JP2005093505A - Vapor phase epitaxial growth device - Google Patents

Vapor phase epitaxial growth device Download PDF

Info

Publication number
JP2005093505A
JP2005093505A JP2003321177A JP2003321177A JP2005093505A JP 2005093505 A JP2005093505 A JP 2005093505A JP 2003321177 A JP2003321177 A JP 2003321177A JP 2003321177 A JP2003321177 A JP 2003321177A JP 2005093505 A JP2005093505 A JP 2005093505A
Authority
JP
Japan
Prior art keywords
substrate
soaking plate
vapor phase
epitaxial growth
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321177A
Other languages
Japanese (ja)
Inventor
Yosuke Komori
洋介 小森
Manabu Kako
学 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003321177A priority Critical patent/JP2005093505A/en
Publication of JP2005093505A publication Critical patent/JP2005093505A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lateral vapor phase epitaxial growth device which has a relative structure of a susceptor and a temperature soaking plate that is capable of heating a substrate uniformly so as to make crystals more uniform in characteristics through its surface. <P>SOLUTION: The lateral vapor phase epitaxial growth device is equipped with the temperature soaking plate 4 which is stacked up on the substrate 2 housed and supported inside the opening 7 of the susceptor 1, and overlapped with the rear surface of the substrate 2, the substrate 2, and a heating means 8 for heating both the temperature soaking plate 4 and the susceptor 1. The temperature soaking plate 4 which is so shaped as to cover the substrate 2 is installed on the substrate 2. The temperature soaking plate 4 is formed with the lower contacting surface 4a of the same shape with that of the substrate 2, and an upper temperature soaking plate 4b that is so shaped as to cover the substrate 2, and may be installed on the substrate 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、加熱した基板上にサセプタの直径方向又は中心から半径方向に原料ガスを供給し、原料ガスを加熱分解して基板上に化合物半導体結晶を気相成長する横型の気相エピタキシャル成長装置、特に基板を均一に熱するために基板に隣接してセットされる温度均熱板とサセプタの相対的構造に関するものである。   The present invention provides a horizontal vapor phase epitaxial growth apparatus for supplying a source gas in a radial direction from the diameter direction or center of a susceptor on a heated substrate, thermally decomposing the source gas, and growing a compound semiconductor crystal on the substrate in a vapor phase, In particular, the present invention relates to the relative structure of a temperature-uniforming plate and a susceptor set adjacent to the substrate in order to heat the substrate uniformly.

化合物半導体結晶を用いたFETやHEMTは、シリコン半導体に比べて電子移動度が高いため、近年携帯電話や衛星放送受信機などの高速動作や高効率が要求される高周波機器の増幅器などに幅広く使用され、その需要はさらに伸びると思われる。   Since FETs and HEMTs using compound semiconductor crystals have higher electron mobility than silicon semiconductors, they are widely used in high-frequency equipment amplifiers that require high-speed operation and high efficiency in recent years, such as mobile phones and satellite broadcast receivers. The demand is expected to grow further.

現在、上記のような半導体素子と呼ばれるものにおいて、その化合物半導体結晶を成長する方法の一つとして、有機金属を主原料としてエピタキシャル成長を行うMOVPE(有機金属気相成長)法が数多く用いられている。MOVPE法は、III族有機金属原料ガスとV族原料ガスを、高純度水素キャリアガスとの混合ガスとして反応炉内に導入し、反応炉内で加熱された基板付近で原料が熱分解され、基板上に化合物半導体結晶がエピタキシャル成長する。   At present, in the so-called semiconductor element as described above, as one of the methods for growing the compound semiconductor crystal, there are many MOVPE (organometallic vapor phase epitaxy) methods for performing epitaxial growth using an organic metal as a main raw material. . In the MOVPE method, a group III organometallic source gas and a group V source gas are introduced into a reaction furnace as a mixed gas with a high-purity hydrogen carrier gas, and the source material is pyrolyzed near the substrate heated in the reaction furnace. A compound semiconductor crystal grows epitaxially on the substrate.

ここで従来の主なMOVPE装置が採用しているリアクター(反応炉)を構成する方式を図6に示す。図6(a)はサセプタ11の角錐斜面に半導体基板(ウェハ)2を保持したバレル型、図6(b)はガスが反応管10の一側から他側に向かって一方向に流れ、且つ基板2がサセプタ1の開口部内にフェイスダウンで設けられるタイプ(横型フェイスダウン)、図6(c)は上から下に向かうガスがサセプタ12の中央から半径方向外側に流れ、且つ基板2がサセプタ12の開口部内にフェイスアップで設けられるタイプ(自転公転型フェイスアップ)、そして図6(d)は下から上に向かうガスがサセプタ1中央から半径方向外側に流れ、且つ基板2がサセプタ1の開口部内にフェイスダウンで設けられるタイプ(自転公転型フェイスダウン)を示す。これらのうち、図6(b)〜(d)は横型気相エピタキシャル成長装置に属する。   Here, FIG. 6 shows a system for constructing a reactor (reactor) employed by a conventional main MOVPE apparatus. 6A shows a barrel type in which a semiconductor substrate (wafer) 2 is held on a pyramidal slope of the susceptor 11, FIG. 6B shows a gas flowing in one direction from one side of the reaction tube 10 to the other side, and FIG. 6C shows a gas in which the substrate 2 is provided face-down in the opening of the susceptor 1 (horizontal face-down). FIG. 6C shows a gas flowing from the top to the bottom in the radial direction from the center of the susceptor 12. In FIG. 6 (d), a gas directed upward from the bottom flows upward in the radial direction from the center of the susceptor 1, and the substrate 2 of the susceptor 1 is provided. The type (rotation and revolution type face-down) provided face-down in the opening is shown. Among these, FIGS. 6B to 6D belong to a horizontal vapor phase epitaxial growth apparatus.

