JPH0566915B2 - - Google Patents
Info
- Publication number
- JPH0566915B2 JPH0566915B2 JP33310987A JP33310987A JPH0566915B2 JP H0566915 B2 JPH0566915 B2 JP H0566915B2 JP 33310987 A JP33310987 A JP 33310987A JP 33310987 A JP33310987 A JP 33310987A JP H0566915 B2 JPH0566915 B2 JP H0566915B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- melt
- cavity
- slider
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims description 84
- 239000000155 melt Substances 0.000 claims description 64
- 239000013078 crystal Substances 0.000 claims description 50
- 238000001816 cooling Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 239000007791 liquid phase Substances 0.000 claims description 23
- 230000002093 peripheral effect Effects 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 10
- 239000003779 heat-resistant material Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 238000002109 crystal growth method Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 20
- 229910001338 liquidmetal Inorganic materials 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000013081 microcrystal Substances 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は液相結晶成長に関し、特に溶質を溶解
したメルト内に一定の温度差を設け、高温部より
低温部に連続的に溶質を搬送して低温部で結晶を
成長させる温度差法連続液相成長に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to liquid phase crystal growth, and in particular to a process in which a certain temperature difference is created in a melt containing dissolved solute, and the solute is continuously transported from a high temperature area to a low temperature area. This paper relates to continuous liquid phase growth using a temperature difference method in which crystals are grown in a low-temperature region.
[従来の技術]
液相結晶成長は特に化合物半導体の結晶成長技
術として広く用いられている。液相結晶成長法と
して徐冷法や温度差法等が知られている。[Prior Art] Liquid phase crystal growth is widely used as a crystal growth technique, especially for compound semiconductors. A slow cooling method, a temperature difference method, and the like are known as liquid phase crystal growth methods.
除冷法は、たとえば、結晶材料をルツボ内で加
熱して溶融し、徐々に冷却して結晶化させる方法
である。冷却方法、ルツボ形状等によりストツク
バーガ法、ブリツジマン法等に分かれる。 The gradual cooling method is, for example, a method in which a crystalline material is heated and melted in a crucible, and then gradually cooled and crystallized. It is divided into the Stockburger method, Bridgeman method, etc. depending on the cooling method, crucible shape, etc.
温度差法は一定の温度差(ないし温度勾配)を
持つ高温部低温部を形成し、高温部から原料を供
給して低温部で結晶を析出させる方法であり、広
義にはフローテイングゾーン法等も含むが、狭義
には溶液(メルト)内に温度差を設け、高温部で
溶質を溶解(供給)すると共に低温部で過飽和溶
液から溶質を析出させる方法をさす。すなわち、
温度差法液相結晶成長法は、成長用材料(溶質)
を溶解した溶液(メルト)に温度差をつけ、温度
勾配と拡散によつて溶質を基板方向に輸送し、基
板上に結晶を成長させる方法で、一定温度で成長
できるため均一な不純物濃度や組成をもつ結晶性
の良い結晶が多数枚連続して得られる方法であ
る。例えば、GaAlAs系結晶の場合、グラフアイ
トからなるメルト槽にGa溶液からなるメルトを
入れ、800℃−1000℃で10℃−200℃の温度差を設
けて結晶成長を行う。この方法により、特性の優
れた発光ダイオートやレーザー等が製作されてい
る。 The temperature difference method is a method in which a high-temperature zone and a low-temperature zone are formed with a certain temperature difference (or temperature gradient), and raw materials are supplied from the high-temperature zone and crystals are precipitated in the low-temperature zone. However, in a narrow sense, it refers to a method in which a temperature difference is created in a solution (melt), and the solute is dissolved (supplied) in the high temperature part, and the solute is precipitated from the supersaturated solution in the low temperature part. That is,
In the temperature difference method liquid phase crystal growth method, the growth material (solute)
A method in which crystals are grown on the substrate by applying a temperature difference to a solution (melt) in which the solute is dissolved and transporting the solute toward the substrate by temperature gradient and diffusion. Because it can grow at a constant temperature, it can achieve a uniform impurity concentration and composition. This method allows a large number of crystals with good crystallinity to be obtained in succession. For example, in the case of a GaAlAs-based crystal, a melt made of a Ga solution is placed in a melt bath made of graphite, and crystal growth is performed at 800°C-1000°C with a temperature difference of 10°C-200°C. Using this method, light emitting diodes, lasers, etc. with excellent characteristics have been manufactured.
