JPH10163117A - Method and apparatus for manufacturing compd. semiconductor - Google Patents
Method and apparatus for manufacturing compd. semiconductorInfo
- Publication number
- JPH10163117A JPH10163117A JP8323949A JP32394996A JPH10163117A JP H10163117 A JPH10163117 A JP H10163117A JP 8323949 A JP8323949 A JP 8323949A JP 32394996 A JP32394996 A JP 32394996A JP H10163117 A JPH10163117 A JP H10163117A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- compound semiconductor
- substrate support
- concave portion
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Receiving Elements (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、赤外線の受光素子
などに用いられる化合物半導体の改良された製造方法お
よび製造装置を提供する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an improved method and apparatus for producing a compound semiconductor used for an infrared light receiving element or the like.
【0002】[0002]
【従来の技術】赤外線受光素子の中でも素子を二次元に
配列した撮像素子では、化合物半導体、例えばHgCd
Teの混晶組成比X(Hg1-X CdX TeのX)の面内
均一性が、素子の性能を判断する最も重要な要因の一つ
になっている。混晶組成比Xにばらつきがあるとバンド
ギャップ、すなわち波長感度がばらつき、撮像素子にと
っては致命的な欠陥となる。2. Description of the Related Art In an image pickup element in which elements are arranged two-dimensionally among infrared light receiving elements, a compound semiconductor such as HgCd
The in - plane uniformity of the mixed crystal composition ratio Te (X of Hg 1 -x Cd x Te) is one of the most important factors for judging the performance of the device. If there is a variation in the mixed crystal composition ratio X, the band gap, that is, the wavelength sensitivity will vary, and this will be a fatal defect for the image sensor.
【0003】従来、テルルや水銀を溶媒とした液体原料
を用いた液相成長(LPE)法によって面内均一性の良
好な半導体ウエハが作成されていた。しかし、エピタキ
シャル成長層の深さ方向の組成が変化することがあり、
また、不純物添加層やバンドギャップの異なる層の接合
(ヘテロ接合)構造などを液相エピタキシャル成長で作
成することは困難であった。Conventionally, a semiconductor wafer having good in-plane uniformity has been manufactured by a liquid phase epitaxy (LPE) method using a liquid material using tellurium or mercury as a solvent. However, the composition of the epitaxial growth layer in the depth direction may change,
Further, it has been difficult to form a junction (heterojunction) structure of an impurity-added layer or a layer having a different band gap by liquid phase epitaxial growth.
【0004】一方、MOCVDのような気相成長法で
は、常に原料をある一定の割合で基板上に供給すること
ができるため、エピタキシャル成長層の深さ方向の組成
変化が少なく、瞬間的にガスの切換えができるため不純
物添加層やバンドギャップの異なる層の接合(ヘテロ接
合)構造などを気相エピタキシャル成長で作成すること
は容易であった。しかし、このMOCVD法では、混晶
組成比Xのウエハ面内分布が原料ガスの流れ方向に沿っ
て形成されるという問題点があった。この分布は図5に
示すように原料ガスの流れ方向に対して直線的に変化す
る。図5の横軸は成長層の基板支持台上の原料ガスの流
れ方向の位置(mm)であり、縦軸は混晶組成比X(H
g1-X CdX TeのX)である。そこで基板支持台を回
転させれば組成比分布が均一になることが期待される。On the other hand, in a vapor phase growth method such as MOCVD, a raw material can always be supplied on a substrate at a certain fixed rate, so that the composition change in the depth direction of the epitaxial growth layer is small, and the gas is instantaneously supplied. Since switching is possible, it has been easy to form a junction (heterojunction) structure of an impurity-added layer or a layer having a different band gap by vapor phase epitaxial growth. However, this MOCVD method has a problem that the in-plane distribution of the mixed crystal composition ratio X is formed along the flow direction of the source gas. This distribution changes linearly with the flow direction of the source gas as shown in FIG. The horizontal axis in FIG. 5 is the position (mm) of the growth layer on the substrate support in the flow direction of the source gas, and the vertical axis is the mixed crystal composition ratio X (H
g 1-X X of Cd X Te. Therefore, it is expected that the composition ratio distribution will be uniform if the substrate support is rotated.
