JPH056739B2 - - Google Patents

Info

Publication number
JPH056739B2
JPH056739B2 JP58049847A JP4984783A JPH056739B2 JP H056739 B2 JPH056739 B2 JP H056739B2 JP 58049847 A JP58049847 A JP 58049847A JP 4984783 A JP4984783 A JP 4984783A JP H056739 B2 JPH056739 B2 JP H056739B2
Authority
JP
Japan
Prior art keywords
magnetic recording
thin film
metal thin
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58049847A
Other languages
Japanese (ja)
Other versions
JPS59175032A (en
Inventor
Koichi Shinohara
Kidai Nochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58049847A priority Critical patent/JPS59175032A/en
Publication of JPS59175032A publication Critical patent/JPS59175032A/en
Publication of JPH056739B2 publication Critical patent/JPH056739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、磁気テープ、磁気デイスク等となる
磁気記録媒体の中でも、特に基板の両側に記録層
を有するものに関する。 従来例の構成とその問題点 従来、磁気記録媒体としては高分子基板やアル
ミニウム基板上にCoをドープしたγ−Fe2O3
CrO2等の酸化物磁性粉末、又は強磁性合金粉末
等の粉末状磁性材料をポリウレタン樹脂等の有機
バインダー中に分散させて、塗布、乾燥させたい
わゆる塗布型のものが広く実用に供されている。
しかし近年の記録密度向上の要望は強く、従来の
塗布型では記録密度向上に限界がみえ、金属薄膜
型の短波長での高出力特性が注目され、かかる媒
体の実用化努力が各方面で活発化してきている。 金属薄膜型磁気記録媒体は、工法上で従来の塗
布型と異なるため、実用化する上で解決すべき問
題は未だ数多く存在している。中でも、繰返し使
用で良好なエンベロープを維持できる点と、優れ
たC/Nを有する点の両者を同時に満足せしめる
テープの製造法を実用域に到達せしめることは、
重要な課題である。 発明の目的 本発明は、基板の両面に金属薄膜磁気記録層を
配し、この磁気記録層上にそれぞれ有機物蒸着層
を配して成る、実用耐久性が優れ、かつ良好なエ
ンベロープを維持できる磁気記録層媒体を安定し
て生産できる製造方法を提供することを目的とす
る。 発明の構成 本発明の磁気記録媒体の製造方法は、帯状基板
を冷却・搬送するための第1、第2の円筒状回転
キヤンを互いに巻込み側を内側にして配設し、蒸
気流が前記第1、第2の回転キヤンの巻込み側に
向かうよう金属薄膜磁気記録層形成用の蒸発源を
配設し、前記帯状基板を第1の回転キヤンから第
2の回転キヤンに沿つて移動するよう掛渡すと共
に、第1、第2の回転キヤンの送り出し側近傍に
それぞれ有機物蒸発源を配設し、基板の両面に金
属薄膜磁気記録層と有機物蒸着層とを積層するこ
とを特徴とする。 本発明における基板とは、高分子基板そのも
の、または高分子基板の両面に非磁性層が形成さ
れたもの、あるいは高分子基板の両面に軟磁性層
が形成されたものである。高分子基板は、ポリエ
チレンテレフタレート、ポリエチレンナフタレー
ト、ポリアミド、ポリイミド、ポリカーボネート
等で表面粗さは平滑なものが必要で、中心線平均
粗さで200Å以下、好ましくは100Å以下の粗さ
で、ドロツプアウトにつながる異常突起を極力お
さえ込んだものが必要である。基板の厚みには格
別の制限はないが、前記基板に主として製造過程
でのハンドリング性改良のために、微細に粗くし
た表面を塗布法によつて得たり、微粒子を表面に
析出させる等の工夫についても、必要に応じて成
されるものである。金属薄膜磁気記録層は、磁化
容易軸が、基板面と平行ないわゆる面内磁化膜
と、基板面と垂直な垂直磁化膜とに大別される。 夫々に用いることの出来る材料構成は豊富であ
り、本発明に特に用いられる材料面からの制限は
ない。しかし、用途によつては、使用される環境
が広範囲となるから、耐食性については、充分配
慮されるべきであり、その意味からは、Co−Cr
系合金、Co−Ni−Cr系合金、Co−Ni系合金、
Co−Ni−O系合金等が好ましい材料といえる。
必要にに応じて用いられる非磁性層、軟磁性層に
ついても、基板と付着強度、耐食性等について配
慮して選べるもので、チタン、クロム、モリブデ
ン、パーマロイ等が好ましい材料である。本発明
に用いられる有機蒸着層は、脂肪酸、脂肪酸アミ
ド、脂肪酸エステル等の単一材料あるいは、複数
の混合材料等が用いられるが、金属薄膜磁気記録
層の耐食性を更に助けるための防錆剤等を潤滑材
と共に配合することも勿論可能であり、ここでい