[発明が解決しようとする問題点]
溶質を基板に向けて輸送するために基板面に垂
直の方向に温度差をつける。しかし基板面内にわ
たり均一に成長させるためには面内方向に均一な
温度分布を設けることが必要である。しかし面に
垂直な温度差と面内の均一な温度との両者を両立
させることは容易ではない。[Problems to be Solved by the Invention] In order to transport solute toward the substrate, a temperature difference is created in the direction perpendicular to the substrate surface. However, in order to grow uniformly over the substrate surface, it is necessary to provide a uniform temperature distribution in the in-plane direction. However, it is not easy to achieve both a temperature difference perpendicular to the surface and a uniform temperature within the surface.
従来は、特公昭59−43087号公報に示されてい
るように、加熱用炉体や冷却源のバランスをとる
ことにより基板面内の温度分布を均一にしようと
していた。 Conventionally, as shown in Japanese Patent Publication No. 59-43087, attempts have been made to make the temperature distribution within the substrate surface uniform by balancing the heating furnace and the cooling source.
しかし、これらの方法で均一な温度分布を実現
するのは困難であり、第12図に示すような均一
でない厚み分布の成長結果が多く、また、炉体の
成長システムのわずかな相違、変動により厚み分
布が変動してしまう。 However, it is difficult to achieve a uniform temperature distribution with these methods, and the growth results often have an uneven thickness distribution as shown in Figure 12. Also, due to slight differences and fluctuations in the growth system of the furnace body, The thickness distribution will fluctuate.
このような均一でない厚み分布は、発光ダイオ
ードの製造においては発光効率のバラツキに直結
しており、製造歩留まりの低下の主要な原因であ
る。 Such non-uniform thickness distribution is directly linked to variations in luminous efficiency in the production of light emitting diodes, and is a major cause of reduced production yield.
そこで、本発明の目的は均一な面内温度分布を
実現できる温度差法液相結晶成長技術を提供する
ことである。 Therefore, an object of the present invention is to provide a temperature difference method liquid phase crystal growth technique that can realize a uniform in-plane temperature distribution.
[問題点を解決するためにおこなつた検討]
上記の問題点を解決するために、温度差法連続
液相結晶成長での結晶成長のメカニズムを検討し
た。[Studies conducted to solve the problems] In order to solve the above problems, the mechanism of crystal growth in continuous liquid phase crystal growth using the temperature difference method was investigated.
第5図に温度差法液相成長装置の例を概略的に
示す。入口側予備室51内には半導体基板を載せ
たスライダ53が収められており、スライダ押上
機構55により順次ゲートバルブ62を通つて押
し上げられる。入口側予備室51は予備加熱炉5
9で予熱されているのが好ましい。押し上げられ
たスライダはスライダ駆動機構61により成長室
57内にゲートバルブ63を通つて送られる。成
長室57内にはメルト槽64が設けられ、主ヒー
タ67がメルト槽64を加熱している。スライダ
53上の基板69はメルト槽64の下部でメルト
と接触し結晶成長を行う。結晶成長の終つた基板
を載せたスライダはゲートバルブ73を介して成
長室57の外に送られ、スライダ受取機構77に
よつてゲートバルブ74を介して出口側予備室7
9に収められる。 FIG. 5 schematically shows an example of a temperature difference method liquid phase growth apparatus. A slider 53 carrying a semiconductor substrate is housed in the entrance side preliminary chamber 51 and is successively pushed up through the gate valve 62 by the slider push-up mechanism 55 . The entrance side preliminary chamber 51 is a preliminary heating furnace 5
Preferably, it is preheated at 9. The pushed-up slider is sent into the growth chamber 57 through the gate valve 63 by the slider drive mechanism 61. A melt tank 64 is provided in the growth chamber 57, and the main heater 67 heats the melt tank 64. The substrate 69 on the slider 53 comes into contact with the melt at the bottom of the melt tank 64 to cause crystal growth. The slider carrying the substrate on which crystal growth has been completed is sent to the outside of the growth chamber 57 via the gate valve 73, and is sent to the exit side preliminary chamber 7 via the gate valve 74 by the slider receiving mechanism 77.