【0005】しかし、原料ガス流速と混晶組成比との関
係は、原料ガスの組み合わせなどで異なるが、一例とし
て図6のように変化する。図6の横軸は原料ガス流速
(cm/sec)であり、縦軸は混晶組成比X(Hg
1-X CdX TeのX)である。従って、基板支持台を回
転すると中心部と外周部とで流速が異なるために図7の
ような面内分布が生じる。図7の横軸は成長層の基板支
持台上の位置(mm)であり、0が回転中心である。縦
軸は混晶組成比Xであり、回転数は5rpmである。さ
らに回転速度を大にすることにより面内不均一性が増大
することも分かった。これらのMOCVD法の製造装置
における基板支持台の凹部はすべて基板を固定するため
に用いられていたため、その深さは基板の厚さに等しい
か基板の厚さより小さかった。However, the relationship between the flow rate of the source gas and the composition ratio of the mixed crystal differs depending on the combination of the source gases and the like, but changes as shown in FIG. 6 as an example. The horizontal axis in FIG. 6 is the raw material gas flow rate (cm / sec), and the vertical axis is the mixed crystal composition ratio X (Hg
1-X Cd X Te X). Therefore, when the substrate support is rotated, an in-plane distribution as shown in FIG. 7 occurs because the flow velocity differs between the central portion and the outer peripheral portion. The horizontal axis in FIG. 7 is the position (mm) of the growth layer on the substrate support, and 0 is the center of rotation. The vertical axis is the mixed crystal composition ratio X, and the number of rotations is 5 rpm. It was also found that in-plane non-uniformity was increased by increasing the rotation speed. Since all the concave portions of the substrate support in the MOCVD manufacturing apparatus were used for fixing the substrate, the depth was equal to or smaller than the substrate thickness.
【0006】図8に、基板支持台を回転させる方式の化
合物半導体気相成長装置の例を概略断面図で示す。図8
において、5は原料ガス3の流れに垂直な断面が例えば
ほぼ長方形な反応管であり、この中に円柱形の基板支持
台1がその上面および底面を反応管5の長辺および反応
管の軸に平行に置かれている。原料ガス3は基板支持台
1の上面に平行に流れる。基板支持台1はその底面の中
心にある回転軸4の回りに回転可能であり、その上面の
中心には基板2を設置する円形の凹部7が設けられてい
る。凹部7の深さは基板2の厚さより小さくなってい
る。基板支持台1は図示しない加熱装置により加熱可能
である。加熱方法としては、抵抗加熱、高周波加熱、ラ
ンプによる放射加熱などの種類がある。基板支持台1の
材質としては例えば炭素を使用する。FIG. 8 is a schematic sectional view showing an example of a compound semiconductor vapor deposition apparatus of a type in which a substrate support is rotated. FIG.
Numeral 5 denotes a reaction tube whose cross section perpendicular to the flow of the source gas 3 is, for example, substantially rectangular. Are placed in parallel. The source gas 3 flows parallel to the upper surface of the substrate support 1. The substrate support 1 is rotatable around a rotation axis 4 at the center of the bottom surface, and a circular recess 7 for installing the substrate 2 is provided at the center of the upper surface. The depth of the recess 7 is smaller than the thickness of the substrate 2. The substrate support 1 can be heated by a heating device (not shown). Examples of the heating method include types such as resistance heating, high-frequency heating, and radiation heating using a lamp. For example, carbon is used as the material of the substrate support 1.
【0007】従来の方法では、基板支持台1を回転しな
がら成長しても、図7のように基板面内の混晶組成比に
ばらつきが発生するのが避けられなかった。[0007] In the conventional method, even if the substrate support 1 is grown while rotating, it is inevitable that a variation occurs in the mixed crystal composition ratio in the substrate surface as shown in FIG. 7.
【0008】[0008]
【発明が解決しようとする課題】従来は有機金属を原料
として用いた化学気相成長法において、混晶組成比の面
内分布のばらつきが少ない化合物半導体製造方法および
化合物半導体製造装置がなかった。Conventionally, in a chemical vapor deposition method using an organic metal as a raw material, there has not been a compound semiconductor manufacturing method and a compound semiconductor manufacturing apparatus in which the in-plane distribution of the mixed crystal composition ratio is small.
【0009】本発明は、成長層の混晶組成比の面内分布
のばらつきが少ない化合物半導体製造方法および化合物
半導体製造装置を提供することを目的とする。An object of the present invention is to provide a compound semiconductor manufacturing method and a compound semiconductor manufacturing apparatus in which the in-plane distribution of the mixed crystal composition ratio of the growth layer is small.