う有機蒸着層は、フルオロカーボン類のプラズマ
重合薄膜等も含むものである。 製造された磁気記録媒体は、テープ状、デイス
ク状いずれにしろ、平担であることが安定なエン
ベロープを得る上で重要であり、両面共、同一材
料、同一厚みの構成にこだわらなくても良いが、
異なる材料を構成要素とする時には、出来上りが
平担になるような条件を見出す必要がある。 尚、有機蒸着層は、前記した平担性を左右する
程の内部応力をもたないから、相互転写による表
面の性質を補いあうために、異なる材料構成にす
ることは、製造面から見ると容易である。 有機槽は単一とし、内部で連続的に各々の薄膜
を形成することを基本とするものである。 金属薄膜磁気記録層の形成は、真空蒸着、スパ
ツタリング、イオンプレーテイング、反応性蒸
着、電界蒸着、イオンビーム蒸着等のいずれかよ
り選ぶことができる。高分子基板は、耐熱性が低
いため、蒸着時に、熱変形、熱破損を受け易い。
従つて、冷却支持体に沿つて移動させる必要があ
ると同時に、冷却支持体は固定されたものであつ
ては基板に擦り傷が入る等不都合が生じるため、
円筒状回転キヤン、駆動された金属ベルト等が用
いられる。有機蒸着は、前記金属薄膜の形成と違
つて熱的影響は小さいが膜厚管理が重要であり、
そのため基板は冷却して再蒸発源が抑えられる。 基板の巻取り系は、両面に薄膜形成できるよう
構成されなければならない。このことは、基板の
片側の構成を別々の真空槽あるいは同一の真空槽
で基板を裏返して得た場合に起る、ドロツプアウ
トの増加、耐久性の劣化等を防ぐためにも重要で
あり、夫々の薄膜形成に最適な雰囲気を得るため
に真空槽内部を分割して、雰囲気制御するための
排気系構成、ガス導入系構成、電圧導入系構成等
は適宜選択することができるものである。 実施例の説明 以下、本発明の製造方法を具体的な実施例を示
す図面に基づいて説明する。 第1図は本発明の製造方法によつて製造された
磁気記録媒体の断面図で、1はベースとなる高分
子基板、2,3は金属薄膜磁気記録層で、それぞ
れ高分子基板1の一方の面と他方の面に直接に形
成されている。4,5は金属薄膜磁気記録層2,
3の表面にそれぞれ形成された有機物蒸着層であ
る。なお、ここで高分子基板は帯状の形態をとつ
ている。 第3図は第1図断面構造の磁気記録媒体を作る
ことができる製造装置を示す。8は排気系9,1
0によつて真空状態に保持される真空槽で、この
内部には次の示すような系が収納されている。す
なわち、それぞれ矢印A,B方向に向けて回転
し、巻込み側がそれぞれ内側となるよう並設され
た第1、第2の円筒状回転キヤン11,12と、
蒸発源容器13,14,15と、高分子基板1の
送り出し軸16と、高分子基板1の巻取り軸17
などが収納されている。 真空槽8の内部構造を詳細に説明すると、送り
出し軸16にセツトされた高分子基板1は、先ず
円筒状回転キヤン11の巻込み側から入力されフ
リーローラ18やエキスパンダローラ〔図示せ
ず〕、ダンサーローラ〔図示せず〕を介して円筒
状回転キヤン12の巻込み側に入力供給されて巻
取り軸17に巻取られる。蒸発源容器13は蒸気
流19が円筒状回転キヤン11,12の巻込み側
に向かうように円筒状回転キヤン11,12の巻
込み側の下方に配設され、蒸発源容器14,15
はそれぞれ円筒状回転キヤン11,12の送り出
し側の近傍に配設されている。蒸発源容器13中
には金属薄膜磁気記録層2,3を形成するための
強磁性金属材料20が入れられており、蒸発源容
器13としては、水冷銅ハースか耐火ルツボが用
いられ、例えば電子ビーム〔図示せず〕によつて
強磁性金属材料20を加熱して前記蒸気流19が
得られる。第3図では斜方蒸着により高い保磁力
を得るよう構成された例が示されているが、垂直
磁化膜を得る場合は、当然別の工夫が成されるも
のである。斜方蒸着の最小入射角の限定は固定マ
スク21で行われている。22は防着板である。 蒸発源容器14,15は、例えば石英で中空状
に構成され、温媒を循環させて温度制御して蒸発
量が制御されている。蒸発源容器14,15中に
は有機物蒸着層4,5を形成するための有機材料
23,24が入れられている。25は有機物蒸着
層4,5の膜厚モニタ用の水晶振動子である。 このように構成したため、蒸気流19によつ
て、先ず、円筒状回転キヤン11の巻込み側では
高分子基板1上に金属薄膜磁気記録層2が形成さ
れる。一方の面に金属薄膜磁気記録層2の形成さ
れた高分子基板1は円筒状回転キヤン11の送り
出し側で有機材料23によつて金属薄膜磁気記録
層2上に有機物蒸発層4が形成される。磁気記録
層2と有機物蒸発層4が形成された高分子基板1
はフリーローラ18等を経て円筒状回転キヤン1
2の巻取り側において蒸気流19によつて高分子
基板1の他方の面に金属薄膜磁気記録層3が形成
され、次いで円筒状回転キヤン12の送り出し側
において有機材料24によつて金属薄膜磁気記録
層3上に有機物蒸着層5が形成される。 同一の蒸発流19で金属薄膜磁気記録層2と3
を形成できるため、同一厚みの金属薄膜磁気記録
層2,3を確実に得ることができる。また、真空
中で連続して蒸気源容器14により形成された有
機物蒸着層4の反対側面に金属薄膜磁気記録層3
を形成する場合、前記有機物蒸着層4が液状にな
つて回転キヤン12の表面と基板1との間の密着
性が増し熱伝導性が大幅に改善される。 これとともに、金属薄膜磁気記録層3と反応し
て強固に被着するなどのメカニズムが含まれ、耐
