JPH0568221A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPH0568221A
JPH0568221A JP22607291A JP22607291A JPH0568221A JP H0568221 A JPH0568221 A JP H0568221A JP 22607291 A JP22607291 A JP 22607291A JP 22607291 A JP22607291 A JP 22607291A JP H0568221 A JPH0568221 A JP H0568221A
Authority
JP
Japan
Prior art keywords
liquid crystal
level
transmittance
white
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22607291A
Other languages
Japanese (ja)
Inventor
Haruhiko Okumura
治彦 奥村
Hisao Fujiwara
久男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22607291A priority Critical patent/JPH0568221A/en
Publication of JPH0568221A publication Critical patent/JPH0568221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To provide a driving method for a liquid crystal display device by which an inversion phenomenon at halftone display is prevented and a wide view field angle characteristic is realized. CONSTITUTION:High and low relation between a video input level and the half tone of 50% transmittivity is detected by a detector 1, and either a black level or a white level is selected by a switch 6 in accordance with this output. The video input is also level-converted by a time division conversion circuit 4 in conformity to a prescribed conversion table. By switching a switch circuit 7 by a signal obtained by a frequency doubler circuit 5, the write-in is executed to a liquid crystal display panel two times in one field period by the binary signal of the white or the black level obtained from the switch circuit 6 and the signal obtained from the conversion circuit 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置の駆動方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示セルの電気光学特性は、大きく
分けて二つの部分から計算により求めることができる。
第1は、液晶分子の変位量の計算であり、第2はその中
を光が透過する時の光学特性の計算である。第1の液晶
分子の変位量は、フランクの連続体の理論によって表さ
れ、液晶の弾性自由エネルギーgd は次式のようにな
る。
2. Description of the Related Art The electro-optical characteristics of a liquid crystal display cell can be roughly divided and calculated from two parts.
The first is the calculation of the displacement amount of the liquid crystal molecules, and the second is the calculation of the optical characteristics when light passes through the liquid crystal molecules. The displacement amount of the first liquid crystal molecule is represented by the Frank continuum theory, and the elastic free energy gd of the liquid crystal is given by the following equation.

【0003】[0003]

【数1】 また上記弾性変位は、電極間に印加される電界によって
も引き起こされ、電界によるエネルギーge は次式のよ
うに表される。
[Equation 1] The elastic displacement is also caused by the electric field applied between the electrodes, and the energy ge due to the electric field is expressed by the following equation.

【0004】[0004]

【数2】 したがってその変位量の変化分g(=gd −ge )が液
晶セル全体で極小になるように、全体の配列が決められ
る。
[Equation 2] Therefore, the entire arrangement is determined so that the change amount g (= gd-ge) of the displacement amount is minimized in the entire liquid crystal cell.

【0005】第2の光学特性については、これは基本的
にはBarrmanの4×4マトリクス法に従って計算される
(D.W.Derreman:“Liquid-crystal twist cell dynami
cs with backflow”,J.Appl.phys.,46,9 ,3746(19
75)参照)。
Regarding the second optical characteristic, this is basically calculated according to Barrman's 4 × 4 matrix method (DW Derreman: “Liquid-crystal twist cell dynami”).
cs with backflow ”, J.Appl.phys., 46, 9, 3746 (19
75))).

【0006】以上の過程に基づいて数値計算により液晶
セルの光学シミュレーションを行うと明らかになるが、
表示セルの視角特性は液晶分子を配向制御する時に生じ
るプリチルト角および複屈折Δn、液晶層の厚さd等に
よって大きく変化する。そこで、液晶表示装置の視角特
性を液晶セルのパラメータを最適化することにより改良
することが検討されている(岡野,小林:“液晶(応用
編)”,培風館,p152 (1985)参照)。
It becomes clear that an optical simulation of the liquid crystal cell is performed by numerical calculation based on the above process.
The viewing angle characteristics of the display cell greatly change depending on the pretilt angle and birefringence Δn generated when controlling the alignment of the liquid crystal molecules, the thickness d of the liquid crystal layer, and the like. Therefore, it has been studied to improve the viewing angle characteristics of the liquid crystal display device by optimizing the parameters of the liquid crystal cell (see Okano, Kobayashi: "Liquid Crystal (application)", Baifukan, p152 (1985)).

【0007】また、液晶表示装置の視角特性は、液晶セ
ルの特性だけでなく、偏光板の特性にも依存することに
着目し、新たに位相フィルムを追加することによって視
角を広げた例も報告されている(山岸他:“位相フィル
ムを用いた広視野角LCD”テレビ学技報 14 ,IDY90-
47,p35 (1990)参照)。
In addition, focusing on the fact that the viewing angle characteristics of a liquid crystal display device depend not only on the characteristics of the liquid crystal cell but also on the characteristics of the polarizing plate, an example of expanding the viewing angle by newly adding a phase film is also reported. (Yamagishi et al .: “Wide viewing angle LCD using phase film”) TV Technical Report 14, IDY90-
47, p35 (1990)).

【0008】しかしながら、以上のように物性パラメー
タを最適化するだけでは、まだ十分な性能は得られない
し、位相フィルムを追加する方法は偏光板の視角特性改
善にはなるが、根本的な液晶セルの視角特性の改善にな
っていない。
However, by just optimizing the physical property parameters as described above, sufficient performance cannot be obtained yet, and the method of adding the phase film improves the viewing angle characteristics of the polarizing plate, but it is a fundamental liquid crystal cell. The viewing angle characteristics of are not improved.

【0009】図11〜図14は、従来の方法によりパラ
メータを最適化しただけの液晶パネルの視野角特性を示
す。図11は上下方向の透過率変化、図12が同じくコ
ントラスト変化であり、図13は左右方向の透過率変
化、図14が同じくコントラスト変化である。
11 to 14 show viewing angle characteristics of a liquid crystal panel whose parameters are simply optimized by a conventional method. FIG. 11 shows changes in transmittance in the vertical direction, FIG. 12 shows changes in contrast, FIG. 13 shows changes in transmittance in the horizontal direction, and FIG. 14 shows changes in contrast.