従来の横型気相エピタキシャル成長装置の模式図を図5に示す。 図5に示すように、従来の横型気相エピタキシャル成長装置9は、両端にガス導入口10aおよびガス排気口10bを備えたガス整流管から成る反応管10と、反応管10内部に臨んで設けられると共に、基板2の表側を下向きにした状態で基板2を収納し支持するための開口7を周方向に複数個有するサセプタ1と、このサセプタ1の開口内に収納支持された基板2の裏側に隣接して設けられる温度均熱板4と、上記サセプタ1の上方に設けられ、上記基板、温度均熱板およびサセプタを加熱して原料ガスGを熱分解するためのヒータ(加熱手段)8と、サセプタ1を回転可能に支持するためのモータ(回転手段)6を備えたものである(例えば、特許文献1参照)。   FIG. 5 shows a schematic diagram of a conventional horizontal vapor phase epitaxial growth apparatus. As shown in FIG. 5, a conventional horizontal vapor phase epitaxial growth apparatus 9 is provided facing a reaction tube 10 including a gas rectifier tube having a gas introduction port 10a and a gas exhaust port 10b at both ends, and the reaction tube 10 inside. Along with the susceptor 1 having a plurality of openings 7 in the circumferential direction for accommodating and supporting the substrate 2 with the front side of the substrate 2 facing down, and on the back side of the substrate 2 accommodated and supported in the opening of the susceptor 1 A temperature soaking plate 4 provided adjacent thereto, and a heater (heating means) 8 provided above the susceptor 1 for thermally decomposing the source gas G by heating the substrate, the temperature soaking plate and the susceptor, and A motor (rotating means) 6 for rotatably supporting the susceptor 1 is provided (for example, see Patent Document 1).

図6(b)の横型フェイスダウン方式や図6(d)の自転公転型フェイスダウン方式の化合物半導体製造装置の場合、図4に示すように、半導体基板2をサセプタ1の開口7内に載置し支持する構造を得るため、開口7の下面周縁部には、開口7の中心方向に張り出した段差から成る基板支持部、具体的には内向爪3が一体に形成され、半導体基板2は、この内向爪3に外周部が支えられて開口7の下面に保持される。   In the case of the horizontal face-down method of FIG. 6B or the rotation / revolution type face-down type compound semiconductor manufacturing apparatus of FIG. 6D, the semiconductor substrate 2 is mounted in the opening 7 of the susceptor 1 as shown in FIG. In order to obtain a structure to be placed and supported, a substrate support portion consisting of a step projecting in the center direction of the opening 7, specifically, an inward claw 3, is integrally formed on the peripheral surface of the lower surface of the opening 7. The outer periphery is supported by the inward nails 3 and held on the lower surface of the opening 7.

すなわち、図4に示される様に、サセプタ1の中にエピタキシャル成長を行うウェハ形状の穴をくり貫いている。その貫通部に半導体ウェハ(基板2)を内向爪3によって支持して、その上に温度均熱板4を設置し、エピタキシャル成長を行っている。   That is, as shown in FIG. 4, a wafer-shaped hole for epitaxial growth is cut through the susceptor 1. A semiconductor wafer (substrate 2) is supported by the inward claws 3 in the penetrating portion, and a temperature-equalizing plate 4 is placed thereon to perform epitaxial growth.

温度均熱板4は、エピタキシャル成長の面内均一性を向上するために設置してある。しかし、温度均熱板4を用いてもウェハ周辺部については面内均一性に劣るという課題があった。これは、温度均熱板4の周辺部分の温度が均一にならない。そのため、温度均熱板4と同じ形状であるウェハ(基板2)の周辺部についても、均一性が悪かった。また、ウェハ(基板2)と温度均熱板4とサセプタ1のわずかな隙間においてもエピタキシャル成長時にガスが乱流を起こしウェハ(基板2)周辺部の均一性を悪化させている。   The temperature soaking plate 4 is installed in order to improve the in-plane uniformity of epitaxial growth. However, even if the temperature soaking plate 4 is used, there is a problem that the wafer periphery is inferior in in-plane uniformity. This is because the temperature of the peripheral part of the temperature-uniforming plate 4 is not uniform. For this reason, the uniformity of the peripheral portion of the wafer (substrate 2) having the same shape as the temperature soaking plate 4 was also poor. Further, even in a slight gap between the wafer (substrate 2), the temperature soaking plate 4 and the susceptor 1, gas is turbulent during epitaxial growth, and the uniformity of the peripheral portion of the wafer (substrate 2) is deteriorated.

これに対し、従来、光導波路等を構成するための酸化物ガラス薄膜の製造装置においては、ガラス微粒子堆積時における基板温度を均一に保つため、SiC等の材料を円板状に加工した温度均熱板を介してターンテーブル上に支持させることが知られている(例えば、特許文献2参照)。
特開平11−87252号公報 特開平6−135728号公報
On the other hand, in the conventional apparatus for manufacturing an oxide glass thin film for forming an optical waveguide or the like, in order to keep the substrate temperature uniform during the deposition of glass particles, a temperature uniformity obtained by processing a material such as SiC into a disk shape. It is known to support on a turntable via a hot plate (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 11-87252 JP-A-6-135728