久性とC/Nの優れた磁気記録媒体が得られる。 また真空層8の内部には必要に応じて、酸素等
のガスが外部より、真空槽の全部又は一部に強制
的に導入されるよう構成することができる。 第2図は非磁性層または軟磁性層6,7が高分
子基板上に形成された場合の磁気記録媒体の断面
図で、このような磁気記録媒体の製造に際して
は、第3図の製造装置において、例えば円筒状回
転キヤン11,12に沿つて金属薄膜磁気記録層
2,3の形成に先立つて、例えばスパツタ源が配
設される。尚、非磁性薄膜、軟磁性薄膜の形成
は、金属薄膜磁気記録層の形成に用いられるもの
の中より選べば良い。 このようにして作られた磁気記録媒体と従来の
一般的な磁気記録媒体とを次のようにして比較し
た。 実験例 1 ポリエチレンテレフタレート(平均粗さ50Å)
10.5μmを中心間距離5/cmに配した、直径50cm
の円筒状回転キヤン11,12に沿つて、最小入
射角43゜で5×10-5Torr酸素分圧中でCo80%Ni20
%の合金を0.13μm電子ビーム蒸着した上に夫々、
ベヘン酸オクチルを約50Å有機蒸着した。蒸発源
と回転キヤン上で蒸着を受ける部位で最も近い距
離を25cm一定とした。 〔比較例1〕として、両面に同一のCo−Niを
蒸着したものに夫々の面に別工程程で、溶剤にと
かして計算上50Åになるよう塗布した。用いた溶
剤はn−ヘキサンである。もう一つの〔比較例
2〕として、Co−Ni蒸着して、ベヘン酸オクチ
ルを蒸着したもの裏返して、同様な蒸着を行つた
ものを評価した。 それぞれを8mm幅に裁断して、耐久性を比較検
討した結果は次表のようであつた。 テープ長は100mで、シリンダ径40mmで市販の
VHSデツキの走行系を改良したデツキによりく
り返し走行を行い、特性の変化をみた。 テープ送り速度は14.3mm/secで、ヘツドはフ
エライトヘツドで、相対速度は3.75m/secとし、
C/NはC=4.5MHz N=4MHzで相対比較し
た。ドロツプアウトは15μsec,−16dBをカウント
して比較した。
INDUSTRIAL APPLICATION FIELD The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks, particularly those having recording layers on both sides of a substrate. Conventional configurations and their problems Traditionally, magnetic recording media have been made of γ-Fe 2 O 3 or Co-doped γ-Fe 2 O 3 on a polymer substrate or aluminum substrate.
So-called coating-type materials, in which powdered magnetic materials such as oxide magnetic powders such as CrO 2 or ferromagnetic alloy powders are dispersed in organic binders such as polyurethane resins, coated and dried, are widely used in practice. There is.
However, in recent years there has been a strong desire to improve recording density, and the conventional coated type has reached its limit in improving recording density, and the high output characteristics of the metal thin film type at short wavelengths are attracting attention, and efforts to commercialize such media are active in various fields. It is becoming more and more. Since metal thin film magnetic recording media differ from conventional coating-type magnetic recording media in terms of construction methods, there are still many problems that need to be solved before they can be put into practical use. Above all, it is important to bring into practical use a manufacturing method for a tape that simultaneously satisfies both the ability to maintain a good envelope through repeated use and the ability to have an excellent C/N ratio.
