JPH0568440B2 - - Google Patents
Info
- Publication number
- JPH0568440B2 JPH0568440B2 JP60032214A JP3221485A JPH0568440B2 JP H0568440 B2 JPH0568440 B2 JP H0568440B2 JP 60032214 A JP60032214 A JP 60032214A JP 3221485 A JP3221485 A JP 3221485A JP H0568440 B2 JPH0568440 B2 JP H0568440B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- material solution
- substrate
- liquid phase
- phase growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002994 raw material Substances 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 32
- 239000007791 liquid phase Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、スライドボート方式の液相成長装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a slide boat type liquid phase growth apparatus.
[従来の技術]
結晶成長技術の向上により、化合物半導体に関
しても大型の基板を得られるようになつたため、
エピタキシヤルウエハの大型化が要求されてい
る。[Conventional technology] Improvements in crystal growth technology have made it possible to obtain large substrates for compound semiconductors.
There is a demand for larger epitaxial wafers.
液相成長法の中でも、スライドボード方式が一
般に広く用いられており、第5図は従来の液相成
長装置の説明図である。 Among liquid phase growth methods, the slide board method is generally widely used, and FIG. 5 is an explanatory diagram of a conventional liquid phase growth apparatus.
1はGaAs等の基板、2は基板1を担持する基
板ホルダー、5は溶液ホルダーで原料溶液溜4内
に原料溶液3が収容されており、基板ホルダー2
と溶液ホルダー5は水平方向にスライド可能にな
つている。 1 is a substrate such as GaAs, 2 is a substrate holder that supports the substrate 1, and 5 is a solution holder in which a raw material solution 3 is accommodated in a raw material solution reservoir 4;
The solution holder 5 can be slid horizontally.
[発明が解決しようとする問題点]
第6図乃至第8図は、従来の液相成長装置の問
題点を示す説明図であり、第5図と同一部品には
同一符号を付し、説明を省略する。[Problems to be Solved by the Invention] FIGS. 6 to 8 are explanatory diagrams showing problems of the conventional liquid phase growth apparatus, and the same parts as in FIG. omitted.
すなわち、第6図において、基板1が大型化し
た場合には使用する原料溶液3も当然増やす必要
があるが、面積が大きくなつた比率で原料溶液3
を増やしたのでは、成長温度が高温であるため表
面張力で原料溶液3が丸くなつて基板1の表面全
体を覆うことができなくなつてしまう。 In other words, in FIG. 6, when the substrate 1 becomes larger, the raw material solution 3 used also needs to be increased, but the raw material solution 3 is increased in proportion to the larger area.
If the growth temperature is increased, the raw material solution 3 will become round due to surface tension and will not be able to cover the entire surface of the substrate 1.
よつて基板1の表面全体を原料溶液3で覆うた
めには、第7図に示すように原料溶液3を面積比
以上に多くするか、あるいは、第8図に示すよう
に蓋6をのせて原料溶液3を一定厚さにする必要
がある。 Therefore, in order to cover the entire surface of the substrate 1 with the raw material solution 3, as shown in FIG. 7, the amount of the raw material solution 3 must be larger than the area ratio, or as shown in FIG. It is necessary to make the raw material solution 3 a constant thickness.
しかし、第7図においては原料費が高くなつて
しまい、第8図においては蓋6の存在のために原
料溶液3が装置周囲を流れるH2ガスと接触でき
ず、高純度化が充分にでないという問題があつ
た。 However, in Fig. 7, the raw material cost increases, and in Fig. 8, the presence of the lid 6 prevents the raw material solution 3 from coming into contact with the H2 gas flowing around the device, resulting in insufficient purification. There was a problem.
[発明の目的]
本発明の目的は、前記した従来技術の問題点に
鑑み、少ない原料溶液で基板表面に均一に成長可
能で、かつ、原料溶液の高純度化も可能な液相成
長装置を提供することにある。[Object of the Invention] In view of the problems of the prior art described above, the object of the present invention is to provide a liquid phase growth apparatus that can uniformly grow on a substrate surface with a small amount of raw material solution and that can also improve the purity of the raw material solution. It is about providing.
[問題点を解決するための手段]
本発明の要旨は、原料溶液溜内に該原料溶液溜
の内容積を小さくするための部材を設けたことに
ある。[Means for Solving the Problems] The gist of the present invention is that a member for reducing the internal volume of the raw material solution reservoir is provided in the raw material solution reservoir.