しかしながら、特許文献2は酸化物ガラス薄膜の製造装置において、より広い面積の温度均熱板の上に基板を載せる構成を示しているだけであり、本発明で対象とするところの、サセプタの開口内に収納された基板の裏側(材料ガス流路と反対の側)に重ねて設けられる温度均熱板の構造については言及がない。かかる相違は両者の本質から来るものであって、特許文献2では温度均熱板の上に基板を載せて段差が生じても問題とならないのに対し、本発明では横型気相エピタキシャル成長装置であることから、そのような段差の存在が材料ガスの流れを乱し、気相エピタキシャル成長の大きな障害となる、という関係で対比できる。   However, Patent Document 2 merely shows a configuration in which a substrate is placed on a temperature-uniform heat plate having a larger area in an oxide glass thin film manufacturing apparatus, and the opening of a susceptor that is the subject of the present invention. There is no mention of the structure of the temperature soaking plate provided on the back side (the side opposite to the material gas flow path) of the substrate housed therein. Such a difference comes from the essence of both, and in Patent Document 2, there is no problem even if a step is caused by placing a substrate on a temperature-uniform plate, whereas the present invention is a horizontal vapor phase epitaxial growth apparatus. Therefore, it can be contrasted that the existence of such a step disturbs the flow of the material gas and becomes a major obstacle to vapor phase epitaxial growth.

従来の横型気相エピタキシャル成長装置においては、基板を均一に熱するために基板に隣接してセットされる温度均熱板の構造には、あまり注意を払って来なかった。すなわち、図4のように、上下方向に見て基板と同一形状の温度均熱板を単に基板に重ねて開口内に収納していた。   In the conventional horizontal vapor phase epitaxial growth apparatus, little attention has been paid to the structure of the temperature soaking plate set adjacent to the substrate in order to heat the substrate uniformly. That is, as shown in FIG. 4, a temperature equalizing plate having the same shape as the substrate as viewed in the vertical direction is simply stacked on the substrate and accommodated in the opening.

このため温度均熱板を用いてもウェハ周辺部については面内均一性に劣るという課題があった。これは、温度均熱板の周辺部分の温度が均一にならないためである。そのため、温度均熱板と同じ形状であるウェハの周辺部についても、均一性が悪かった。また、ウェハと温度均熱板とサセプタのわずかな隙間においてもエピタキシャル成長時にガスが乱流を起こしウェハ周辺部の均一性を悪化させていた。   For this reason, there is a problem that even if a temperature soaking plate is used, in-plane uniformity is inferior at the wafer peripheral portion. This is because the temperature in the peripheral portion of the temperature-uniforming plate is not uniform. For this reason, the uniformity of the peripheral portion of the wafer having the same shape as the temperature soaking plate was also poor. Further, even in a slight gap between the wafer, the temperature soaking plate, and the susceptor, the gas turbulent during epitaxial growth, which deteriorates the uniformity of the peripheral portion of the wafer.

よって従来の横型気相エピタキシャル成長装置では、MOVPE法におけるエピタキシャル成長において、ウェハ面内の結晶の特性(成長速度、混晶比、キャリア濃度)の均一性、特に周辺部における結晶の均一性が悪いという課題があった。面内均一性が悪くなると、それを使った半導体素子の特性にもバラツキが生じ、結果として製造歩留りが低下する。   Therefore, the conventional horizontal vapor phase epitaxial growth apparatus has a problem in that the uniformity of crystal characteristics (growth rate, mixed crystal ratio, carrier concentration) in the wafer surface, especially the peripheral portion, is poor in the MOVPE epitaxial growth. was there. When the in-plane uniformity deteriorates, the characteristics of the semiconductor element using the same also vary, resulting in a decrease in manufacturing yield.

そこで、本発明の目的は、上記課題を解決し、基板面内の結晶の特性ばらつきが小さくなるように、均一に基板を加熱することのできる温度均熱板とサセプタの相対的構造を持った横型の気相エピタキシャル成長装置を提供することにある。   Therefore, an object of the present invention is to solve the above-mentioned problems and to have a relative structure of a temperature-uniforming plate and a susceptor that can heat the substrate uniformly so as to reduce the variation in crystal characteristics in the substrate plane. It is an object to provide a horizontal vapor phase epitaxial growth apparatus.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る気相エピタキシャル成長装置は、反応管内部に臨んで設けられると共に、基板の表側を反応管内に向けた状態で基板を収納し支持するための開口を有するサセプタと、このサセプタの開口内に収納支持された基板の裏側に重ねて設けられる温度均熱板と、上記基板、温度均熱板およびサセプタを加熱するための加熱手段とを備えた横型気相エピタキシャル成長装置において、上記温度均熱板として、基板を覆い被せる形状の温度均熱板を基板上に設置したことを特徴とする。   A vapor phase epitaxial growth apparatus according to a first aspect of the present invention is provided so as to face the inside of a reaction tube, and has a susceptor having an opening for storing and supporting the substrate with the front side of the substrate facing the reaction tube, and the susceptor In a horizontal vapor phase epitaxial growth apparatus comprising: a temperature soaking plate provided on the back side of a substrate housed and supported in the opening of the substrate; and a heating means for heating the substrate, the temperature soaking plate and the susceptor. As the temperature soaking plate, a temperature soaking plate having a shape covering the substrate is provided on the substrate.

この請求項1の発明の気相エピタキシャル成長装置は図1及び図2の両者の形態を含むものである。   The vapor phase epitaxial growth apparatus according to the first aspect of the present invention includes both the embodiments shown in FIGS.