This is an important issue. Purpose of the Invention The present invention provides a magnetic material that has excellent practical durability and can maintain a good envelope, which is made by disposing a metal thin film magnetic recording layer on both sides of a substrate and disposing an organic vapor deposited layer on each of the magnetic recording layers. An object of the present invention is to provide a manufacturing method that can stably produce a recording layer medium. Structure of the Invention In the method for manufacturing a magnetic recording medium of the present invention, first and second cylindrical rotary cans for cooling and transporting a strip-shaped substrate are disposed with their winding sides inward, and the vapor flow An evaporation source for forming a metal thin film magnetic recording layer is arranged so as to face the winding side of the first and second rotation cans, and the strip-shaped substrate is moved from the first rotation can to the second rotation can. The present invention is characterized in that an organic material evaporation source is provided near the sending side of the first and second rotating cans, and a metal thin film magnetic recording layer and an organic material vapor deposition layer are laminated on both surfaces of the substrate. The substrate in the present invention is a polymer substrate itself, a polymer substrate with nonmagnetic layers formed on both sides, or a polymer substrate with soft magnetic layers formed on both sides. The polymer substrate must be made of polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polycarbonate, etc., and must have a smooth surface, with a center line average roughness of 200 Å or less, preferably 100 Å or less, to prevent dropouts. It is necessary to suppress the connecting abnormal protrusions as much as possible. Although there is no particular limit to the thickness of the substrate, it is possible to use techniques such as obtaining a finely roughened surface using a coating method or depositing fine particles on the surface, mainly to improve handling during the manufacturing process. This will also be done as necessary. Metal thin film magnetic recording layers are broadly classified into so-called in-plane magnetized films whose easy axis of magnetization is parallel to the substrate surface, and perpendicular magnetized films whose axis of easy magnetization is perpendicular to the substrate surface. There are a wide variety of material configurations that can be used for each, and there are no limitations from the perspective of the materials specifically used in the present invention. However, depending on the application, the environment in which it will be used will be wide-ranging, so sufficient consideration should be given to corrosion resistance.
alloy, Co-Ni-Cr alloy, Co-Ni alloy,
A preferable material is a Co-Ni-O alloy.
The non-magnetic layer and soft magnetic layer used as needed can also be selected with consideration to adhesion strength to the substrate, corrosion resistance, etc., and preferred materials include titanium, chromium, molybdenum, and permalloy. The organic vapor deposited layer used in the present invention may be made of a single material such as a fatty acid, a fatty acid amide, or a fatty acid ester, or a mixture of a plurality of materials, and a rust preventive agent may be used to further improve the corrosion resistance of the metal thin film magnetic recording layer. Of course, it is also possible to blend together with a lubricant, and the organic vapor deposited layer herein also includes a plasma-polymerized thin film of fluorocarbons. Regardless of whether the manufactured magnetic recording medium is in the form of a tape or a disk, it is important that it be flat in order to obtain a stable envelope, and it is not necessary to insist on the same material and thickness on both sides. but,
When using different materials as constituent elements, it is necessary to find conditions that will result in an even finished product. Incidentally, since the organic vapor deposited layer does not have internal stress that affects the flatness described above, it is difficult from a manufacturing perspective to use different material compositions in order to compensate for the surface properties caused by mutual transfer. It's easy. Basically, there is a single organic tank, and each thin film is continuously formed inside. The metal thin film magnetic recording layer can be formed by vacuum deposition, sputtering, ion plating, reactive deposition, electric field deposition, ion beam deposition, or the like. Since polymer substrates have low heat resistance, they are susceptible to thermal deformation and thermal damage during vapor deposition.
Therefore, it is necessary to move the cooling support along the cooling support, and if the cooling support is fixed, there will be problems such as scratches on the substrate.
Cylindrical rotating cans, driven metal belts, etc. are used. Unlike the formation of metal thin films, organic vapor deposition has less thermal influence, but film thickness control is important.