【0010】通常視野角は、白表示の時の透過率TW と
黒表示の時の透過率TB とから、そのコントラストC=
TW /TB がある一定値(通常10/1〜20/1)に
落ちた時の角度として定義される。ところが実際の画像
で見た場合、この定義では十分でない場合が多い。たと
えば、液晶テレビでは白黒反転現象がある。これは、あ
る角度以上で見ると、明るかった部分が暗く、暗かった
部分が明るく見える現象である。この現象が起ると、画
像は極めて不自然になる。この反転現象はとくに中間調
レベルで生じ易く、この現象を含めた視野角の定義が必
要になる。
The normal viewing angle is calculated by the contrast C = from the transmittance TW for white display and the transmittance TB for black display.
It is defined as the angle when TW / TB drops to a certain value (usually 10/1 to 20/1). However, in actual images, this definition is often not sufficient. For example, a liquid crystal television has a black and white reversal phenomenon. This is a phenomenon in which a bright part appears dark and a dark part appears bright when viewed from a certain angle or more. When this phenomenon occurs, the image becomes extremely unnatural. This reversal phenomenon is likely to occur particularly at the halftone level, and it is necessary to define the viewing angle including this phenomenon.

【0011】図11〜図14から、通常の視野角の定義
でコントラストが10/1に落ちる時の角度は、上下方
向が34°と16°、左右方向が54°と50°とな
る。ところが、反転現象が生じる点を視野角と定義する
と、上方向は28°に落ちる。
From FIGS. 11 to 14, the angles when the contrast drops to 10/1 in the normal definition of the viewing angle are 34 ° and 16 ° in the vertical direction and 54 ° and 50 ° in the horizontal direction. However, if the point at which the reversal phenomenon occurs is defined as the viewing angle, the angle drops to 28 ° in the upward direction.

【0012】[0012]

【発明が解決しようとする課題】以上のように従来の液
晶表示装置は、視野角の定義はともかく、反転現象が生
じ易く視野角が狭いという問題があった。この為、見る
角度によってコントラストが落ちたり、色調が変化して
画質が劣化する。特に画面が大型化したり、見る人数が
増えると、画面の位置や見る位置によって著しく画質が
異なる、といった問題がある。
As described above, the conventional liquid crystal display device has a problem that the viewing angle is narrow and the viewing angle is narrow, regardless of the definition of the viewing angle. For this reason, the contrast deteriorates or the color tone changes depending on the viewing angle, and the image quality deteriorates. In particular, when the screen becomes large or the number of viewers increases, there is a problem in that the image quality remarkably differs depending on the position of the screen and the viewing position.

【0013】本発明はこの様な事情を考慮したなされた
もので、従来と同じセル構造を用いて広い視野角特性を
実現する液晶表示装置の駆動方法を提供することを目的
とする。
The present invention has been made in consideration of such circumstances, and an object thereof is to provide a driving method of a liquid crystal display device which realizes a wide viewing angle characteristic by using the same cell structure as the conventional one.

【0014】[0014]

【課題を解決するための手段】本発明は、複数の表示画
素がマトリクス配列された液晶表示装置を線順次により
走査するに際して、1フィールド期間に少なくとも2回
以上1画素に信号書込みを行うことを特徴とする。
According to the present invention, when a liquid crystal display device in which a plurality of display pixels are arranged in a matrix is line-sequentially scanned, a signal is written to one pixel at least twice or more in one field period. Characterize.

【0015】[0015]

【作用】液晶の視野角が最も広い状態は、図11〜図1
4からも明らかなように、白レベルまたは黒レベル表示
の場合である。したがって、1フィールド期間に2回以
上の書込みを行い、その内の少なくとも一回は白または
黒レベルであるようにすれば、中間調レベルで劣化した
視野角特性を補償することができる。
Operation: The state in which the liquid crystal has the widest viewing angle is shown in FIGS.
As is clear from FIG. 4, this is the case of white level or black level display. Therefore, if the writing is performed twice or more in one field period and at least one of the writing is performed at the white or black level, it is possible to compensate for the viewing angle characteristic deteriorated at the halftone level.

【0016】[0016]

【実施例】以下、図面を参照しながら本発明の詳細を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の原理を説明するための液
晶セルの透過率−電圧特性である。図11,図13から
理解されるように、白表示と黒表示の視野角特性はほぼ
逆方向に変化している。例えば、下方向であれば、黒表
示時は下から見る程透過率が高くなり、白表示時は逆に
下から見る程透過率が低くなっている。そこで本発明で
は、中間調(グレイ)表示を行う場合に、図1に示す電
圧VM で透過率50%を得る代りに、白表示の電圧VW
による高透過率状態と黒表示の電圧VB による低透過率
状態の組み合わせ、すなわち白と黒の2値表示の組み合
わせを用いる。これにより、白表示の場合の視野角特性
と黒表示の場合の視野角特性が互いに補償しあって、結
果的に1回の中間電圧印加による中間調表示の視野角特
性では得られない広い視野角が得られる。
FIG. 1 is a transmittance-voltage characteristic of a liquid crystal cell for explaining the principle of the present invention. As can be understood from FIGS. 11 and 13, the viewing angle characteristics of white display and black display change in substantially opposite directions. For example, in the downward direction, the transmittance is higher when viewed from below when displaying black, and is lower when viewed from below when displaying white. Therefore, in the present invention, in the case of performing a gray scale display, instead of obtaining the transmittance of 50% at the voltage VM shown in FIG.
The combination of the high transmittance state due to V and the low transmittance state due to the voltage VB for displaying black, that is, the combination of binary display of white and black is used. As a result, the viewing angle characteristics for white display and the viewing angle characteristics for black display mutually compensate each other, and as a result, a wide viewing angle characteristic that cannot be obtained with the viewing angle characteristics of halftone display by applying an intermediate voltage once. The corner is obtained.