また本発明(請求項1〜6)において、横型気相エピタキシャル成長装置といった場合、大別して二つの形態が含まれる。第一は、回転する板状のサセプタに、複数の基板を、サセプタ中心から少し離れた位置にて周方向に配設し、且つ成長面たる下面をガス流路側に向けて支持し、その基板の裏面側からサセプタをヒータで加熱し、サセプタの直径方向に原料ガスを流し、加熱された基板上で半導体結晶をエピタキシャル成長させる化合物半導体製造装置(図6(b))である。第二は、回転する板状のサセプタに、複数の基板を、サセプタ中心から少し離れた位置にて周方向に配設し、且つ成長面たる下面をガス流路側に向けて支持し、その基板の裏面側からサセプタをヒータで加熱し、サセプタ中心部分から放射状に原料ガスを流し、加熱された基板上で半導体結晶をエピタキシャル成長させる化合物半導体製造装置(図6(c)(d))である。   In the present invention (Claims 1 to 6), the horizontal vapor phase epitaxial growth apparatus roughly includes two forms. First, a plurality of substrates are disposed on a rotating plate-shaped susceptor in a circumferential direction at a position slightly away from the center of the susceptor, and a lower surface serving as a growth surface is supported toward the gas flow path side. FIG. 6B shows a compound semiconductor manufacturing apparatus (FIG. 6B) in which a susceptor is heated with a heater from the back surface side, a source gas is flowed in the diameter direction of the susceptor, and a semiconductor crystal is epitaxially grown on the heated substrate. Second, a plurality of substrates are disposed on a rotating plate-shaped susceptor in a circumferential direction at a position slightly away from the center of the susceptor, and a lower surface serving as a growth surface is supported toward the gas flow path side. 6 is a compound semiconductor manufacturing apparatus (FIGS. 6C and 6D) in which a susceptor is heated with a heater from the back surface side, a source gas is flowed radially from the central portion of the susceptor, and semiconductor crystals are epitaxially grown on the heated substrate.

さらに細く分ければ、基板の下面がガス流路に面して温度均熱板が基板上面側に位置するフェイスダウン型(図6(a)(d))と、基板の上面がガス流路に面して温度均熱板が基板下面側に位置するフェイスアップ型(図6(c))があるが、そのいずれの形態も本発明の横型気相エピタキシャル成長装置の概念に含まれる。   More specifically, the face-down type (FIGS. 6A and 6D) in which the lower surface of the substrate faces the gas flow path and the temperature equalizing plate is located on the upper surface side of the substrate, and the upper surface of the substrate is the gas flow path. There is a face-up type (FIG. 6C) in which the temperature soaking plate is located on the lower surface side of the substrate. Any of these forms is included in the concept of the horizontal vapor phase epitaxial growth apparatus of the present invention.

請求項2の発明は、請求項1記載の気相エピタキシャル成長装置において、基板面積の1.25〜2倍の面積を有する温度均熱板を基板上に設置したことを特徴とする。   According to a second aspect of the present invention, in the vapor phase epitaxial growth apparatus according to the first aspect, a temperature soaking plate having an area of 1.25 to 2 times the substrate area is provided on the substrate.

ここで温度均熱板の面積を基板面積の1.25〜2倍としたのは、1.25倍未満では基板に対する均熱効果に乏しく、また2倍以上では不必要に温度均熱板の面積が大きくなり不経済となるためである。   Here, the area of the temperature soaking plate is set to 1.25 to 2 times the substrate area. If it is less than 1.25 times, the heat soaking effect on the substrate is poor, and if it is more than 2 times, the temperature soaking plate is unnecessarily high. This is because the area becomes large and uneconomical.

請求項3の発明は、請求項1記載の気相エピタキシャル成長装置において、基板の対角若しくは直径の1.1〜1.4倍の長さを有する温度均熱板を基板上に設置したことを特徴とする。   According to a third aspect of the present invention, in the vapor phase epitaxial growth apparatus according to the first aspect, a temperature soaking plate having a length 1.1 to 1.4 times the diagonal or diameter of the substrate is provided on the substrate. Features.

ここで温度均熱板の大きさを、基板の対角若しくは直径の1.1〜1.4倍の長さとしたのは、1.1倍未満では基板に対する均熱効果に乏しく、また1.4倍以上では不必要に温度均熱板の面積が大きくなり不経済となるためである。   Here, the size of the temperature soaking plate is 1.1 to 1.4 times the diagonal or diameter of the substrate. If it is less than 1.1 times, the soaking effect on the substrate is poor. If it is four times or more, the area of the temperature soaking plate becomes unnecessarily large, which is uneconomical.

請求項4の発明に係る気相エピタキシャル成長装置は、反応管内部に臨んで設けられると共に、基板の表側を反応管内に向けた状態で基板を収納し支持するための開口を有するサセプタと、このサセプタの開口内に収納支持された基板の裏側に重ねて設けられる温度均熱板と、上記基板、温度均熱板およびサセプタを加熱するための加熱手段とを備えた横型気相エピタキシャル成長装置において、上記温度均熱板として、基板と同形状の接触面部とその上部に基板を覆い被せる形状の均熱板部を有する温度均熱板を、基板上に設置したことを特徴とする。   According to a fourth aspect of the present invention, there is provided a vapor phase epitaxial growth apparatus that faces the inside of a reaction tube, and has a susceptor having an opening for storing and supporting the substrate with the front side of the substrate facing the reaction tube, and the susceptor In a horizontal vapor phase epitaxial growth apparatus comprising: a temperature soaking plate provided on the back side of a substrate housed and supported in the opening of the substrate; and a heating means for heating the substrate, the temperature soaking plate and the susceptor. As the temperature soaking plate, a temperature soaking plate having a contact surface portion having the same shape as that of the substrate and a soaking plate portion shaped so as to cover the substrate is provided on the substrate.

この請求項4の発明の気相エピタキシャル成長装置は図2の形態を特定したものである。   The vapor phase epitaxial growth apparatus according to the fourth aspect of the invention specifies the embodiment shown in FIG.