Therefore, the substrate is cooled and the source of re-evaporation is suppressed. The substrate winding system must be configured to allow thin film formation on both sides. This is important to prevent increases in dropouts and deterioration of durability that would occur if one side of the board was constructed in separate vacuum chambers or by flipping the board over in the same vacuum chamber. In order to obtain an optimal atmosphere for forming a thin film, the inside of the vacuum chamber can be divided and the exhaust system configuration, gas introduction system configuration, voltage introduction system configuration, etc. for controlling the atmosphere can be selected as appropriate. Description of Examples Hereinafter, the manufacturing method of the present invention will be described based on drawings showing specific examples. FIG. 1 is a cross-sectional view of a magnetic recording medium manufactured by the manufacturing method of the present invention, in which 1 is a polymer substrate serving as a base, 2 and 3 are metal thin film magnetic recording layers, each of which is one side of the polymer substrate 1. is formed directly on one side and the other side. 4 and 5 are metal thin film magnetic recording layers 2,
This is an organic substance vapor deposited layer formed on each surface of No. 3. Note that the polymer substrate here has a band-like form. FIG. 3 shows a manufacturing apparatus capable of manufacturing a magnetic recording medium having the cross-sectional structure shown in FIG. 8 is the exhaust system 9,1
This is a vacuum chamber that is maintained in a vacuum state by a vacuum chamber, and the following system is housed inside this chamber. That is, first and second cylindrical rotary cans 11 and 12 are arranged in parallel so that they rotate in the directions of arrows A and B, and their winding sides are on the inside, respectively;
Evaporation source containers 13, 14, 15, a feeding shaft 16 for the polymer substrate 1, and a winding shaft 17 for the polymer substrate 1
etc. are stored. To explain the internal structure of the vacuum chamber 8 in detail, the polymer substrate 1 set on the delivery shaft 16 is first inputted from the winding side of the cylindrical rotating can 11, and is then passed through the free roller 18 and expander roller (not shown). , is inputted to the winding side of the cylindrical rotary can 12 via a dancer roller (not shown), and is wound onto the winding shaft 17. The evaporation source container 13 is disposed below the winding side of the cylindrical rotary cans 11 and 12 so that the vapor flow 19 is directed toward the winding side of the cylindrical rotary cans 11 and 12, and the evaporation source container 13
are arranged near the delivery side of the cylindrical rotary cans 11 and 12, respectively. A ferromagnetic metal material 20 for forming the metal thin film magnetic recording layers 2 and 3 is placed in the evaporation source container 13, and a water-cooled copper hearth or a refractory crucible is used as the evaporation source container 13. The vapor flow 19 is obtained by heating the ferromagnetic metal material 20 by means of a beam (not shown). Although FIG. 3 shows an example in which a high coercive force is obtained by oblique evaporation, other measures are naturally taken to obtain a perpendicularly magnetized film. A fixed mask 21 is used to limit the minimum incident angle for oblique evaporation. 22 is an anti-adhesion plate. The evaporation source containers 14 and 15 are hollow and made of, for example, quartz, and the amount of evaporation is controlled by circulating a heating medium to control the temperature. Organic materials 23 and 24 for forming organic substance vapor deposition layers 4 and 5 are placed in the evaporation source containers 14 and 15. 25 is a crystal oscillator for monitoring the film thickness of the organic substance vapor deposited layers 4 and 5. With this configuration, the metal thin film magnetic recording layer 2 is first formed on the polymer substrate 1 on the winding side of the cylindrical rotating can 11 by the vapor flow 19 . The polymer substrate 1 on which the metal thin film magnetic recording layer 2 is formed on one side is formed with an organic substance evaporation layer 4 on the metal thin film magnetic recording layer 2 by the organic material 23 on the sending side of the cylindrical rotating can 11. . A polymer substrate 1 on which a magnetic recording layer 2 and an organic substance evaporation layer 4 are formed.
passes through the free roller 18 etc. to the cylindrical rotating can 1
A metal thin film magnetic recording layer 3 is formed on the other side of the polymer substrate 1 by a vapor flow 19 on the winding side of 2, and then a metal thin film magnetic recording layer 3 is formed on the other side of the polymer substrate 1 by an organic material 24 on the delivery side of the cylindrical rotary can 12. An organic substance vapor deposition layer 5 is formed on the recording layer 3 . Metal thin film magnetic recording layers 2 and 3 with the same evaporation flow 19
Therefore, it is possible to reliably obtain metal thin film magnetic recording layers 2 and 3 having the same thickness. Further, a metal thin film magnetic recording layer 3 is provided on the opposite side of the organic substance vapor deposited layer 4 which is continuously formed by the vapor source container 14 in a vacuum.
In this case, the organic vapor deposited layer 4 becomes liquid, increasing the adhesion between the surface of the rotary can 12 and the substrate 1, and greatly improving thermal conductivity. Along with this, a mechanism such as reacting with the metal thin film magnetic recording layer 3 and firmly adhering it is included, and a magnetic recording medium with excellent durability and C/N can be obtained. Further, the inside of the vacuum layer 8 can be configured such that a gas such as oxygen is forcibly introduced into all or part of the vacuum chamber from the outside as necessary. FIG. 2 is a cross-sectional view of a magnetic recording medium in which nonmagnetic layers or soft magnetic layers 6 and 7 are formed on a polymer substrate. When manufacturing such a magnetic recording medium, the manufacturing apparatus shown in FIG. In this case, for example, a sputter source is disposed, for example, along the cylindrical rotating cans 11, 12 prior to the formation of the metal thin film magnetic recording layers 2, 3. Note that the nonmagnetic thin film and the soft magnetic thin film may be formed by selecting one from those used for forming the metal thin film magnetic recording layer. The magnetic recording medium produced in this manner and a conventional general magnetic recording medium were compared as follows. Experimental example 1 Polyethylene terephthalate (average roughness 50Å)
Diameter 50cm with 10.5μm arranged at a center distance of 5/cm
Co80%Ni20 in an oxygen partial pressure of 5 x 10 -5 Torr at a minimum angle of incidence of 43° along the cylindrical rotating cans 11, 12 of
% alloy on 0.13 μm electron beam evaporation, respectively.
