びその分割法を
示す図面でありaは高分子量域、bは中間量域、
cは低分子量域を示す。第2図は高分子量域の
MW/MNと破断時の伸びの関係を示すグラフであ
りMW/MN=6.0のところを破線で示している。
FIG. 1 is a drawing showing a molecular weight distribution curve and its division method, where a is a high molecular weight region, b is an intermediate weight region,
c indicates a low molecular weight region. Figure 2 shows the high molecular weight range.
This is a graph showing the relationship between M W /M N and elongation at break, where M W /M N =6.0 is indicated by a broken line.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ソツクスレー抽出器を用いて沸騰n−ヘプタ
ンで10時間抽出した時の沸騰n−ヘプタン抽出残
率が70%以上、98.0%未満のプロピレン単独重合
体であつて、メルトフローインデツクス(MFI)
が10以上であり、ゲルパーミエーシヨンクロマト
グラフイー(GPC)で測定して縦軸を溶出量で、
横軸を分子量の自然対数で表した分子量分布曲線
のピーク位置を中心として高分子量域、低分子量
域、中間量域にわけ、高分子量域をガウス分布で
近似した時のMW/MNが6.0以上であることを特
徴とする破断時の伸の大きい高流動性ポリプロピ
レン樹脂。
1 A propylene homopolymer with a boiling n-heptane extraction residue of 70% or more and less than 98.0% when extracted with boiling n-heptane for 10 hours using a Soxhlet extractor, and having a melt flow index (MFI)
is 10 or more, and the vertical axis is the elution amount as measured by gel permeation chromatography (GPC).
The peak position of the molecular weight distribution curve with the horizontal axis expressed as the natural logarithm of the molecular weight is divided into high molecular weight range, low molecular weight range, and intermediate weight range, and when the high molecular weight range is approximated by a Gaussian distribution, M W /M N is Highly fluid polypropylene resin with high elongation at break, characterized by a value of 6.0 or more.
JP5101884A 1984-03-19 1984-03-19 Polypropylene resin composition for high-fluidity injection molding Granted JPS60195109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101884A JPS60195109A (en) 1984-03-19 1984-03-19 Polypropylene resin composition for high-fluidity injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101884A JPS60195109A (en) 1984-03-19 1984-03-19 Polypropylene resin composition for high-fluidity injection molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33497992A Division JPH05239149A (en) 1992-11-24 1992-11-24 Production of highly fluidic polypropylene resin for injection molding

Publications (2)

Publication Number Publication Date
JPS60195109A JPS60195109A (en) 1985-10-03
JPH041761B2 true JPH041761B2 (en) 1992-01-14

Family

ID=12875047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101884A Granted JPS60195109A (en) 1984-03-19 1984-03-19 Polypropylene resin composition for high-fluidity injection molding

Country Status (1)

Country Link
JP (1) JPS60195109A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075668B2 (en) * 1987-02-04 1995-01-25 チッソ株式会社 Highly crystalline polypropylene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961278A (en) * 1972-09-26 1974-06-13
JPS5486587A (en) * 1977-12-23 1979-07-10 Showa Denko Kk Propylene polymer for injection molding
JPS56157407A (en) * 1980-05-10 1981-12-04 Sumitomo Chem Co Ltd Production of highly crystalline olefin polymer
JPS57102907A (en) * 1980-12-18 1982-06-26 Sumitomo Chem Co Ltd High-crystallinity propylene polymer for injection molding
JPS57190006A (en) * 1981-05-19 1982-11-22 Mitsubishi Chem Ind Ltd Preparation of propylene polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961278A (en) * 1972-09-26 1974-06-13
JPS5486587A (en) * 1977-12-23 1979-07-10 Showa Denko Kk Propylene polymer for injection molding
JPS56157407A (en) * 1980-05-10 1981-12-04 Sumitomo Chem Co Ltd Production of highly crystalline olefin polymer
JPS57102907A (en) * 1980-12-18 1982-06-26 Sumitomo Chem Co Ltd High-crystallinity propylene polymer for injection molding
JPS57190006A (en) * 1981-05-19 1982-11-22 Mitsubishi Chem Ind Ltd Preparation of propylene polymer

Also Published As

Publication number Publication date
JPS60195109A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
Collette et al. Elastomeric polypropylenes from alumina-supported tetraalkyl Group IVB catalysts. 1. Synthesis and properties of high molecular weight stereoblock homopolymers
US4291138A (en) Production of modified polypropylenes
JPS59172507A (en) Production of polypropylene
JPH0317845B2 (en)
CN112142895B (en) Application of organosilane, random copolymer polypropylene and preparation method thereof
JPH041761B2 (en)
JPH05239149A (en) Production of highly fluidic polypropylene resin for injection molding
US5081190A (en) Block copolymer of propylene and a process for the production thereof
JPH0318644B2 (en)
JPH044324B2 (en)
JPH0348926B2 (en)
JPS6035364B2 (en) Production method of propylene block copolymer
JPH0443927B2 (en)
JPH0329805B2 (en)
JPS6358165B2 (en)
JPS6034566B2 (en) Method for producing propylene copolymer
JPS5840564B2 (en) Method for producing olefin polymer
JP4007625B2 (en) Polypropylene and stretched film using the same
JPS5941316A (en) Propylene-ethylene block copolymer and preparation thereof
US3255166A (en) Polymer purification
JPS6259129B2 (en)
JPH07100730B2 (en) High flow impact polypropylene resin
JPS5840566B2 (en) Improved method for producing olefin polymers
JPS6138926B2 (en)
JPH0432085B2 (en)