【0010】[0010]
【課題を解決するための手段】上記の課題を解決するた
め本発明は、有機金属を原料に用い、原料ガスを基板の
表面と平行に流す気相成長において、前記基板の厚さよ
り深い凹部を設けた基板支持台に前記基板を設置して成
長層を堆積することを特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a vapor phase growth method using an organic metal as a raw material and flowing a raw material gas in parallel with the surface of the substrate. The method is characterized in that the substrate is placed on the provided substrate support and a growth layer is deposited.
【0011】さらに、有機金属を原料に用い、原料ガス
を基板の表面と平行に流す気相成長において、前記基板
の厚さより深い凹部を設けた基板支持台に前記基板を設
置し、前記基板支持台を回転して成長層を堆積すること
を特徴とする。Further, in the vapor phase growth using an organic metal as a raw material and flowing a raw material gas in parallel with the surface of the substrate, the substrate is placed on a substrate support having a recess deeper than the thickness of the substrate. The method is characterized in that the stage is rotated to deposit a growth layer.
【0012】また、基板支持台の凹部の深さを基板の厚
さより0.5〜5mm深くすることを特徴とする。Further, the depth of the concave portion of the substrate support is set to be 0.5 to 5 mm deeper than the thickness of the substrate.
【0013】また、基板支持台を20rpm以上で回転
することを特徴とする。Further, the present invention is characterized in that the substrate support is rotated at 20 rpm or more.
【0014】また、堆積する化合物半導体がII−VI族化
合物半導体であることを特徴とする。Further, the compound semiconductor to be deposited is a II-VI group compound semiconductor.
【0015】また、基板支持台の、基板を設置する凹部
以外の上面を基板支持台本体より熱伝導度が小さい物質
で覆ったことを特徴とする。Further, the upper surface of the substrate support other than the concave portion where the substrate is placed is covered with a substance having a lower thermal conductivity than the substrate support main body.
【0016】また、基板支持台本体が炭素であり、基板
支持台の、基板を設置する凹部以外の上面を石英で覆っ
たことを特徴とする。Further, the substrate support base body is made of carbon, and the upper surface of the substrate support base other than the concave portion where the substrate is placed is covered with quartz.
【0017】また、基板支持台本体が炭素であり、基板
支持台の、基板を設置する凹部以外の上面をゲルマニウ
ムで覆ったことを特徴とする。Further, the substrate support base body is made of carbon, and the upper surface of the substrate support base other than the concave portion where the substrate is installed is covered with germanium.
【0018】また、基板支持台の熱伝導率と基板の熱伝
導率との比と、基板支持台の凹部の深さと基板の厚さと
の比、とがほぼ等しいことを特徴とする。Further, the ratio of the thermal conductivity of the substrate support to the thermal conductivity of the substrate is substantially equal to the ratio of the depth of the recess of the substrate support to the thickness of the substrate.
【0019】本発明によれば、面内の混晶組成比のばら
つきの少ない化合物半導体ウエハが作成でき、画質むら
の少ない赤外線撮像素子が作成可能になる。According to the present invention, a compound semiconductor wafer having a small variation in the in-plane mixed crystal composition ratio can be manufactured, and an infrared imaging device with less uneven image quality can be manufactured.
【0020】[0020]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0021】図1は本発明の化合物半導体の製造装置を
示す概略の断面図である。FIG. 1 is a schematic sectional view showing an apparatus for manufacturing a compound semiconductor according to the present invention.
【0022】図1において、5は原料ガス3の流れに垂
直な断面が例えばほぼ長方形な反応管であり、この中に
円柱形の基板支持台1がその上面および底面を反応管5
の長辺および反応管の軸に平行に置かれている。原料ガ
ス3は基板支持台1の上面に平行に流れる。基板支持台
1はその底面の中心にあって、底面と垂直な回転軸4の
回りに回転可能である。基板支持台1の上面の中心に
は、基板2を基板支持台1の上面と平行に設置する円形
の凹部7が設けられている。基板支持台1は図示しない
加熱装置により加熱可能である。加熱方法としては、抵
抗加熱、高周波加熱、ランプによる放射加熱などの種類
がある。基板支持台1の材質としては例えば炭素を使用
する。In FIG. 1, reference numeral 5 denotes a reaction tube whose cross section perpendicular to the flow of the source gas 3 is, for example, substantially rectangular.