Octyl behenate was organically deposited to approximately 50 Å. The closest distance between the evaporation source and the part receiving evaporation on the rotating can was fixed at 25 cm. As [Comparative Example 1], the same Co--Ni was vapor-deposited on both sides, and each side was coated in a separate process to a calculated thickness of 50 Å by dissolving it in a solvent. The solvent used was n-hexane. As another [Comparative Example 2], Co--Ni was deposited and then octyl behenate was deposited, then the product was turned over and the same deposition was performed, and the same was evaluated. Each was cut into 8mm width and the durability was compared and the results are as shown in the following table. The tape length is 100m and the cylinder diameter is 40mm.
We repeatedly drove the deck using an improved running system of the VHS deck and observed changes in characteristics. The tape feed speed was 14.3 mm/sec, the head was a ferrite head, and the relative speed was 3.75 m/sec.
C/N was compared relatively with C=4.5MHz and N=4MHz. Dropout was counted and compared at 15μsec and -16dB.

【表】 ちなみに、従来最も一般的な片側の面にのみ蒸
着し、裏面にバツクコート層を設して熱処理して
平坦化処理したものの特性は25℃60%RHでの30
パスでC/Nは3.5dB低下し、30℃90%RHでは
12パスでC/Nは3dB低下した。これらのC/N
の低下は、カツピングの変化によるヘツドタツチ
の悪化によるものが主因であつた。又両面に有機
物蒸着層を有すものは、スチルフレーム特性も従
来品に比較して優れており、実用耐久性は良好で
あつた。 初期的には、別工程で蒸着した比較例も有意差
がなかつたが、本発明の製法による磁気記録層と
有機蒸着層の形成が同一真空層で連続しているこ
とと、両面構成も同一真空槽で連続して形成する
ことの作用効果は、有機蒸着層の耐久性にあらわ
れているとみなせるものである。 実験例 2 ポリアミド基板(平均粗サ80Å)8.5μm上に
Co81%、Cr19%のターゲツトを用いて、高周波
スパツタリングにより、両側に夫々0.2μm垂直磁
化膜を形成し、更にステアリン酸アミドを約40Å
有機蒸着して媒体を得た。 この場合の装置は第3図の電子ビーム蒸発源の
代りに、円筒状回転キヤン11,12に沿つて、
長手方向の幅6インチのカソードをキヤン11,
12から6cm離して配置したものを利用した。ま
た、スパツタリング条件は、Ar分圧3×
10-4Torrでの高周波(13.56MHz、650W)グロー
放電で有機蒸着は2×10-4Torrの真空度で行つ
た。 この媒体は〔実験例1〕と同様に特性変化はな
かつたが、〔実験例1〕と同種の比較例では塗布
法によつた媒体でC/N劣化は、25℃60%
RH300パス後、30℃90%RH300パス後は夫々
6.2dB、9dBと極めて悪かつた。 〔実験例1〕、〔実験例2〕いずれも耐食性につ
いても比較例に対して優れており、60℃90%
RH1ケ月放置後のBs(飽和磁束密度)の変化率で
みて、2〜3%の変化であつたのに対して、有機
塗布法によつた比較例は30%〜36%Bsが低下し
た。 このように形成したものは、従来のものと異な
り、下記の点で特長的な振舞いを確認できるもの
である。 そのひとつは、走行系によりくり返し引つばり
応力を受けても、高分子基板が、金属薄膜層でサ
ンドイツチされているため、従来のバイメタル構
成の媒体にみられた、カツピング率の変化からく
るエンベロープが悪くなる現象が皆無である点で
ある。 第2は、両面とも厚みが極めて均一であるた
め、基板の形状を管理すれば従来のバツクコート
層に起因した、形状転写もなく、短波長で優れた
C/Nを発揮できる点である。 なお、円筒状回転キヤン11,12と、蒸気源
の関係を対称に配設すれば、同一厚みで、同一物
性の金属薄膜磁気記録層を確実に得ることができ
るが、片側が面内でもう一方が垂直磁化膜となる
ように構成することもできる。 発明の効果 以上説明のように本発明の磁気記録媒体の製造
方法によると、実用耐久性に優れると共に両面か
らのアクセスが可能な磁気記録媒体を塗布機、熱
処理機等の設備を不要とし、無公害設備で、製造
することができる。また本発明の製造方法による
と、品質の安定で且つ実用耐久性の優れた金属薄
膜型磁気記録媒体を大量生産することができるも
のである。さらに、真空中で連続して有機蒸着し
た面の反対側に金属薄膜磁気記録層を形成する場
合、有機物蒸着層が液状になつて第2の回転キヤ
ン表面と帯状基板との間の密着性が増し熱伝導性
が大幅に改善される。これとともに、金属薄膜磁
気記録層と反応して強固に被着するなどのメカニ
ズムが含まれ耐久性とC/Nの優れた磁気記録媒
体が得られる。
[Table] By the way, the characteristics of the conventional most common method of vapor deposition on only one side, a back coat layer on the back side, and heat treatment for flattening are 30% at 25°C and 60% RH.