[作用]
すなわち、第1図及び第3図は本発明の実施例
を示す説明図であり、第1図に示すように原料溶
液溜4内に複数の穴のあいた穴あき板7を設ける
か、又は、第3図に示すようなすのこ8を設ける
ことにより、原料溶液溜4の内容積が小さくな
り、原料溶液3を原料溶液溜4の中に流し込んで
も、第6図のように原料溶液3が丸くなつたりせ
ず、基板1の表面全体を覆うことが可能となる。
尚、原料溶液3は、穴あき板7およびすのこ8が
原料溶液3で完全に埋没する程度の量は必要であ
り、原料溶液表面が露出しているため、装置周囲
を流れるH2ガスとの接触面積が大きく、高純度
化の時間が短かくてすむ第4図は第3図における
A−A′断面の説明図である。[Function] That is, FIGS. 1 and 3 are explanatory diagrams showing an embodiment of the present invention, and as shown in FIG. 1, a perforated plate 7 with a plurality of holes is provided in the raw material solution reservoir 4. Alternatively, by providing a grating 8 as shown in FIG. 3, the internal volume of the raw material solution reservoir 4 is reduced, and even if the raw material solution 3 is poured into the raw material solution reservoir 4, the raw material solution does not flow as shown in FIG. 3 does not become rounded and can cover the entire surface of the substrate 1.
Note that the raw material solution 3 needs to be in an amount such that the perforated plate 7 and the grates 8 are completely buried in the raw material solution 3, and since the raw material solution surface is exposed, there is no possibility of interaction with the H 2 gas flowing around the device. FIG. 4, which has a large contact area and requires a short time for high purification, is an explanatory view of the A-A' cross section in FIG. 3.
穴あき板7の穴は第2図に示すように円形9、
三角形10、四角形11あるいはその他の多角形
でもよく、原料溶液3が下方には流出する程度の
大きさであればよい。 The holes in the perforated plate 7 are circular 9 as shown in FIG.
It may be a triangle 10, a quadrangle 11, or any other polygon as long as it has a size that allows the raw material solution 3 to flow downward.
又、基板1と穴あき板7及びすのこ8との間隔
を3〜10mm程度離すことが望ましいが、基板1の
大きさによつて3mm以上に適宜設定すればよい。 Further, it is desirable that the distance between the substrate 1 and the perforated plate 7 and the grating 8 be approximately 3 to 10 mm, but the distance may be appropriately set to 3 mm or more depending on the size of the substrate 1.
基板ホルダー2及び溶液ホルダー5は、一般に
グラフアイト製であり、穴あき板7及びすのこ8
の材質もグラフアイト製であることが望ましい。 The substrate holder 2 and the solution holder 5 are generally made of graphite, and have a perforated plate 7 and a slatted plate 8.
It is also desirable that the material is graphite.
[実施例]
実施例 1
グラフアイト製の基板ホルダーに3インチの
CaAs基板をセツトする。グラフアイト製の溶液
ホルダーの原料溶液溜内には厚さ3mmで直径5mm
の穴が7mm間隔で全面にあいているグラフアイト
板がGaAs基板との間隔が3mmになるように設置
されている。[Example] Example 1 A 3-inch board holder made of graphite
Set the CaAs substrate. The raw material solution reservoir of the graphite solution holder has a thickness of 3 mm and a diameter of 5 mm.
A graphite board with holes 7 mm apart on its entire surface was installed so that the distance between it and the GaAs substrate was 3 mm.
この原料溶液溜に上記穴あきグラフアイト板が
完全に原料溶液中に埋没するようにGa120g、
As10gを入れ、反応管内にセツトし、水素ガス
置換後800℃の成長温度まで昇温させる。温度安
定後、1℃/minの冷却速度で降温を開始し、4
℃下つた時点でGaAs基板と原料溶液を接触さ
せ、成長終了後、基板ホルダーをスライドさせ
GaAs基板と原料溶液を分離する。 Ga120g was added to this raw material solution reservoir so that the above-mentioned perforated graphite plate was completely buried in the raw material solution.
Add 10 g of As, set in the reaction tube, and after replacing hydrogen gas, raise the temperature to the growth temperature of 800°C. After the temperature stabilized, the temperature started to decrease at a cooling rate of 1℃/min, and
When the temperature drops, the GaAs substrate and the raw material solution are brought into contact, and after the growth is completed, the substrate holder is slid.
Separate the GaAs substrate and raw material solution.
上記方法で成長させたエピタキシヤルウエハの
特性を測定したところ、アンドープでキヤリア濃
度が2.5×1014cm-3であつた。厚さに関しては、3μ
m以上成長させた場合、グラフアイト板の影響が
わずかながらあるものの、3μm以下の成長では
±10%以下の均一厚さのエピタキシヤルウエハを
得ることができた。 When the characteristics of the epitaxial wafer grown by the above method were measured, the carrier concentration was 2.5×10 14 cm −3 in an undoped state. As for the thickness, 3μ
When grown to a thickness of 3 μm or more, there was a slight influence of the graphite plate, but when grown to a thickness of 3 μm or less, an epitaxial wafer with a uniform thickness of ±10% or less could be obtained.