請求項5の発明は、請求項4記載の気相エピタキシャル成長装置において、接触面部が基板と同形状でありその上部に基板面積の1.25〜2倍の面積を有する温度均熱板を基板上に設置したことを特徴とする。温度均熱板の面積を基板面積の1.25〜2倍とした意義は、上記請求項2と同じである。   According to a fifth aspect of the present invention, there is provided the vapor phase epitaxial growth apparatus according to the fourth aspect, wherein a temperature soaking plate having a contact surface portion having the same shape as the substrate and having an area of 1.25 to 2 times the substrate area is formed on the substrate. It is characterized by having been installed in. The significance of setting the area of the temperature soaking plate to 1.25 to 2 times the substrate area is the same as that of the second aspect.

請求項6の発明は、請求項4記載の気相エピタキシャル成長装置において、接触面部が基板と同形状でありその上部に基板の対角若しくは直径の1.1〜1.4倍の長さを有する温度均熱板を基板上に設置したことを特徴とする。温度均熱板の大きさを、基板の対角若しくは直径の1.1〜1.4倍の長さとした意義は、上記請求項3と同じである。   According to a sixth aspect of the present invention, in the vapor phase epitaxial growth apparatus according to the fourth aspect, the contact surface portion has the same shape as the substrate and has a length 1.1 to 1.4 times the diagonal or diameter of the substrate. It is characterized in that a temperature soaking plate is installed on the substrate. The significance of setting the size of the temperature soaking plate to be 1.1 to 1.4 times the diagonal or diameter of the substrate is the same as in the third aspect.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

温度均熱板の大きさを、基板の形状に対して図1又は図2に示す様に覆い被さる形状寸法のものにすることで、基板周辺部の成長時における温度分布を均一にすることができる。   By making the size of the temperature soaking plate cover the shape of the substrate as shown in FIG. 1 or FIG. 2, the temperature distribution during the growth of the periphery of the substrate can be made uniform. it can.

また、基板とサセプタの隙間に流入するガスについてもその流れる経路を曲げることで削減し、面内均一性の向上に効果がある。   Further, the gas flowing into the gap between the substrate and the susceptor is also reduced by bending the flow path, which is effective in improving the in-plane uniformity.

従って、MOVPE法を使ったエピタキシャル成長において、半導体ウェハに対してその形状を覆うことのできる温度均熱板を使用することにより、例えばp型キャリア濃度の面内分布を3%以内に抑えることができる。ウェハ周辺部の面内均一性を向上させ半導体素子の歩留りを向上させることにより、ウェハの使用可能面積を大きくする効果がある。   Therefore, in the epitaxial growth using the MOVPE method, for example, the in-plane distribution of the p-type carrier concentration can be suppressed to 3% or less by using a temperature soaking plate capable of covering the shape of the semiconductor wafer. . By improving the in-plane uniformity of the peripheral portion of the wafer and improving the yield of semiconductor elements, there is an effect of increasing the usable area of the wafer.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

前提となる気相エピタキシャル装置の構成は、温度均熱板とサセプタの相対的構造を除いて、図5のものと同じである。すなわち、原料ガス導入口10aからガス排気口10bへ原料ガスが流通する反応管10の上部壁に板状のサセプタ1を設け、これを回転手段たるモータ6で回転可能とすると共に、このサセプタ1に、気相エピタキシャル成長の対象である半導体基板2とほぼ同じ形状に開口7を開け、このサセプタ1に開けた開口7内に基板2の表面を下向きに収納し、下面を反応管内部に露出させた状態で支持すると共に、上記基板2及びサセプタ1を上方から加熱する加熱源たるヒータ8に面して上記開口7に温度均熱板4をはめ込んで、基板2に温度均熱板4を隣接させた構成となっている。ここで基板2は半導体ウェハであり、これに隣接する温度均熱板4の材質はカーボンから成る。   The configuration of the premise vapor phase epitaxial apparatus is the same as that of FIG. 5 except for the relative structure of the temperature soaking plate and the susceptor. That is, a plate-shaped susceptor 1 is provided on the upper wall of the reaction tube 10 through which the source gas flows from the source gas introduction port 10a to the gas exhaust port 10b, and the susceptor 1 can be rotated by the motor 6 serving as a rotating means. Further, an opening 7 is formed in substantially the same shape as that of the semiconductor substrate 2 to be subjected to vapor phase epitaxial growth, the surface of the substrate 2 is accommodated in the opening 7 opened in the susceptor 1, and the lower surface is exposed inside the reaction tube. The temperature equalizing plate 4 is fitted into the opening 7 so as to face the heater 8 as a heating source for heating the substrate 2 and the susceptor 1 from above, and the temperature equalizing plate 4 is adjacent to the substrate 2. It is the composition made to do. Here, the substrate 2 is a semiconductor wafer, and the material of the temperature soaking plate 4 adjacent thereto is made of carbon.

本実施形態に係る温度均熱板4とサセプタ1の相対的構造を図1、図2に示す。この図1、図2はサセプタ1と温度均熱板4の部分の概略的な断面図である。   The relative structure of the temperature soaking plate 4 and the susceptor 1 according to this embodiment is shown in FIGS. FIGS. 1 and 2 are schematic cross-sectional views of the susceptor 1 and the temperature-uniforming plate 4.

<実施形態1>
図1に示す第一の実施形態では、温度均熱板4は肉厚が半導体ウェハ(基板2)より厚く、且つ一定で面積規模が半導体ウェハ(基板2)より大きい円板状である。ここで温度均熱板4は基板面積の1.25〜2倍の面積又は基板の直径の1.1〜1.4倍の長さを有する。
<Embodiment 1>
In the first embodiment shown in FIG. 1, the temperature soaking plate 4 is thicker than the semiconductor wafer (substrate 2) and has a disk shape that is constant and has a larger area scale than the semiconductor wafer (substrate 2). Here, the temperature soaking plate 4 has an area of 1.25 to 2 times the substrate area or a length of 1.1 to 1.4 times the diameter of the substrate.