Is placed parallel to the long side of the and the axis of the reaction tube. The source gas 3 flows parallel to the upper surface of the substrate support 1. The substrate support 1 is rotatable about a rotation axis 4 which is at the center of the bottom surface and is perpendicular to the bottom surface. At the center of the upper surface of the substrate support 1, a circular concave portion 7 for setting the substrate 2 in parallel with the upper surface of the substrate support 1 is provided. The substrate support 1 can be heated by a heating device (not shown). Examples of the heating method include types such as resistance heating, high-frequency heating, and radiation heating using a lamp. For example, carbon is used as the material of the substrate support 1.
【0023】図1に示すように、基板支持台1の上面中
心にある円形の凹部7の深さを深くし、その深さと成長
層の面内均一性との関係を測定した。その結果を図2に
示す。図2の横軸は凹部7の深さ(mm)で、縦軸はφ
70mmウエハ内の混晶組成比の分布(%)である。図
2に示すように凹部7の深さが基板の厚さより0.5m
m以上大になると、混晶組成比は基板支持台1の回転数
に依存せず、混晶組成比の均一なものができるようにな
った。As shown in FIG. 1, the depth of the circular recess 7 at the center of the upper surface of the substrate support 1 was increased, and the relationship between the depth and the in-plane uniformity of the growth layer was measured. The result is shown in FIG. The horizontal axis in FIG. 2 is the depth (mm) of the recess 7 and the vertical axis is φ
It is a distribution (%) of a mixed crystal composition ratio in a 70 mm wafer. As shown in FIG. 2, the depth of the recess 7 is 0.5 m more than the thickness of the substrate.
When it is larger than m, the composition ratio of the mixed crystal does not depend on the number of rotations of the substrate support 1, and the composition ratio of the mixed crystal can be made uniform.
【0024】しかし、凹部7の深さが基板の厚さより5
mm以上大になると、原料ガスの活性種の平均自由行程
を超えるため活性種が他の原料と反応するので、成長速
度が低下し、エピタキシャル成長層の表面形態も悪化す
る。However, the depth of the recess 7 is 5 times larger than the thickness of the substrate.
When the diameter is larger than mm, the active species of the raw material gas exceeds the mean free path, so that the active species reacts with other raw materials, so that the growth rate is reduced and the surface morphology of the epitaxial growth layer is also deteriorated.
【0025】また、図3に、凹部7の深さが基板の厚さ
+3mmで一定のとき、基板支持台1の回転数と混晶組
成比の分布(%)の関係を示す。図3の横軸は基板支持
台1の回転数(rpm)であり、縦軸は混晶組成比Xの
70mmウエハ内の分布(%)である。基板支持台1の
回転数が20rpm以上になるとXのばらつきは殆どな
いことがわかる。FIG. 3 shows the relationship between the rotation speed of the substrate support 1 and the distribution (%) of the mixed crystal composition ratio when the depth of the recess 7 is constant at the thickness of the substrate + 3 mm. The horizontal axis in FIG. 3 is the rotation speed (rpm) of the substrate support 1, and the vertical axis is the distribution (%) of the mixed crystal composition ratio X in a 70 mm wafer. It can be seen that there is almost no variation in X when the rotation speed of the substrate support 1 is 20 rpm or more.
【0026】以上は原料としてジメチルカドミウム(D
MCd)、ジイソプロピルテルル(DIPTe)と金属
水銀蒸気を用い、成長温度360℃でCdZnTe基板
上にHgCdTeを成長した場合である。As described above, dimethylcadmium (D
In this case, HgCdTe was grown on a CdZnTe substrate at a growth temperature of 360 ° C. using MCd), diisopropyl tellurium (DIPTe), and metal mercury vapor.
【0027】また、凹部7の深さの最適値は基板材料と
基板支持台材料の熱伝導率からも規定できる。炭素の熱
伝導率はCdZnTeのそれの約4倍であることから、
凹部7の深さは基板の厚さの4倍で基板支持台表面温度
と基板表面温度が等しくなり良好なエピタキシャル成長
層が得られる。また、4倍以上になると基板支持台表面
温度が基板表面温度より低くなるため基板支持台周辺部
での原料分解が抑制され、エピタキシャル成長層表面の
表面形態も改善される。Further, the optimum value of the depth of the concave portion 7 can be determined from the thermal conductivity of the substrate material and the substrate support base material. Since the thermal conductivity of carbon is about four times that of CdZnTe,
The depth of the recess 7 is four times the thickness of the substrate, and the surface temperature of the substrate support is equal to the surface temperature of the substrate, so that a good epitaxial growth layer can be obtained. Further, when the temperature is four times or more, the surface temperature of the substrate support becomes lower than the substrate surface temperature, so that the decomposition of the raw material in the periphery of the substrate support is suppressed, and the surface morphology of the surface of the epitaxial growth layer is also improved.