実施例 2
原料溶液溜内にグラフアイト製のすのこを設
け、その他の条件を実施例1と同じにして液相成
長させたところ、アンドープでキヤリア濃度が
2.0×1014cm-3、厚さの均一性はほぼ実施例1と同
じく±10%以下であつた。Example 2 A grating made of graphite was installed in the raw material solution reservoir and liquid phase growth was performed under the same conditions as in Example 1. The carrier concentration was undoped.
2.0×10 14 cm −3 , and the thickness uniformity was approximately ±10% or less, as in Example 1.
比較例
基板ホルダーに3インチのGaAs基板をセツト
し内側に何も設けていない原料溶液溜にGa300
g、GaAs25gを入れ、反応管内にセツトし、実
施例1及び2の約2倍の時間H2ガス置換した後、
800℃の成長温度まで昇温させる。Comparative example: A 3-inch GaAs substrate is set on a substrate holder, and Ga300 is placed in a raw material solution reservoir with nothing inside.
After putting 25 g of GaAs and setting it in the reaction tube, replacing the tube with H 2 gas for about twice as long as in Examples 1 and 2,
Raise the temperature to a growth temperature of 800℃.
温度安定後、1℃/minの冷却速度で降温を開
始し、4℃下つた時点でGaAs基板を原料溶液を
接触させ、3μm成長させた後、基板ホルダーを
スライドさせてGaAs基板と原料溶液を分離す
る。 After the temperature stabilized, the temperature started to decrease at a cooling rate of 1°C/min, and when the temperature dropped by 4°C, the GaAs substrate was brought into contact with the raw material solution, and after growing to a thickness of 3 μm, the substrate holder was slid to separate the GaAs substrate and the raw material solution. To separate.
このエピタキシヤルウエハは、アンドープでキ
ヤリア濃度が1.5×1014cm-3であつたが、厚さの均
一性は±20%であつた。 This epitaxial wafer was undoped and had a carrier concentration of 1.5×10 14 cm −3 , but the thickness uniformity was ±20%.
このように、厚さの均一性が悪くなつた要因
は、原料溶液が実施例1及び2と比較して2倍以
上もあるため、高純度化のためのH2ガス置換に
時間がかかり、従つてGaAs基板表面が熱劣化
(Asの揮散)により凹凸になつてしまうためであ
る。 The reason for the poor thickness uniformity is that the raw material solution is more than twice as large as in Examples 1 and 2, so it takes time to replace the H 2 gas for high purity. This is because the surface of the GaAs substrate becomes uneven due to thermal deterioration (volatilization of As).
本実施例では、3インチ基板を用いたが、2イ
ンチの場合でも原料溶液が従来の約半分の量です
み、量が少ないため同じ時間のHガス置換によつ
てより一層高純度化が可能となる。又、本発明は
GaAs他にInP、GaAlAs、GaAlP、…等の−
族化合物及び−族化合物の成長にも適用で
きることは云うまでもない。 In this example, a 3-inch substrate was used, but even in the case of a 2-inch substrate, the amount of raw material solution is about half of the conventional amount, and since the amount is small, it is possible to achieve even higher purity by replacing H gas in the same time. becomes. Moreover, the present invention
In addition to GaAs, InP, GaAlAs, GaAlP, etc.
It goes without saying that this method can also be applied to the growth of group compounds and -group compounds.
[発明の効果]
以上に説明した通り、本発明の液相成長装置に
よれば次のような顕著な効果を奏する。[Effects of the Invention] As explained above, the liquid phase growth apparatus of the present invention provides the following remarkable effects.
(1) 原料溶液が従来の半分又は半分以下ですむた
め、安価なエピタキシヤルウエハを得ることが
できる。(1) Since the amount of raw material solution is half or less than that of the conventional method, inexpensive epitaxial wafers can be obtained.
(2) 原料溶液が少ないため、H2ガス置換によつ
てより高純度化ができる。(2) Since the amount of raw material solution is small, higher purity can be achieved by H 2 gas replacement.
(3) H2ガス置換の時間が短かくてすむため、基
板の熱劣化を極力避けることができる。(3) Since the time required for H 2 gas replacement is short, thermal deterioration of the substrate can be avoided as much as possible.