It can be stored in 9.
第6図はメルト槽64部分の1例の拡大説明図
である。溶媒であるGaの中に溶質のAl、GaAs
が溶解されて、Pメルト槽65とNメルト槽66
に収容されている。さらに不純物としてPメルト
槽65にはZnがNメルト槽にはTeが溶解されて
いる。後から成長するN型領域のバンドギヤツプ
をP型領域のバンドギヤツプより大きくするため
Nメルト槽66中のAlの量はPメルト槽65中
のAlの量より大きくするのがよい。たとえば、
赤色発光Ga1-xAlxAs発光ダイオードを得るには、
AlAsの組成割合xをp型領域で約0.35、n型領
域で約0.6−0.85となるようにAlとGaAsの量を決
める。両メルト槽65,66には図中右に示すよ
うな垂直方向の温度差が設定される。たとえば、
800℃−1000℃の温度で温度差を10℃−200℃設け
る。溶質を連続的に供給するには高温部であるメ
ルト上部に溶質を浮かせておくか溶質収容部を作
つてメルトと接触させる。溶質は高温部で飽和溶
解度まで溶解し、拡散で低温部に輸送される。通
常溶解度は温度と共に増加するので、低温部で過
飽和溶液となつて析出できる状態となる。このよ
うなメルト低温部へ多数枚の基板69を順次接触
させる。たとえば、成長時間約60分で50−60μm
の成長層が得られる。 FIG. 6 is an enlarged explanatory view of one example of the melt tank 64 portion. Solutes Al and GaAs in the solvent Ga
is melted, and the P melt tank 65 and the N melt tank 66
is housed in. Further, as impurities, Zn is dissolved in the P melt tank 65 and Te is dissolved in the N melt tank. In order to make the bandgap of the N-type region that will grow later larger than that of the P-type region, the amount of Al in the N-melt tank 66 is preferably made larger than the amount of Al in the P-melt tank 65. for example,
To obtain the red-emitting Ga 1-x Al x As light-emitting diode,
The amounts of Al and GaAs are determined so that the AlAs composition ratio x is about 0.35 in the p-type region and about 0.6-0.85 in the n-type region. A vertical temperature difference is set between both melt tanks 65 and 66 as shown on the right side of the figure. for example,
The temperature is 800℃-1000℃ with a temperature difference of 10℃-200℃. To continuously supply the solute, the solute is floated above the melt, which is a high-temperature part, or a solute storage part is created and brought into contact with the melt. The solute dissolves to saturation solubility in the high temperature section and is transported to the low temperature section by diffusion. Since the solubility usually increases with temperature, it becomes a supersaturated solution at low temperatures and becomes ready for precipitation. A large number of substrates 69 are sequentially brought into contact with such a melt low temperature section. For example, 50-60μm with a growth time of about 60 minutes.
A layer of growth is obtained.
第7図は温度と時間との関係を示す。図から判
るように温度分布は一定に保たれる。初め1番目
の基盤がPメルトの下に接し、P型層を成長させ
る。次にスライダを移動させて1番目の基板がN
メルトの下に接し、2番目の基板がPメルトの下
に接するようにする。そこで、それぞれの成長層
を形成する。これで1番目の基板上には下にP型
層、上にN型層が成長され、ダイオードが形成さ
れる。このようにして多数枚の基板上にエピタキ
シヤル成長を行う。 FIG. 7 shows the relationship between temperature and time. As can be seen from the figure, the temperature distribution remains constant. Initially, the first base contacts the bottom of the P melt and grows a P type layer. Next, move the slider so that the first board is
The second substrate should touch the bottom of the P-melt. Therefore, respective growth layers are formed. Now, on the first substrate, a P-type layer is grown on the bottom and an N-type layer is grown on top, forming a diode. In this way, epitaxial growth is performed on a large number of substrates.