【0028】基板支持台の熱伝導率と基板の熱伝導率と
の比と、基板支持台の凹部の深さと基板の厚さとの比、
とがほぼ等しいと良好なエピタキシャル成長層が得られ
る。The ratio of the thermal conductivity of the substrate support to the thermal conductivity of the substrate, the ratio of the depth of the recess of the substrate support to the thickness of the substrate,
Are approximately equal, a good epitaxial growth layer can be obtained.
【0029】さらに図4に示すように基板支持台周辺部
に炭素より熱伝導率の小さい石英、ゲルマニウムなどの
カバーを設置することによって表面形態の良好な成長層
が得られる。また、凹部7の深さの最適値は上記0.5
〜5mmの範囲内で変化する。Further, as shown in FIG. 4, a growth layer having a good surface morphology can be obtained by providing a cover made of quartz, germanium or the like having a lower thermal conductivity than carbon around the substrate support. The optimum value of the depth of the recess 7 is 0.5
It changes within a range of 55 mm.
【0030】[0030]
【発明の効果】以上述べたように本発明により、混晶組
成比の面内均一性の良好な化合物半導体気相成長ウエハ
が得られる。As described above, according to the present invention, a compound semiconductor vapor deposition wafer having good in-plane uniformity of the mixed crystal composition ratio can be obtained.
【図1】本発明を説明する概略断面図である。FIG. 1 is a schematic sectional view illustrating the present invention.
【図2】本発明を説明するグラフである。FIG. 2 is a graph illustrating the present invention.
【図3】本発明を説明するグラフである。FIG. 3 is a graph illustrating the present invention.
【図4】本発明を説明する概略断面図である。FIG. 4 is a schematic sectional view illustrating the present invention.
【図5】従来例を説明するグラフである。FIG. 5 is a graph illustrating a conventional example.
【図6】従来例を説明するグラフである。FIG. 6 is a graph illustrating a conventional example.
【図7】従来例を説明するグラフである。FIG. 7 is a graph illustrating a conventional example.
【図8】従来例を説明する概略断面図である。FIG. 8 is a schematic sectional view illustrating a conventional example.
1…基板支持台 2…基板 3…原料ガス 4…回転軸 5…反応管 6…石英などのカバー 7…基板設置のための凹部 DESCRIPTION OF SYMBOLS 1 ... Substrate support stand 2 ... Substrate 3 ... Raw material gas 4 ... Rotating shaft 5 ... Reaction tube 6 ... Cover of quartz etc. 7 ... Depression for substrate installation
Claims (18)
の表面と平行に流し気相成長させる化学気相成長方法に
よる化合物半導体の製造方法において、前記基板の厚さ
より深い凹部を設けた基板支持台に前記基板を設置して
成長層を堆積することを特徴とする化合物半導体の製造
方法。1. A method for producing a compound semiconductor by a chemical vapor deposition method in which an organic metal is used as a raw material and a raw material gas is flowed in parallel with the surface of the substrate to vapor-phase grow the substrate. A method for producing a compound semiconductor, comprising: mounting the substrate on a support and depositing a growth layer.
の表面と平行に流し気相成長させる化学気相成長方法に
よる化合物半導体の製造方法において、前記基板の厚さ
より深い凹部を設けた基板支持台に前記基板を設置し、
前記基板支持台を回転して成長層を堆積することを特徴
とする化合物半導体の製造方法。2. A method for producing a compound semiconductor by a chemical vapor deposition method in which an organic metal is used as a raw material and a raw material gas is flowed in parallel with the surface of the substrate to vapor-phase grow the substrate, wherein the substrate has a concave portion deeper than the substrate. Place the substrate on the support,
A method of manufacturing a compound semiconductor, comprising: rotating the substrate support to deposit a growth layer.