【0018】図2および図3は、本発明の手法により、
白レベルと黒レベルの2値平均で透過率50%を得る中
間調表示を行った場合の上下方向および左右方向の視野
角特性をそれぞれ、図11および図13のグラフに重ね
て示したものである。これらから、白黒2値平均で表し
た中間調表示の視野角が、通常の中間調表示に比べて、
上下方向,左右方向ともに非常に広くなっていることが
明らかである。
2 and 3 show the method of the present invention.
The vertical and horizontal viewing angle characteristics in the case of performing a halftone display that obtains a transmittance of 50% by the binary average of the white level and the black level are shown in the graphs of FIGS. 11 and 13, respectively. is there. From these, the viewing angle of the halftone display represented by the black and white binary average is larger than that of the normal halftone display.
It is clear that it is extremely wide in both the vertical and horizontal directions.

【0019】ここまでの説明は、中間調といっても、透
過率50%の一点のみであった。それ以外のレベルにつ
いては、例えば白黒2値レベルと中間調レベルの組み合
わせを用いる。透過率50%以上の中間調表示は、最大
の透過率を得る白レベルと透過率50%以下の中間調レ
ベルの組み合わせ、透過率50%以下の中間調表示は、
最小の透過率を得る黒レベルと透過率50%以上の中間
調レベルの組み合わせにより実現する。これは、次のよ
うな考えに基づく。上下方向の視野角特性を見れば明ら
かなように、透過率による視野角特性の違いは、視野角
を位相とすると、透過率が高くなる程位相が進む関係で
あるということができる。従って、理想の視野角特性が
視野角に対して透過率一定という関係であるとすると、
位相の異なったまたは位相差が180°近い特性の透過
率を加算することによって、最も理想状態に近付けるこ
とになる。この様な考えに基いて、二つの透過率から一
つの透過率を表す場合の理想的な加算方法を式で示す
と、次のようになる。 T(Vin)={T(VW )+T(V1 )}/2>50[%] ={T(VW )+T(VB )}/2=50[%] ={T(VB )+T(V2 )}/2<50[%]
The explanation so far has been about only one point of the transmittance of 50% even though it is a halftone. For other levels, for example, a combination of a monochrome binary level and a halftone level is used. Halftone display with a transmittance of 50% or more is a combination of a white level for maximum transmittance and a halftone level with a transmittance of 50% or less, and halftone display with a transmittance of 50% or less is
It is realized by a combination of a black level that obtains the minimum transmittance and a halftone level that has a transmittance of 50% or more. This is based on the following idea. As is clear from the vertical viewing angle characteristics, it can be said that the difference in the viewing angle characteristics due to the transmittance is such that, when the viewing angle is the phase, the phase advances as the transmittance increases. Therefore, assuming that the ideal viewing angle characteristic has a constant transmittance with respect to the viewing angle,
By adding the transmittances having different phases or having a phase difference of close to 180 °, it is possible to approximate the ideal state. Based on such an idea, an ideal addition method for expressing one transmittance from two transmittances is expressed by the following equation. T (Vin) = {T (VW) + T (V1)} / 2> 50 [%] = {T (VW) + T (VB)} / 2 = 50 [%] = {T (VB) + T (V2) } / 2 <50 [%]

【0020】ここで、T(VW )は電圧VW による白表
示の透過率、T(VB )は電圧VBによる黒表示の透過
率であり、T(V1 )は電圧V1 により得られる50%
以下の透過率、T(V2 )は電圧V2 により得られる5
0%以上の透過率である。
Here, T (VW) is the transmittance of white display by the voltage VW, T (VB) is the transmittance of black display by the voltage VB, and T (V1) is 50% obtained by the voltage V1.
The following transmittance, T (V2), is obtained by the voltage V2 5
The transmittance is 0% or more.

【0021】つまり、50%より高い透過率を得るため
には二つのうち一つは最大の透過率を用い、50%より
低い透過率を得るためには二つのうち一つは最小の透過
率を用いることによって、最大の位相差を得ることがで
きる。以上は、二つの透過率から一つ透過率を得る場合
であるが、この手法は、3つ以上の透過率から一つの透
過率を得る場合にも拡張することができる。
That is, in order to obtain a transmittance higher than 50%, one of the two uses the maximum transmittance, and in order to obtain a transmittance lower than 50%, one of the two uses the minimum transmittance. By using, the maximum phase difference can be obtained. The above is a case where one transmittance is obtained from two transmittances, but this method can be extended to a case where one transmittance is obtained from three or more transmittances.

【0022】次に、一つの透過率を二つ以上の透過率か
ら作成するための具体的に方法を説明する。これには、
大きく分けて3つの方法が考えられる。第1は、時間軸
方向に変調をかける方法であり、第2は、空間変調をか
ける方法であり、第3はこれらの組み合わせである。
Next, a concrete method for creating one transmittance from two or more transmittances will be described. This includes
There are roughly three possible methods. The first is a method of applying modulation in the time axis direction, the second is a method of applying spatial modulation, and the third is a combination thereof.

【0023】第1の時間軸変調は、解像度を下げたくな
い場合に、通常60Hzで駆動するところを、120H
z,180Hzと周波数を高くして駆動する方法であ
る。すなわち通常1フィールド期間に1回の信号書き込
みを行うところを2回以上の書き込みを行う。これは液
晶の応答速度にも依存するので、応答速度の高速化が望
まれる。
The first time base modulation is 120H, which is normally driven at 60 Hz when the resolution is not desired to be lowered.
This is a method of driving by increasing the frequency at z and 180 Hz. That is, while the signal writing is normally performed once in one field period, the writing is performed twice or more. Since this also depends on the response speed of the liquid crystal, it is desired to increase the response speed.