C/N decreases by 3.5dB at 30℃90%RH.
The C/N decreased by 3 dB in 12 passes. These C/N
The main cause of the decrease was a worsening of head touch due to changes in cupping. In addition, those having organic vapor-deposited layers on both sides had better still frame characteristics than conventional products, and had good practical durability. Initially, there was no significant difference in the comparative example, which was deposited in separate processes, but the fact that the magnetic recording layer and the organic deposited layer were formed continuously in the same vacuum layer by the manufacturing method of the present invention, and that both sides had the same structure The effect of continuous formation in a vacuum chamber can be considered to be reflected in the durability of the organic vapor deposited layer. Experimental example 2 On a polyamide substrate (average roughness 80 Å) 8.5 μm
Using a target of 81% Co and 19% Cr, a perpendicularly magnetized film of 0.2 μm was formed on each side by high-frequency sputtering, and a layer of stearic acid amide was added to approximately 40 Å.
A medium was obtained by organic vapor deposition. In this case, instead of the electron beam evaporation source shown in FIG.
A cathode with a longitudinal width of 6 inches is attached to the can 11,
Those placed 12 to 6 cm apart were used. In addition, the sputtering conditions are Ar partial pressure 3×
Organic deposition was performed in a vacuum of 2×10 −4 Torr with a high frequency (13.56 MHz, 650 W) glow discharge at 10 −4 Torr. As with [Experimental Example 1], there was no change in the characteristics of this medium, but in a comparative example of the same type as [Experimental Example 1], the C/N deterioration was 60% at 25°C with the medium using the coating method.
After RH300 pass, after 30℃90%RH300 pass, respectively
It was extremely bad at 6.2dB and 9dB. [Experimental Example 1] and [Experimental Example 2] both have excellent corrosion resistance compared to the comparative example, and at 60°C 90%
Looking at the rate of change in Bs (saturation magnetic flux density) after being left at RH for one month, the change was 2 to 3%, whereas in the comparative example using the organic coating method, Bs decreased by 30% to 36%. The device formed in this manner differs from conventional devices and exhibits distinctive behavior in the following points. One of these is that even if the polymer substrate is repeatedly subjected to tensile stress by the running system, the envelope caused by the change in the cutting rate observed in conventional media with a bimetallic structure is caused by the fact that the polymer substrate is sandwiched by a thin metal film layer. The point is that there is no phenomenon where the condition gets worse. Second, since the thickness is extremely uniform on both sides, if the shape of the substrate is controlled, there is no shape transfer caused by conventional back coat layers, and excellent C/N can be achieved at short wavelengths. Note that if the cylindrical rotary cans 11, 12 and the vapor source are arranged symmetrically, it is possible to reliably obtain a metal thin film magnetic recording layer with the same thickness and the same physical properties. It is also possible to configure one of the layers to be a perpendicularly magnetized film. Effects of the Invention As explained above, according to the method of manufacturing a magnetic recording medium of the present invention, a magnetic recording medium that has excellent practical durability and can be accessed from both sides can be produced without the need for equipment such as a coating machine or a heat treatment machine. Can be manufactured using polluting equipment. Further, according to the manufacturing method of the present invention, it is possible to mass-produce metal thin film type magnetic recording media of stable quality and excellent practical durability. Furthermore, when a metal thin film magnetic recording layer is formed in a vacuum on the opposite side of the surface on which the organic material is continuously deposited, the organic material deposited layer becomes liquid and the adhesion between the second rotary can surface and the strip-shaped substrate deteriorates. Thermal conductivity is greatly improved. In addition, a magnetic recording medium with excellent durability and C/N can be obtained, which includes a mechanism such as reacting with the metal thin film magnetic recording layer and firmly adhering to it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の製造方法に
よつて製造される磁気記録媒体の断面構成図、第
3図は本発明の製造方法を実施する製造装置の一
実施例の構成図である。 1……高分子基板、2,3……金属薄膜磁気記
録層、4,5……有機物蒸着層、8……真空層、
9,10……排気系、11,12……円筒状回転
キヤン〔第1、第2の冷却・搬送手段〕、13,
14,15……蒸発源容器、16……送り出し
軸、17……巻取り軸、19……蒸気流、20…
…強磁性金属材料、23,24……有機材料。
FIGS. 1 and 2 are cross-sectional configuration diagrams of magnetic recording media manufactured by the manufacturing method of the present invention, and FIG. 3 is a configuration diagram of an embodiment of a manufacturing apparatus that implements the manufacturing method of the present invention. be. 1... Polymer substrate, 2, 3... Metal thin film magnetic recording layer, 4, 5... Organic substance vapor deposition layer, 8... Vacuum layer,
9, 10... Exhaust system, 11, 12... Cylindrical rotating can [first and second cooling/transfer means], 13,
14, 15... Evaporation source container, 16... Delivery shaft, 17... Winding shaft, 19... Steam flow, 20...