一方、サセプタ1の開口7は、半導体ウェハ(基板2)の外周に対応する内周と、半導体ウェハ(基板2)の厚さに対応する深さを有する相対的に小径の基板収納部7aと、そして温度均熱板4の外周に対応する内周と、温度均熱板4の厚さにほぼ対応する深さを有する相対的に大径の均熱板収納部7bとを有し、結果として肉厚方向の中間に段差71を有する段差断面形状となっている。   On the other hand, the opening 7 of the susceptor 1 includes an inner circumference corresponding to the outer circumference of the semiconductor wafer (substrate 2), and a relatively small-diameter substrate housing portion 7a having a depth corresponding to the thickness of the semiconductor wafer (substrate 2). And an inner circumference corresponding to the outer periphery of the temperature soaking plate 4 and a relatively large-diameter soaking plate storage portion 7b having a depth substantially corresponding to the thickness of the temperature soaking plate 4 as a result. As shown in FIG.

したがって、図1に示す様に、サセプタ1の開口7内において、半導体ウェハ(基板2)及びこれと同じ面一にある段差71の上に温度均熱板4が載置され、導体ウェハ(基板2)上により面積規模の大きい温度均熱板4が覆い被さる形となる。   Therefore, as shown in FIG. 1, in the opening 7 of the susceptor 1, the temperature equalizing plate 4 is placed on the semiconductor wafer (substrate 2) and the step 71 that is flush with the semiconductor wafer (substrate 2). 2) The temperature soaking plate 4 having a larger area scale is covered.

このように半導体ウェハ(基板2)の形状に対して、温度均熱板4が覆い被さる形状にすることで、半導体ウェハ(基板2)周辺部の成長時における温度分布を均一にすることができる。   In this way, the temperature distribution during the growth of the peripheral portion of the semiconductor wafer (substrate 2) can be made uniform by making the shape so that the temperature soaking plate 4 covers the shape of the semiconductor wafer (substrate 2). .

<実施形態2>
図2に第二の実施形態を示す。この実施形態では、温度均熱板4は基板2の裏面と同一の形状寸法の接触面部4aと、その上の部位である均熱板部4bからなる。均熱板部4bは、肉厚が半導体ウェハ(基板2)より厚く、且つ一定で面積規模が半導体ウェハ(基板2)より大きい円板状をしており、この均熱板部4bの下面(基板側の面)に突設する形で、基板2の裏面と同一の形状寸法の接触面部4aが設けられている。ここで均熱板部4bは基板面積の1.25〜2倍の面積又は基板の直径の1.1〜1.4倍の長さを有する。
<Embodiment 2>
FIG. 2 shows a second embodiment. In this embodiment, the temperature soaking plate 4 includes a contact surface portion 4a having the same shape and dimension as the back surface of the substrate 2, and a soaking plate portion 4b which is a portion above the contact surface portion 4a. The soaking plate portion 4b is thicker than the semiconductor wafer (substrate 2) and has a constant and larger area than the semiconductor wafer (substrate 2), and the bottom surface of the soaking plate portion 4b ( A contact surface portion 4 a having the same shape and dimension as the back surface of the substrate 2 is provided so as to project from the surface on the substrate side. Here, the soaking plate portion 4b has an area of 1.25 to 2 times the substrate area or a length of 1.1 to 1.4 times the diameter of the substrate.

一方、サセプタ1の開口7は、半導体ウェハ(基板2)の外周に対応する内周と、半導体ウェハ(基板2)の厚さ及び上記接触面部4aの厚さの和に対応する深さを有する相対的に小径の基板収納部7cと、そして均熱板部4bの外周に対応する内周と、均熱板部4bの厚さにほぼ対応する深さを有する相対的に大径の均熱板収納部7dとを有し、結果として肉厚方向の中間に段差72を有する段差断面形状となっている。   On the other hand, the opening 7 of the susceptor 1 has a depth corresponding to the inner circumference corresponding to the outer circumference of the semiconductor wafer (substrate 2) and the sum of the thickness of the semiconductor wafer (substrate 2) and the thickness of the contact surface portion 4a. Relatively large-diameter soaking having a relatively small-diameter substrate housing portion 7c, an inner circumference corresponding to the outer periphery of the soaking plate portion 4b, and a depth substantially corresponding to the thickness of the soaking plate portion 4b. As a result, it has a step cross-sectional shape having a step 72 in the middle in the thickness direction.

したがって、図2に示す様に、サセプタ1の開口7内において、温度均熱板4は段差72の上に周縁部が載置されて収納される。すなわち、接触面部4aを介して導体ウェハ(基板2)上に温度均熱板4が載置され、導体ウェハ(基板2)上により面積規模の大きい温度均熱板4が覆い被さる形となる。このとき均熱板部4bの周縁部下面は段差72上に密接され、且つ接触面部4aが導体ウェハ(基板2)上に密接されて収納される。   Therefore, as shown in FIG. 2, in the opening 7 of the susceptor 1, the temperature equalizing plate 4 is housed with its peripheral portion placed on the step 72. That is, the temperature soaking plate 4 is placed on the conductor wafer (substrate 2) via the contact surface portion 4a, and the temperature soaking plate 4 having a larger area scale is covered on the conductor wafer (substrate 2). At this time, the lower surface of the peripheral edge portion of the soaking plate portion 4b is brought into close contact with the step 72, and the contact surface portion 4a is brought into close contact with the conductor wafer (substrate 2).