【0024】第2の空間変調は、駆動周波数を上げる代
りに、実質画素数を多くして、隣接画素を上述した二つ
の透過率特性を示す信号でそれぞれ駆動する方法であ
る。来れは、液晶の応答速度を高速化しなくて済むが、
画素数か増えるので製造技術の向上が望まれる。第3の
方法は、第1,第2の方法の中間的な方法であり、最適
の組み合わせを選ぶことにより、実用性の高い方法にな
り得る。
The second spatial modulation is a method in which instead of increasing the driving frequency, the actual number of pixels is increased and adjacent pixels are respectively driven by the above-mentioned signals showing the two transmittance characteristics. In the future, it is not necessary to increase the response speed of the liquid crystal,
Since the number of pixels increases, improvement in manufacturing technology is desired. The third method is an intermediate method between the first and second methods, and can be a highly practical method by selecting the optimum combination.

【0025】図4は、以上に説明した本発明の駆動方法
を実現する一実施例の具体的な回路構成例である。液晶
表示パネルは例えば、マトリクス配列される表示画素が
液晶セルとスイッチング素子で構成される所謂アクティ
ブマトリクス方式の通常の表示パネルである。この液晶
表示パネルはしたがって、マトリクスの各行,各列の表
示画素間に信号線と走査線が配設され、線順次走査を行
うための信号線駆動回路および走査線駆動回路を有す
る。
FIG. 4 is a specific circuit configuration example of an embodiment for realizing the driving method of the present invention described above. The liquid crystal display panel is, for example, a so-called active matrix type normal display panel in which display pixels arranged in a matrix are composed of liquid crystal cells and switching elements. Therefore, the liquid crystal display panel has a signal line driving circuit and a scanning line driving circuit for arranging the signal lines and the scanning lines between the display pixels in each row and each column of the matrix and performing line-sequential scanning.

【0026】図4のビデオ入力信号レベル検出器1は、
ビデオ入力信号レベルが透過率50%以上を得るもので
あるか、それ以下の透過率を得るものであるかを検出す
るための比較器である。検出器1の参照入力端子には、
白レベル信号と黒レベル信号が加算器3で加算され、平
均化回路2で平均された値(すなわち透過率50%を得
るための信号レベル)が与えられている。検出器1はそ
の検出結果によりスイッチ回路6を駆動して、このスイ
ッチ回路6によって、ビデオ入力信号が透過率50%以
上を得るものである場合には白レベル信号が、透過率5
0%以下を得るものである場合には黒レベル信号が選択
される。
The video input signal level detector 1 of FIG.
This is a comparator for detecting whether the video input signal level has a transmittance of 50% or more or a transmittance of less than 50%. The reference input terminal of detector 1
The white level signal and the black level signal are added by the adder 3, and the value averaged by the averaging circuit 2 (that is, the signal level for obtaining the transmittance of 50%) is given. The detector 1 drives the switch circuit 6 according to the detection result, and when the video input signal obtains the transmittance of 50% or more, the white level signal is changed to the transmittance of 5 by the switch circuit 6.
The black level signal is selected when 0% or less is obtained.

【0027】一方、ビデオ入力信号は、時分割変換回路
4に入る。この時分割変換回路4は例えば、図5に示す
ような変換テーブルを持つROMより構成されている。
この変換テーブルの意味は次の通りである。ビデオ入力
信号レベルが白表示レベルである場合には、出力も白表
示レベルになり、ビデオ入力信号レベルが黒表示レベル
である場合には出力も黒表示レベルになる。ビデオ入力
信号が透過率50%の中間調表示レベル(図5の破線位
置のレベル)の近傍について見ると、これより僅かに白
表示側である場合には黒表示レベルに近いレベルに変換
された出力が得られ、逆に僅かに黒表示側である場合に
は白表示レベルに近いレベルに変換された出力が得られ
る。
On the other hand, the video input signal enters the time division conversion circuit 4. The time-division conversion circuit 4 is composed of, for example, a ROM having a conversion table as shown in FIG.
The meaning of this conversion table is as follows. When the video input signal level is the white display level, the output also becomes the white display level, and when the video input signal level is the black display level, the output also becomes the black display level. Looking at the vicinity of the halftone display level (the level at the position of the broken line in FIG. 5) where the video input signal has a transmittance of 50%, when the video input signal is slightly on the white display side, it is converted to a level close to the black display level. An output is obtained, and conversely, when it is slightly on the black display side, an output converted to a level close to the white display level is obtained.

【0028】この様にして時分割変換回路4とスイッチ
回路6から得られる二つの信号は、前述した視野角を広
げるために好ましい関係を満たす。この時分割変換回路
4とスイッチ回路6の出力は、フィールド信号周波数の
2倍化回路5から得られる制御信号によって、すなわち
1フィールド期間の半分の周期で、スイッチ回路7で切
り替えられ、液晶表示パネルに駆動信号として送られ
る。
In this way, the two signals obtained from the time-division conversion circuit 4 and the switch circuit 6 satisfy the preferable relationship for expanding the above-mentioned viewing angle. The outputs of the time-division conversion circuit 4 and the switch circuit 6 are switched by the switch circuit 7 by the control signal obtained from the field signal frequency doubling circuit 5, that is, in a cycle of half of one field period, and the liquid crystal display panel is displayed. Is sent to the drive signal.