...Ferromagnetic metal material, 23,24...Organic material.

Claims (1)

【特許請求の範囲】[Claims] 1 帯状基板を冷却・搬送するための第1、第2
の円筒状回転キヤンを互いに巻込み側を内側にし
て配設し、蒸気流が前記第1、第2の回転キヤン
の巻込み側に向かうよう金属薄膜磁気記録層形成
用の蒸発源を配設し、前記帯状基板を第1の回転
キヤンから第2の回転キヤンに沿つて移動するよ
う掛渡すと共に、第1、第2の回転キヤンの送り
出し側近傍にそれぞれ有機物蒸発源を配設し、基
板の両面に金属薄膜磁気記録層と有機物蒸着層と
を積層することを特徴とする磁気記録媒体の製造
方法。
1 First and second for cooling and transporting the strip-shaped substrate
The cylindrical rotating cans are arranged with the winding sides facing each other, and an evaporation source for forming the metal thin film magnetic recording layer is arranged so that the vapor flow is directed toward the winding sides of the first and second rotating cans. The strip-shaped substrate is moved from the first rotation can to the second rotation can, and an organic substance evaporation source is disposed near the delivery side of the first and second rotation can, and the substrate is moved from the first rotation can to the second rotation can. 1. A method for manufacturing a magnetic recording medium, comprising laminating a metal thin film magnetic recording layer and an organic vapor deposited layer on both sides of the magnetic recording medium.
JP58049847A 1983-03-24 1983-03-24 Method and device for producing magnetic recording medium Granted JPS59175032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58049847A JPS59175032A (en) 1983-03-24 1983-03-24 Method and device for producing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58049847A JPS59175032A (en) 1983-03-24 1983-03-24 Method and device for producing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59175032A JPS59175032A (en) 1984-10-03
JPH056739B2 true JPH056739B2 (en) 1993-01-27

Family

ID=12842451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58049847A Granted JPS59175032A (en) 1983-03-24 1983-03-24 Method and device for producing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59175032A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112306A (en) * 1976-03-18 1977-09-20 Matsushita Electric Ind Co Ltd Magnetic recording tape
JPS57166443A (en) * 1981-04-07 1982-10-13 Sanyo Electric Co Ltd Hot water feeder
JPS5814325A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Production for magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112306A (en) * 1976-03-18 1977-09-20 Matsushita Electric Ind Co Ltd Magnetic recording tape
JPS57166443A (en) * 1981-04-07 1982-10-13 Sanyo Electric Co Ltd Hot water feeder
JPS5814325A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Production for magnetic recording medium

Also Published As

Publication number Publication date
JPS59175032A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
JPH0417110A (en) Magnetic recording medium
JPH056739B2 (en)
JPS61229230A (en) Magnetic recording tape
JPS6174143A (en) Production of magnetic recording medium
JPH0581967B2 (en)
JPH0311531B2 (en)
JPH0548530B2 (en)
JPH103663A (en) Production of magnetic recording medium
JPS6043915B2 (en) Vacuum deposition method
JPH07192259A (en) Production of magnetic recording medium
JPH0352115A (en) Metallic thin film type magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPS61237224A (en) Magnetic recording tape
JPH10134351A (en) Production of magnetic recording medium and apparatus for producing the same
JPH09128751A (en) Production of magnetic recording medium
JPH09128752A (en) Apparatus for producing magnetic recording medium and production of magnetic recording medium
JPS63251935A (en) Production of magnetic recording medium
JPS59175030A (en) Production of magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPH0991699A (en) Production of magnetic recording medium and magnetic recording medium
JPH10105947A (en) Thin film magnetic recording medium
JPH10188279A (en) Production of magnetic recording medium and nonmagnetic base
JPH08129741A (en) Magnetic recording medium
JPS59175020A (en) Thin metallic film type magnetic recording medium
JPH0536068A (en) Magnetic recording medium and production thereof