このように温度均熱板4の大きさを、基板の形状に対して覆い被さる形状寸法のものにすることで、基板周辺部の成長時における温度分布を均一にすることができる。また、均熱板部4bの周縁部下面が段差72上に密接され、且つ接触面部4aが半導体ウェハ(基板2)上に密接されて、基板2とサセプタ1の隙間のガス流路が閉塞又は屈曲されることから、反応管10に流れるガス流の乱れを削減し、導体ウェハ(基板2)における結晶の面内均一性を高めることができる。   In this way, by making the size of the temperature soaking plate 4 to have a shape that covers the shape of the substrate, the temperature distribution during the growth of the peripheral portion of the substrate can be made uniform. Further, the lower surface of the peripheral edge of the soaking plate portion 4b is brought into close contact with the step 72, and the contact surface portion 4a is brought into close contact with the semiconductor wafer (substrate 2), so that the gas flow path between the substrate 2 and the susceptor 1 is blocked or closed. Since it is bent, the disturbance of the gas flow flowing through the reaction tube 10 can be reduced, and the in-plane uniformity of crystals in the conductor wafer (substrate 2) can be improved.

上記実施形態では、温度均熱板4は基板面積の1.25〜2倍の面積を有する構成としたが、基板が長方形である場合には、基板の対角の1.1〜1.4倍の長さを有する温度均熱板を基板上に設置することで、同様の基板面内の結晶均一化効果を発揮させることができる。   In the above embodiment, the temperature soaking plate 4 is configured to have an area that is 1.25 to 2 times the area of the substrate. However, when the substrate is rectangular, 1.1 to 1.4 of the diagonal of the substrate. By installing a temperature soaking plate having a double length on the substrate, a similar crystal homogenization effect within the substrate surface can be exhibited.

本発明の横型気相エピタキシャル成長装置は、MOVPE法を用いたエピタキシャル成長において、面内均一性が要求されるものについては全てに適用することが可能である。また図4に示すようにサセプタと温度均熱板が融合され一体となった均熱板融合サセプタ5の構造としても、基板面内均一化効果があると考えられる。   The horizontal vapor phase epitaxial growth apparatus of the present invention can be applied to all devices that require in-plane uniformity in epitaxial growth using the MOVPE method. Further, as shown in FIG. 4, the structure of the soaking plate fusion susceptor 5 in which the susceptor and the temperature soaking plate are united and integrated is considered to have an in-plane uniformity effect.

本発明の第一の実施形態に係る気相エピタキシャル成長装置における温度均熱板とサセプタの相対的構造部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the relative structure part of the temperature soaking plate and susceptor in the vapor phase epitaxial growth apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る気相エピタキシャル成長装置における温度均熱板とサセプタの相対的構造部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the relative structure part of the temperature uniform plate and susceptor in the vapor phase epitaxial growth apparatus which concerns on 2nd embodiment of this invention. 温度均熱板とサセプタの相対的構造部分の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the relative structure part of a temperature uniform plate and a susceptor. 従来の気相エピタキシャル成長装置における温度均熱板とサセプタの相対的構造部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the relative structure part of the temperature uniform plate and susceptor in the conventional vapor phase epitaxial growth apparatus. 従来技術の気相エピタキシャル成長装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vapor phase epitaxial growth apparatus of a prior art. 従来の気相エピタキシャル成長装置の主なリアクター方式を示した図である。It is the figure which showed the main reactor systems of the conventional vapor phase epitaxial growth apparatus.

符号の説明Explanation of symbols

1 サセプタ
2 基板
3 内向爪
4 温度均熱板
4a 接触面部
4b 均熱板部
7 開口
7a、7c 基板収納部
7b、7d 均熱板収納部
71、72 段差
8 ヒータ(加熱手段)
10 反応管
DESCRIPTION OF SYMBOLS 1 Susceptor 2 Board | substrate 3 Inward claw 4 Temperature soaking plate 4a Contact surface part 4b Soaking plate part 7 Opening
7a, 7c Substrate storage part 7b, 7d Soaking plate storage part 71, 72 Step 8 Heater (heating means)
10 reaction tubes

Claims (6)