【0029】以上のようにして1フィールド期間に所定
の組み合わせをもって1画素に2回の書き込みを行うこ
とによって、先に第2図,第3図で説明したように中間
調表示での視野角を従来より大幅に広くした視野角特性
が得られる。
As described above, by writing twice to one pixel with a predetermined combination in one field period, the viewing angle in the halftone display can be changed as described above with reference to FIGS. 2 and 3. Wider viewing angle characteristics than before can be obtained.

【0030】なお図5では、線形の変換テーブルを示し
たが、液晶の応答速度が遅い場合や、立ち上がり,立ち
下がりで速度がレベルにより異なる場合には、非線形の
変換テーブルとなる。
Although a linear conversion table is shown in FIG. 5, it is a non-linear conversion table when the response speed of the liquid crystal is slow, or when the speed is different depending on the level between rising and falling.

【0031】図6は、別の実施例の駆動信号生成回路で
ある。この実施例では、先の実施例の比較検出器1やス
イッチ回路6,7等の機能をすべてテーブル化した時分
割変換回路11を用いている。
FIG. 6 shows a drive signal generation circuit of another embodiment. In this embodiment, a time division conversion circuit 11 is used in which all the functions of the comparison detector 1 and the switch circuits 6 and 7 of the previous embodiment are tabulated.

【0032】図7は、この変換回路11の変換テーブル
を示している。入力レベルが透過率50%を得る値以下
の範囲で、a,bなる二種の変換出力が得られ、入力レ
ベルが透過率50%を得る値以上の範囲でc,dなる二
種の変換出力が得られるような変換テーブルを持つ。そ
してある入力レベルに対して、aとbまたはcとdの組
み合わせで、二種の変換出力が1フィールド期間に液晶
表示パネルに駆動信号として送られる。この実施例によ
っても先の実施例と同様に視野角特性の改善が可能にな
る。
FIG. 7 shows a conversion table of the conversion circuit 11. Two kinds of conversion outputs a and b are obtained in the range where the input level is 50% or less of the transmittance, and two kinds of conversion c and d are obtained in the range where the input level is 50% or more of the transmittance. It has a conversion table so that the output can be obtained. Then, for a certain input level, two types of converted outputs are sent as drive signals to the liquid crystal display panel in one field period in a combination of a and b or c and d. Also in this embodiment, the viewing angle characteristics can be improved as in the previous embodiments.

【0033】なお以上の実施例において、1フィールド
期間に1画素に書き込む回数を2回とした。この時、
白,黒の二値のみで駆動できるレベルは、白,黒および
50%グレイの3つである。したがって一般に、1フィ
ールド期間にn回駆動する場合に、n+1個のレベルを
白黒2値だけで駆動し、それ以外のレベルはグレイレベ
ルと白または黒の組み合わせを用いて駆動することによ
り、2値駆動を最大限に利用することができる。
In the above embodiment, the number of times of writing in one pixel is set to two in one field period. At this time,
There are three levels that can be driven only with binary values of white and black: white, black, and 50% gray. Therefore, in general, when driving n times in one field period, n + 1 levels are driven only by binary values of black and white, and the other levels are driven by using a combination of gray level and white or black, so that the binary values are binary. The drive can be optimized.

【0034】また本発明において、1フィールド期間に
書込む信号のうち少なくとも1回は透過率86.6%以
上の白レベル、または透過率3.3%以下の黒レベルと
することが好ましい。これは次のような理由による。通
常液晶表示装置のコントラストは、黒表示時の輝度と白
表示時の輝度の比で表され、最適なコントラストは30
/1〜50/1以上とされている(例えば、色彩科学ハ
ンドブック参照)。これより、黒の透過率は3.3%以
下でなければならない。
In the present invention, it is preferable that at least one of the signals written in one field period has a white level with a transmittance of 86.6% or more or a black level with a transmittance of 3.3% or less. This is for the following reasons. Normally, the contrast of a liquid crystal display device is represented by the ratio of the luminance when displaying black and the luminance when displaying white, and the optimum contrast is 30.
/ 1 to 50/1 or more (see, for example, Color Science Handbook). From this, the transmittance of black must be 3.3% or less.

【0035】また通常撮像装置は、光入力が300%で
も十分白つまりのない画像を再現できるように信号レベ
ルが設定される。つまり、100%光入力でγ出力後、
8ビットで223レベル(IRE100)程度に信号レ
ベルが設定される(名雲他:“全ディジタルカラーカメ
ラの信号処理用LSI”,テレビ技報8,TEBS 96-6,p
27 参照)。したがって255を最大値(100%透過
率)とすると、黒レベルが16であるから、白レベルは
86.6%になる。そして、液晶の場合はダイナミック
レンジを大きくとるために、これより大きい白レベルに
設定する必要がある。以上のように白レベルと黒レベル
を設定することによって、高画質の液晶表示装置が実現
できる。
Further, in the normal image pickup apparatus, the signal level is set so that an image with no white spots can be reproduced even when the optical input is 300%. That is, after γ output with 100% light input,
The signal level is set to about 223 levels (IRE100) by 8 bits (Nagoya et al .: "Signal processing LSI for all digital color cameras", TV Technical Report 8, TEBS 96-6, p.
27). Therefore, when 255 is the maximum value (100% transmittance), the black level is 16, and the white level is 86.6%. In the case of liquid crystal, it is necessary to set the white level larger than this in order to obtain a large dynamic range. By setting the white level and the black level as described above, a high quality liquid crystal display device can be realized.

【0036】図8は、時間軸変調と空間変調を組み合わ
せた実施例の駆動波形である。図の実線と破線は互いに
隣接する画素の駆動波形である。つまり、ある画素であ
る時間にV2 という正電圧の駆動を行う一方、隣接する
画素は−V1 という負の駆動を行う。これをフィールド
周期Tf で交互に行う。
FIG. 8 shows drive waveforms of an embodiment in which time axis modulation and spatial modulation are combined. The solid and broken lines in the figure are drive waveforms of pixels adjacent to each other. That is, a certain pixel is driven with a positive voltage of V2 at a certain time, while an adjacent pixel is driven with a negative voltage of -V1. This is alternately performed in the field cycle Tf.