り0.5〜5mm深くすることを特徴とする請求項1又
は請求項2記載の化合物半導体の製造方法。3. The method according to claim 1, wherein the depth of the concave portion of the substrate support is 0.5 to 5 mm deeper than the thickness of the substrate.
ことを特徴とする請求項2記載の化合物半導体の製造方
法。4. The method according to claim 2, wherein the substrate support is rotated at 20 rpm or more.
半導体であることを特徴とする請求項1又は請求項2記
載の化合物半導体の製造方法。5. The method according to claim 1, wherein the compound semiconductor to be deposited is a II-VI group compound semiconductor.
の上面を基板支持台本体より熱伝導率度が小さい物質で
覆ったことを特徴とする請求項1又は請求項2記載の化
合物半導体の製造方法。6. The compound semiconductor according to claim 1, wherein an upper surface of the substrate support other than the concave portion in which the substrate is placed is covered with a substance having a lower thermal conductivity than the substrate support main body. Manufacturing method.
台の、基板を設置する凹部以外の上面を石英で覆ったこ
とを特徴とする請求項6記載の化合物半導体の製造方
法。7. The method of manufacturing a compound semiconductor according to claim 6, wherein the main body of the substrate support is made of carbon, and the upper surface of the substrate support other than the concave portion where the substrate is placed is covered with quartz.
台の、基板を設置する凹部以外の上面をゲルマニウムで
覆ったことを特徴とする請求項6記載の化合物半導体の
製造方法。8. The method according to claim 6, wherein the substrate support main body is made of carbon, and the upper surface of the substrate support other than the concave portion where the substrate is placed is covered with germanium.
との比と、基板支持台の凹部の深さと基板の厚さとの
比、とがほぼ等しいことを特徴とする請求項1又は請求
項2記載の化合物半導体の製造方法。9. The method according to claim 1, wherein the ratio of the thermal conductivity of the substrate support to the thermal conductivity of the substrate is substantially equal to the ratio of the depth of the concave portion of the substrate support to the thickness of the substrate. A method for producing a compound semiconductor according to claim 2.
板の表面と平行に流れる構造の化学気相成長による化合
物半導体の製造装置において、成長層を堆積する基板を
設置する凹部の深さを前記基板の厚さより大きくした基
板支持台を具備することを特徴とする化合物半導体の製
造装置。10. An apparatus for producing a compound semiconductor by chemical vapor deposition having a structure in which an organic metal is used as a raw material and a raw material gas flows in parallel with the surface of the substrate, the depth of a concave portion in which a substrate on which a growth layer is deposited is set. An apparatus for manufacturing a compound semiconductor, comprising: a substrate supporter having a thickness larger than the thickness of the substrate.
板の表面と平行に流れる構造の化学気相成長による化合
物半導体の製造装置において、成長層を堆積する基板を
設置する凹部の深さを前記基板の厚さより大きくした基
板支持台と、前記基板支持台を回転する手段を具備する
ことを特徴とする化合物半導体の製造装置。11. An apparatus for producing a compound semiconductor by chemical vapor deposition having a structure in which an organic metal is used as a raw material and a raw material gas flows in parallel with the surface of the substrate, the depth of a concave portion where a substrate on which a growth layer is deposited is set. An apparatus for manufacturing a compound semiconductor, comprising: a substrate supporter having a thickness larger than the thickness of the substrate; and means for rotating the substrate supporter.
深さを基板の厚さより0.5〜5mm深くすることを特
徴とする請求項10又は請求項11記載の化合物半導体
の製造装置。12. The compound semiconductor manufacturing apparatus according to claim 10, wherein the depth of the concave portion on which the substrate is placed in the substrate support base is made 0.5 to 5 mm deeper than the thickness of the substrate.
ることを特徴とする請求項11記載の化合物半導体の製
造装置。13. The apparatus according to claim 11, wherein the substrate support is rotated at 20 rpm or more.
であることを特徴とする請求項10又は請求項11記載
の化合物半導体の製造装置。14. The compound semiconductor manufacturing apparatus according to claim 10, wherein the compound semiconductor is a II-VI group compound semiconductor.
外の上面を基板支持台本体より熱伝導率が小さい物質で
覆ったことを特徴とする請求項10又は請求項11記載
の化合物半導体の製造装置。15. The compound semiconductor according to claim 10, wherein an upper surface of the substrate support other than the concave portion in which the substrate is placed is covered with a substance having a lower thermal conductivity than the substrate support main body. Manufacturing equipment.