第1図乃至第4図は本発明の実施例を示す説明
図、第5図乃至第8図は従来例を示す説明図であ
る。
1:基板、2:基板ホルダー、3:原料溶液、
4:原料溶液溜、5:溶液ホルダー、6:蓋、
7:穴あき板、8:すのこ。
FIGS. 1 to 4 are explanatory diagrams showing an embodiment of the present invention, and FIGS. 5 to 8 are explanatory diagrams showing a conventional example. 1: Substrate, 2: Substrate holder, 3: Raw material solution,
4: Raw material solution reservoir, 5: Solution holder, 6: Lid,
7: Perforated board, 8: Slatted board.
Claims (1)
する原料溶液溜を設けた溶液ホルダーから成る液
相成長装置において、前記原料溶液溜内に完全に
原料溶液中に埋没せしめると共に、基板との間隔
が3mm以上離されて配置された該原料溶液溜の内
容積を小さくするための部材が設けられているこ
とを特徴とする液相成長装置。 2 前記部材が複数の穴のあいた板であることを
特徴とする特許請求の範囲第1項記載の液相成長
装置。 3 前記部材がすのこであることを特徴とする特
許請求の範囲第1項記載の液相成長装置。 4 前記部材が前記基板ホルダーと同じ材質から
なることを特徴とする特許請求の範囲第1項乃至
3項記載の液相成長装置。[Scope of Claims] A liquid phase growth apparatus comprising a substrate holder for supporting a substrate and a solution holder provided with a raw material solution reservoir for storing a raw material solution, in which the solution holder is completely submerged in the raw material solution within the raw material solution reservoir, and A liquid phase growth apparatus characterized in that a member is provided for reducing the internal volume of the raw material solution reservoir, which is arranged at a distance of 3 mm or more from the substrate. 2. The liquid phase growth apparatus according to claim 1, wherein the member is a plate with a plurality of holes. 3. The liquid phase growth apparatus according to claim 1, wherein the member is a drainboard. 4. The liquid phase growth apparatus according to claims 1 to 3, wherein the member is made of the same material as the substrate holder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3221485A JPS61191590A (en) | 1985-02-20 | 1985-02-20 | Liquid phase growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3221485A JPS61191590A (en) | 1985-02-20 | 1985-02-20 | Liquid phase growth device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61191590A JPS61191590A (en) | 1986-08-26 |
JPH0568440B2 true JPH0568440B2 (en) | 1993-09-28 |
Family
ID=12352670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3221485A Granted JPS61191590A (en) | 1985-02-20 | 1985-02-20 | Liquid phase growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61191590A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918194A (en) * | 1982-07-20 | 1984-01-30 | Fujitsu Ltd | Liquid-phase epitaxial growth |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58138332U (en) * | 1982-03-11 | 1983-09-17 | 三洋電機株式会社 | liquid phase growth equipment |
-
1985
- 1985-02-20 JP JP3221485A patent/JPS61191590A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918194A (en) * | 1982-07-20 | 1984-01-30 | Fujitsu Ltd | Liquid-phase epitaxial growth |
Also Published As
Publication number | Publication date |
---|---|
JPS61191590A (en) | 1986-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0835336B1 (en) | A device and a method for epitaxially growing objects by cvd | |
US6030661A (en) | Device and a method for epitaxially growing objects by CVD | |
US3765959A (en) | Method for the liquid phase epitaxial growth of semiconductor crystals | |
JPH0568440B2 (en) | ||
JPH0217519B2 (en) | ||
US4565156A (en) | Apparatus for performing solution growth relying on temperature difference technique | |
JPH0754802B2 (en) | Vapor growth method of GaAs thin film | |
JPH0218576B2 (en) | ||
JPS6011455B2 (en) | Vapor phase growth equipment | |
JPH05178686A (en) | Metallic block for liquid phase epitaxy and its production | |
US4371420A (en) | Method for controlling impurities in liquid phase epitaxial growth | |
JPH07315984A (en) | Vertical liquid phase epitaxy and device therefor | |
JP2982333B2 (en) | Vapor growth method | |
JPS6088427A (en) | Device for liquid phase growth | |
JPH0360800B2 (en) | ||
JPH06314658A (en) | Vapor growing apparatus | |
JPS6066423A (en) | Liquid phase epitaxial growth method | |
JPS6019137B2 (en) | Liquid phase epitaxial growth method | |
JPH10163117A (en) | Method and apparatus for manufacturing compd. semiconductor | |
JPS56161639A (en) | Method of epitaxially growing in liquid phase | |
JPS6028799B2 (en) | Liquid phase epitaxial growth method | |
JPS63151698A (en) | Method for liquid epitaxy | |
JPS6230694A (en) | Liquid-phase epitaxial growth | |
JPS6019135B2 (en) | Vapor phase growth method for compound semiconductors | |
JPH01246193A (en) | Liquid-phase epitaxial growth device |