【0037】この実施例の方式では、一画素について見
るとフレーム周期(30Hz)でフリッカーになるが、
隣接する2画素単位では互いに補償しあってフリッカー
もなくなる。したがってこの方式によれば、駆動周波数
を高くすることなく、しかもフリッカーのない広視野角
駆動が実現できる。
In the system of this embodiment, when one pixel is viewed, flicker occurs at the frame cycle (30 Hz).
Flicker is eliminated by compensating each other in units of two adjacent pixels. Therefore, according to this method, it is possible to realize wide viewing angle driving without increasing the driving frequency and without causing flicker.

【0038】なお通常の静止画ではこの方式を採用する
と直流成分が残る。したがって1フィールド毎に1画素
または数画素単位で極性反転の位相を変えることが必要
になる。動画の場合には、平均化されて直流成分はほと
んど残らないと考えられ、また常に正極性だけでなく、
バランスはとれないにしろ負極性でも駆動しているた
め、画質の劣化はほとんど問題ない。
If a normal still image is used, a direct current component remains. Therefore, it is necessary to change the polarity inversion phase in units of one pixel or several pixels for each field. In the case of a moving image, it is considered that there is almost no DC component left after being averaged, and not only is it always positive,
Even if it is not balanced, it is driven with a negative polarity, so there is almost no problem with deterioration of image quality.

【0039】以上に説明した実施例では、表示装置が白
黒表示かカラー表示かについては言及していないが、本
発明は白黒表示はもちろん、図9(a) (b) に示すような
色フィルターをつけたカラー表示装置にも適用できる。
In the embodiments described above, it is not mentioned whether the display device is a monochrome display or a color display, but the present invention is not limited to monochrome display, but the color filter as shown in FIGS. 9 (a) and 9 (b) is used. It can also be applied to a color display device with.

【0040】カラー表示装置の場合、図6の実施例の方
式を適用すると、駆動回路部の構成は図10のようにな
る。基本構成は白黒表示の場合と同じであるが、R,
G,B信号を別々に処理する必要があることから、図示
のように、R,G,Bそれぞれに時分割変換回路11R
,11G ,11B が設けられる。
In the case of a color display device, when the system of the embodiment of FIG. 6 is applied, the structure of the drive circuit section becomes as shown in FIG. The basic configuration is the same as for black and white display, but R,
Since it is necessary to process the G and B signals separately, as shown in the figure, the time division conversion circuit 11R is provided for each of the R, G and B signals.
, 11G, 11B are provided.

【0041】図10の時分割変換回路11R ,11G ,
11B は基本的にすべて同じ構成でよいが、必要に応じ
て異ならせることもできる。同一セルギャップdで液晶
表示パネルを構成した場合、光学特性がΔnd/λ(Δ
n:屈折率の異方性,λ:入力波長)に依存するため、
厳密にはR,G,B毎に異なる信号処理が必要になるか
らである。
The time division conversion circuits 11R, 11G,
All of 11B basically have the same structure, but can be different if necessary. When the liquid crystal display panel is constructed with the same cell gap d, the optical characteristics are Δnd / λ (Δ
n: anisotropy of refractive index, λ: input wavelength)
Strictly speaking, different signal processing is required for each of R, G, and B.

【0042】[0042]

【発明の効果】以上説明したように本発明によれば、
白,黒二値駆動と中間調駆動を組み合わせて液晶表示パ
ネルを駆動することにより、液晶表示パネルが持つ視野
角特性を改善し、特に中間調表示での反転現象を防止し
て効果的に視野角を広げることができる。
As described above, according to the present invention,
By driving the liquid crystal display panel by combining the white / black binary drive and the halftone drive, the viewing angle characteristics of the liquid crystal display panel are improved, and in particular, the inversion phenomenon in the halftone display is prevented and the effective viewing angle is improved. The corners can be widened.

【図面の簡単な説明】[Brief description of drawings]

【図1】液晶表示パネルの透過率−電圧特性を示す図。FIG. 1 is a diagram showing a transmittance-voltage characteristic of a liquid crystal display panel.

【図2】本発明の方法による上下方向の視野角特性を示
す図。
FIG. 2 is a diagram showing vertical viewing angle characteristics according to the method of the present invention.

【図3】同じく左右方向の視野角特性を示す図。FIG. 3 is a diagram similarly showing a viewing angle characteristic in the left-right direction.

【図4】本発明の一実施例の回路構成を示す図。FIG. 4 is a diagram showing a circuit configuration of an embodiment of the present invention.

【図5】同実施例に用いる変換テーブルを示す図。FIG. 5 is a diagram showing a conversion table used in the embodiment.

【図6】本発明の他の実施例の回路構成を示す図。FIG. 6 is a diagram showing a circuit configuration of another embodiment of the present invention.

【図7】同実施例に用いる変換テーブルを示す図。FIG. 7 is a diagram showing a conversion table used in the embodiment.

【図8】本発明の他の実施例の駆動波形を示す図。FIG. 8 is a diagram showing drive waveforms of another embodiment of the present invention.

【図9】本発明をカラー表示に適用した場合の色フィル
タの配列例を示す図。
FIG. 9 is a view showing an arrangement example of color filters when the present invention is applied to color display.

【図10】同じくカラー表示に適用した場合の回路構成
例を示す図。
FIG. 10 is a diagram showing an example of a circuit configuration when it is similarly applied to color display.

【図11】従来の液晶表示パネルの上下方向の透過率変
化を示す図。
FIG. 11 is a diagram showing changes in transmittance in the vertical direction of a conventional liquid crystal display panel.