反応管内部に臨んで設けられると共に、基板の表側を反応管内に向けた状態で基板を収納し支持するための開口を有するサセプタと、このサセプタの開口内に収納支持された基板の裏側に重ねて設けられる温度均熱板と、上記基板、温度均熱板およびサセプタを加熱するための加熱手段とを備えた横型気相エピタキシャル成長装置において、
上記温度均熱板として、基板を覆い被せる形状の温度均熱板を基板上に設置したことを特徴とする気相エピタキシャル成長装置。
A susceptor provided facing the inside of the reaction tube and having an opening for storing and supporting the substrate with the front side of the substrate facing the reaction tube, and a back side of the substrate received and supported in the opening of the susceptor A horizontal vapor phase epitaxy growth apparatus provided with a temperature soaking plate provided with heating means for heating the substrate, the temperature soaking plate and the susceptor,
A vapor phase epitaxial growth apparatus characterized in that, as the temperature soaking plate, a temperature soaking plate having a shape covering the substrate is provided on the substrate.
請求項1記載の気相エピタキシャル成長装置において、
基板面積の1.25〜2倍の面積を有する温度均熱板を基板上に設置したことを特徴とする気相エピタキシャル成長装置。
The vapor phase epitaxial growth apparatus according to claim 1,
A vapor phase epitaxial growth apparatus characterized in that a temperature soaking plate having an area of 1.25 to 2 times the substrate area is provided on the substrate.
請求項1記載の気相エピタキシャル成長装置において、
基板の対角若しくは直径の1.1〜1.4倍の長さを有する温度均熱板を基板上に設置したことを特徴とする気相エピタキシャル成長装置。
The vapor phase epitaxial growth apparatus according to claim 1,
A vapor phase epitaxial growth apparatus characterized in that a temperature soaking plate having a length 1.1 to 1.4 times the diagonal or diameter of a substrate is provided on the substrate.
反応管内部に臨んで設けられると共に、基板の表側を反応管内に向けた状態で基板を収納し支持するための開口を有するサセプタと、このサセプタの開口内に収納支持された基板の裏側に重ねて設けられる温度均熱板と、上記基板、温度均熱板およびサセプタを加熱するための加熱手段とを備えた気相エピタキシャル成長装置において、
上記温度均熱板として、基板と同形状の接触面部とその上部に基板を覆い被せる形状の均熱板部を有する温度均熱板を、基板上に設置したことを特徴とする気相エピタキシャル成長装置。
A susceptor provided facing the inside of the reaction tube and having an opening for storing and supporting the substrate with the front side of the substrate facing the reaction tube, and a back side of the substrate received and supported in the opening of the susceptor In a vapor phase epitaxial growth apparatus comprising a temperature soaking plate provided and heating means for heating the substrate, the temperature soaking plate and the susceptor,
A vapor phase epitaxial growth apparatus characterized in that, as the temperature soaking plate, a temperature soaking plate having a contact surface portion having the same shape as the substrate and a soaking plate portion shaped so as to cover the substrate is provided on the substrate. .
請求項4記載の気相エピタキシャル成長装置において、
接触面部が基板と同形状でありその上部に基板面積の1.25〜2倍の面積を有する温度均熱板を、基板上に設置したことを特徴とする気相エピタキシャル成長装置。
The vapor phase epitaxial growth apparatus according to claim 4, wherein
A vapor phase epitaxial growth apparatus, characterized in that a temperature soaking plate having a contact surface portion having the same shape as a substrate and having an area of 1.25 to 2 times the substrate area is disposed on the substrate.
請求項4記載の気相エピタキシャル成長装置において、
接触面部が基板と同形状でありその上部に基板の対角若しくは直径の1.1〜1.4倍の長さを有する温度均熱板を基板上に設置したことを特徴とする気相エピタキシャル成長装置。
The vapor phase epitaxial growth apparatus according to claim 4, wherein
Vapor phase epitaxial growth, characterized in that a contact surface portion has the same shape as that of the substrate, and a temperature soaking plate having a length 1.1 to 1.4 times the diagonal or diameter of the substrate is provided on the substrate. apparatus.
JP2003321177A 2003-09-12 2003-09-12 Vapor phase epitaxial growth device Pending JP2005093505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321177A JP2005093505A (en) 2003-09-12 2003-09-12 Vapor phase epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321177A JP2005093505A (en) 2003-09-12 2003-09-12 Vapor phase epitaxial growth device

Publications (1)

Publication Number Publication Date
JP2005093505A true JP2005093505A (en) 2005-04-07

Family

ID=34452937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321177A Pending JP2005093505A (en) 2003-09-12 2003-09-12 Vapor phase epitaxial growth device

Country Status (1)

Country Link
JP (1) JP2005093505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310702A (en) * 2005-05-02 2006-11-09 Sharp Corp Substrate supporting method and semiconductor substrate
JP2008258508A (en) * 2007-04-06 2008-10-23 Sharp Corp Vapor phase growth device and vapor phase growth method
JP2009029642A (en) * 2007-07-25 2009-02-12 Tokuyama Corp Apparatus for producing group iii nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310702A (en) * 2005-05-02 2006-11-09 Sharp Corp Substrate supporting method and semiconductor substrate
JP2008258508A (en) * 2007-04-06 2008-10-23 Sharp Corp Vapor phase growth device and vapor phase growth method
JP2009029642A (en) * 2007-07-25 2009-02-12 Tokuyama Corp Apparatus for producing group iii nitride

Similar Documents

Publication Publication Date Title
US9903046B2 (en) Reduction of carrot defects in silicon carbide epitaxy
KR101853274B1 (en) Methods and apparatus for the deposition of materials on a substrate
US20120231615A1 (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holder
TW200913108A (en) Wafer processing hardware for epitaxial deposition with reduced auto-doping and backside defects
JP2008060545A (en) Apparatus and method for manufacturing semiconductor
JP2008028270A (en) Method and device for growing crystal
US6547876B2 (en) Apparatus for growing epitaxial layers on wafers by chemical vapor deposition
Poblenz et al. Uniformity and control of surface morphology during growth of GaN by molecular beam epitaxy
JP6018909B2 (en) Wafer holder and epitaxial wafer manufacturing equipment
JP5197030B2 (en) Epitaxial wafer manufacturing apparatus and manufacturing method
CN114072900B (en) Wafer carrying disc and wafer epitaxial device
JP2005093505A (en) Vapor phase epitaxial growth device
JP2008211109A (en) Vapor phase growth system and vapor phase epitaxial growth method
CN111349908A (en) SiC chemical vapor deposition device
JP4334370B2 (en) Vapor growth apparatus and vapor growth method
JP2004055672A (en) Chemical vapor deposition apparatus and method
JP5134311B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2005005503A (en) System and method for epitaxial growth
KR20110087440A (en) Susceptor for manufacturing semiconductor and apparatus comprising thereof
JP2007173417A (en) Compound semiconductor manufacturing apparatus
KR100975716B1 (en) Vapor phase growing apparatus and vapor phase growing method
US20150013608A1 (en) Ceramic heater
JP2005093640A (en) Vapor phase epitaxial growth system
JP2004103708A (en) Jig for fabricating semiconductor device
JP2022121078A (en) Susceptor, deposition device and substrate deposition method