持台の、基板を設置する凹部以外の上面を石英で覆った
ことを特徴とする請求項15記載の化合物半導体の製造
装置。16. The compound semiconductor manufacturing apparatus according to claim 15, wherein the main body of the substrate support is made of carbon, and the upper surface of the substrate support other than the concave portion in which the substrate is placed is covered with quartz.
持台の、基板を設置する凹部以外の上面をゲルマニウム
で覆ったことを特徴とする請求項15記載の化合物半導
体の製造装置。17. The apparatus according to claim 15, wherein the main body of the substrate support is made of carbon, and the upper surface of the substrate support other than the concave portion where the substrate is placed is covered with germanium.
率との比と、基板支持台の凹部の深さと基板の厚さとの
比、とがほぼ等しいことを特徴とする請求項10又は請
求項11記載の化合物半導体の製造装置。18. The method according to claim 10, wherein a ratio of a thermal conductivity of the substrate support to a thermal conductivity of the substrate is substantially equal to a ratio of a depth of the concave portion of the substrate support to a thickness of the substrate. An apparatus for manufacturing a compound semiconductor according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8323949A JPH10163117A (en) | 1996-12-04 | 1996-12-04 | Method and apparatus for manufacturing compd. semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8323949A JPH10163117A (en) | 1996-12-04 | 1996-12-04 | Method and apparatus for manufacturing compd. semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10163117A true JPH10163117A (en) | 1998-06-19 |
Family
ID=18160435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8323949A Pending JPH10163117A (en) | 1996-12-04 | 1996-12-04 | Method and apparatus for manufacturing compd. semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10163117A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016119472A (en) * | 2014-12-19 | 2016-06-30 | 昭和電工株式会社 | WAFER SUPPORT AND MANUFACTURING DEVICE OF SiC EPITAXIAL WAFER INCLUDING THE SAME, AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER |
US10519566B2 (en) | 2014-12-02 | 2019-12-31 | Showa Denko K.K. | Wafer support, chemical vapor phase growth device, epitaxial wafer and manufacturing method thereof |
-
1996
- 1996-12-04 JP JP8323949A patent/JPH10163117A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10519566B2 (en) | 2014-12-02 | 2019-12-31 | Showa Denko K.K. | Wafer support, chemical vapor phase growth device, epitaxial wafer and manufacturing method thereof |
JP2016119472A (en) * | 2014-12-19 | 2016-06-30 | 昭和電工株式会社 | WAFER SUPPORT AND MANUFACTURING DEVICE OF SiC EPITAXIAL WAFER INCLUDING THE SAME, AND MANUFACTURING METHOD OF SiC EPITAXIAL WAFER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4121555B2 (en) | Apparatus and method for epitaxial growth of objects by CVD | |
TW494147B (en) | Method of making GaN single crystal and apparatus for making GaN single crystal | |
JPH06310438A (en) | Substrate holder and apparatus for vapor growth of compound semiconductor | |
JPH06316499A (en) | Production of sic single crystal | |
JPH1045499A (en) | Production of silicon carbide single crystal and seed crystal used therefor | |
JPH10163117A (en) | Method and apparatus for manufacturing compd. semiconductor | |
JP2003226600A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and methods of producing them | |
JPH09157092A (en) | Production of silicon carbide single crystal | |
JPH0977594A (en) | Production of low resistance single crystal silicon carbide | |
JP3038524B2 (en) | Semiconductor manufacturing equipment | |
US6916373B2 (en) | Semiconductor manufacturing method | |
JPH08208380A (en) | Production of single-crystalline silicon carbide | |
EP0263141B1 (en) | Method for depositing materials containing tellurium | |
JPH0754802B2 (en) | Vapor growth method of GaAs thin film | |
JP2000031064A (en) | Method and device for horizontal vapor phase epitaxial growth | |
JPH0343240B2 (en) | ||
JPH0455155B2 (en) | ||
JP2539427B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JPH0641400B2 (en) | Method for producing silicon carbide single crystal | |
JPH06349748A (en) | Vapor growth device for semiconductor | |
JPH06302516A (en) | Vapor growth method | |
JP2005093505A (en) | Vapor phase epitaxial growth device | |
JP2022121078A (en) | Susceptor, deposition device and substrate deposition method | |
JPH0266950A (en) | Vapor phase epitaxy apparatus | |
JP2004022832A (en) | Vapor phase growing device |