【図12】同じく上下方向のコントラスト変化を示す
図。
FIG. 12 is a diagram showing a contrast change in the vertical direction.

【図13】従来の液晶表示パネルの左右方向の透過率変
化を示す図。
FIG. 13 is a diagram showing a change in transmissivity in the left-right direction of a conventional liquid crystal display panel.

【図14】同じく左右方向のコントラスト変化を示す
図。
FIG. 14 is a diagram similarly showing a contrast change in the left-right direction.

【符号の説明】[Explanation of symbols]

1…ビデオ入力信号レベル検出器、 2…平均化回路、 3…加算器、 4…時分割変換回路、 5…周波数2倍化回路、 6,7…スイッチ回路、 11…時分割変換回路。 1 ... Video input signal level detector, 2 ... Averaging circuit, 3 ... Adder, 4 ... Time division conversion circuit, 5 ... Frequency doubling circuit, 6, 7 ... Switch circuit, 11 ... Time division conversion circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の表示画素がマトリクス配列された液
晶表示装置を線順次により走査するに際して、1フィー
ルド期間に少なくとも2回以上1画素に信号書込みを行
うことを特徴とする液晶表示装置の駆動方法。
1. A driving method of a liquid crystal display device, wherein when a liquid crystal display device having a plurality of display pixels arranged in a matrix is line-sequentially scanned, a signal is written to one pixel at least twice in one field period. Method.
【請求項2】1フィールド期間の1画素への信号書込み
回数をnとしたとき、n+1個のレベルを白黒2値だけ
で駆動し、それ以外のレベルはグレイレベルと白または
黒の組み合わせを用いて駆動することを特徴とする請求
項1記載の液晶表示装置の駆動方法。
2. When n is the number of times signals are written to one pixel in one field period, n + 1 levels are driven by black and white binary values only, and the other levels use a combination of gray level and white or black. The driving method for a liquid crystal display device according to claim 1, wherein the driving method is a driving method.
JP22607291A 1991-09-05 1991-09-05 Driving method for liquid crystal display device Pending JPH0568221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22607291A JPH0568221A (en) 1991-09-05 1991-09-05 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22607291A JPH0568221A (en) 1991-09-05 1991-09-05 Driving method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0568221A true JPH0568221A (en) 1993-03-19

Family

ID=16839375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22607291A Pending JPH0568221A (en) 1991-09-05 1991-09-05 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0568221A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070793A (en) * 2003-08-27 2005-03-17 Chi Mei Electronics Corp Liquid crystal display driving device and method thereof
WO2005038766A1 (en) 2003-10-16 2005-04-28 Matsushita Electric Industrial Co., Ltd. Matrix type display apparatus and method for driving the same
JP2006221060A (en) * 2005-02-14 2006-08-24 Sony Corp Image signal processing device, processing method for image signal, processing program for image signal, and recording medium where processing program for image signal is recorded
WO2006098246A1 (en) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha Liquid crystal display device drive method, liquid crystal display device drive device, program thereof, recording medium, and liquid crystal display device
WO2006098148A1 (en) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha Display, liquid crystal monitor, liquid crystal television receiver and display method
JP2006276852A (en) * 2005-03-29 2006-10-12 Chi Mei Optoelectronics Corp Drive system and method for color display
JP2006292972A (en) * 2005-04-08 2006-10-26 Sharp Corp Drive unit of display device, and the display device
JP2006330171A (en) * 2005-05-24 2006-12-07 Sharp Corp Liquid crystal display device
JP2007140217A (en) * 2005-11-21 2007-06-07 Hitachi Displays Ltd Display device
JP2007206620A (en) * 2006-02-06 2007-08-16 Sony Corp Apparatus and method for displaying image
US7319449B2 (en) 2003-07-08 2008-01-15 Seiko Epson Corporation Image display apparatus and image display method
KR100841616B1 (en) * 2001-12-31 2008-06-27 엘지디스플레이 주식회사 Driving apparatus and its driving method of liquid crystal panel
JPWO2006009106A1 (en) * 2004-07-16 2008-07-31 ソニー株式会社 Image display device and image display method
JPWO2006095743A1 (en) * 2005-03-11 2008-08-14 シャープ株式会社 Display device, liquid crystal monitor, liquid crystal television receiver and display method
JP2008275854A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display and liquid crystal display
JP2008275853A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display and liquid crystal display
JP2008275855A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display
KR100870487B1 (en) * 2001-07-04 2008-11-26 엘지디스플레이 주식회사 Apparatus and Method of Driving Liquid Crystal Display for Wide-Viewing Angle
KR100954327B1 (en) * 2002-08-09 2010-04-21 엘지디스플레이 주식회사 Liquid crystal display device and method for operating the same
US7932915B2 (en) 2004-01-21 2011-04-26 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method
US7956876B2 (en) 2005-03-15 2011-06-07 Sharp Kabushiki Kaisha Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
US8106862B2 (en) 2004-05-19 2012-01-31 Sharp Kabushiki Kaisha Liquid crystal display device for reducing influence of voltage drop in time-division driving, method for driving the same, liquid crystal television having the same and liquid crystal monitor having the same
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
US8350796B2 (en) 2005-03-03 2013-01-08 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870487B1 (en) * 2001-07-04 2008-11-26 엘지디스플레이 주식회사 Apparatus and Method of Driving Liquid Crystal Display for Wide-Viewing Angle
KR100841616B1 (en) * 2001-12-31 2008-06-27 엘지디스플레이 주식회사 Driving apparatus and its driving method of liquid crystal panel
KR100954327B1 (en) * 2002-08-09 2010-04-21 엘지디스플레이 주식회사 Liquid crystal display device and method for operating the same
US7319449B2 (en) 2003-07-08 2008-01-15 Seiko Epson Corporation Image display apparatus and image display method
JP2005070793A (en) * 2003-08-27 2005-03-17 Chi Mei Electronics Corp Liquid crystal display driving device and method thereof
US7843414B2 (en) 2003-08-27 2010-11-30 Chimei Innolux Corporation Liquid crystal display driver and method thereof
KR101029503B1 (en) * 2003-08-27 2011-04-18 치메이 이노럭스 코포레이션 Display device and method of driving the display device
WO2005038766A1 (en) 2003-10-16 2005-04-28 Matsushita Electric Industrial Co., Ltd. Matrix type display apparatus and method for driving the same
US7843473B2 (en) 2003-10-16 2010-11-30 Panasonic Corporation Matrix display with gamma correction based on gamma characteristics pairs and different input transmittance level
US8520036B2 (en) 2004-01-21 2013-08-27 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method
US7932915B2 (en) 2004-01-21 2011-04-26 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method
US8106862B2 (en) 2004-05-19 2012-01-31 Sharp Kabushiki Kaisha Liquid crystal display device for reducing influence of voltage drop in time-division driving, method for driving the same, liquid crystal television having the same and liquid crystal monitor having the same
JPWO2006009106A1 (en) * 2004-07-16 2008-07-31 ソニー株式会社 Image display device and image display method
JP4882745B2 (en) * 2004-07-16 2012-02-22 ソニー株式会社 Image display device and image display method
JP2006221060A (en) * 2005-02-14 2006-08-24 Sony Corp Image signal processing device, processing method for image signal, processing program for image signal, and recording medium where processing program for image signal is recorded
US7800691B2 (en) 2005-02-14 2010-09-21 Sony Corporation Video signal processing apparatus, method of processing video signal, program for processing video signal, and recording medium having the program recorded therein
US8350796B2 (en) 2005-03-03 2013-01-08 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method
JPWO2006095743A1 (en) * 2005-03-11 2008-08-14 シャープ株式会社 Display device, liquid crystal monitor, liquid crystal television receiver and display method
JP4567052B2 (en) * 2005-03-15 2010-10-20 シャープ株式会社 Display device, liquid crystal monitor, liquid crystal television receiver and display method
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
JPWO2006098148A1 (en) * 2005-03-15 2008-08-21 シャープ株式会社 Display device, liquid crystal monitor, liquid crystal television receiver and display method
WO2006098148A1 (en) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha Display, liquid crystal monitor, liquid crystal television receiver and display method
WO2006098246A1 (en) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha Liquid crystal display device drive method, liquid crystal display device drive device, program thereof, recording medium, and liquid crystal display device
US7936325B2 (en) 2005-03-15 2011-05-03 Sharp Kabushiki Kaisha Display device, liquid crystal monitor, liquid crystal television receiver, and display method
US7956876B2 (en) 2005-03-15 2011-06-07 Sharp Kabushiki Kaisha Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
US8035589B2 (en) 2005-03-15 2011-10-11 Sharp Kabushiki Kaisha Drive method of liquid crystal display device, driver of liquid crystal display device, program of method and storage medium thereof, and liquid crystal display device
JP2006276852A (en) * 2005-03-29 2006-10-12 Chi Mei Optoelectronics Corp Drive system and method for color display
JP2006292972A (en) * 2005-04-08 2006-10-26 Sharp Corp Drive unit of display device, and the display device
JP2006330171A (en) * 2005-05-24 2006-12-07 Sharp Corp Liquid crystal display device
US8072407B2 (en) 2005-05-24 2011-12-06 Sharp Kabushiki Kaisha Liquid crystal display device
JP2007140217A (en) * 2005-11-21 2007-06-07 Hitachi Displays Ltd Display device
JP2007206620A (en) * 2006-02-06 2007-08-16 Sony Corp Apparatus and method for displaying image
JP2008275855A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display
JP2008275853A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display and liquid crystal display
JP2008275854A (en) * 2007-04-27 2008-11-13 Optrex Corp Display control method of liquid crystal display and liquid crystal display

Similar Documents

Publication Publication Date Title
JPH0568221A (en) Driving method for liquid crystal display device
JP3202450B2 (en) Liquid crystal display
US6760059B2 (en) Method and apparatus for driving liquid crystal display
KR101323090B1 (en) Liquid crystal display and driving method thereof
US8502762B2 (en) Image processing method and liquid-crystal display device using the same
JP4436622B2 (en) Liquid crystal display
JP3473600B2 (en) Liquid crystal display device, image data correction circuit, image data correction method, and electronic device
US7683875B2 (en) Liquid crystal display device and electronic device
US8035589B2 (en) Drive method of liquid crystal display device, driver of liquid crystal display device, program of method and storage medium thereof, and liquid crystal display device
US20060109220A1 (en) Method and apparatus for driving liquid crystal display
JP3902031B2 (en) Driving method of liquid crystal display device
US20070195045A1 (en) Liquid crystal display device
JP2003058123A (en) Liquid crystal display device
US8068076B2 (en) Liquid crystal display apparatus
JP4571782B2 (en) Image processing method and liquid crystal display device using the same
KR100572788B1 (en) Afterimage suppression circuit, projector, liquid crystal display and afterimage suppression method
CN104658499A (en) Image display method and device as well as multi-domain liquid crystal display equipment
Sasaki et al. 29.2: Motion Picture Simulation for Designing High‐Picture‐Quality Hold‐Type Displays
JPH0990910A (en) Liquid crystal display device and drive method therefor
JPH08202317A (en) Liquid crystal display device and its driving method
JP2007108243A (en) Electrooptical device and its driving method, image processing circuit and method, and electronic equipment
JP2009237594A (en) Image processing method, and liquid crystal display using the same
JPH03126070A (en) Liquid crystal driving device and method for driving liquid crystal panel
JP3829479B2 (en) Display device and driving method thereof
JP3897454B2 (en) Display drive circuit