さて、結晶成長を行えるのはメルト下部の低温
部であるが、メルトと通常グラフアイトであるメ
ルト槽を作つている耐熱材とは熱伝導率等の熱的
特性が異なる。メルト下部で面内均一な温度分布
を実現するため解明すべき問題の1つはグラフア
イトに囲まれたメルトと基板との関係であろう。
そこで、以下の場合に分けて検討した。 Now, crystal growth can occur in the low-temperature area at the bottom of the melt, but the melt and the heat-resistant material that makes up the melt tank, which is usually graphite, have different thermal properties such as thermal conductivity. One of the issues that must be solved in order to achieve uniform in-plane temperature distribution at the bottom of the melt is the relationship between the melt surrounded by graphite and the substrate.
Therefore, we considered the following cases separately.
[A.メルトの底面の大きさと基板の大きさがほ
ぼ等しい場合](第8図、第9図参照)
基板中心付近81に比べて周辺部83の成長速
度が遅い、これはメルト槽の内壁からは溶質の供
給がないことが1つの原因と考えられる。またメ
ルト槽の側壁(グラフアイト)の熱伝導率はメル
ト(Ga)の熱伝導率より大きい。このため、基
板中心付近81に比べて周辺部83の温度勾配が
小さい。したがつて濃度勾配が小さく周辺部83
の成長速度が遅いと考えられる。[A. When the size of the bottom of the melt and the size of the substrate are almost equal] (See Figures 8 and 9) The growth rate in the peripheral area 83 is slower than in the vicinity of the center of the substrate 81. This is due to the inner wall of the melt tank. One reason is thought to be that there is no supply of solutes from the Further, the thermal conductivity of the side wall of the melt tank (graphite) is higher than that of the melt (Ga). Therefore, the temperature gradient in the peripheral portion 83 is smaller than that in the vicinity 81 of the substrate center. Therefore, the concentration gradient is small and the peripheral area 83
It is thought that the growth rate is slow.
[B.メルトの底面の大きさが基板の大きさより
大きい場合](第10図、第11図参照)
基板の大きさがメルトの底面の大きさより小さ
いため、基板周辺部87もメルト槽の側壁から離
れ基板中心付近85と基板の周辺部87との温度
勾配の差「A」に比べ大きくない。また基板面内
の温度分布も[A]に比べより均一である。した
がつて成長速度は[A]より面内で比較的均一に
なる。[B. When the size of the bottom surface of the melt is larger than the size of the substrate] (See FIGS. 10 and 11) Since the size of the substrate is smaller than the size of the bottom surface of the melt, the peripheral part 87 of the substrate is also on the side wall of the melt tank. The temperature gradient difference "A" between the center part 85 of the substrate and the peripheral part 87 of the substrate away from the substrate is not large. Moreover, the temperature distribution within the substrate surface is also more uniform than in [A]. Therefore, the growth rate becomes relatively uniform within the plane than in [A].
しかし、基板より外の周辺部89のメルト底面
が、基板より熱伝導率が大きくかつその上に結晶
をエピタキシヤル成長させることのできないグラ
フアイトからなるスライダ53に接している。し
たがつて基板外の周辺部89において基板面内8
5,87において同等またはそれ以上の熱がメル
トからスライダに向かつて流れる。すなわち、こ
の領域においても、拡散による溶質の輸送は常に
行われている。しかし基板結晶がないため輸送さ
れた溶質は過飽和状態となり、メルト内のスライ
ダ表面近傍において微結晶を析出させる。溶質の
輸送が常に行われているため、この微結晶が主と
なりさらに連続して微結晶への析出が行をわれ
る。この基板外の周辺部89のメルト内での微結
晶析出のために、基板内周辺部87での溶質の輸
送が影響され、中心部85に比べ基板内周辺部8
7の成長速度が小さくなる。 However, the bottom surface of the melt in the peripheral portion 89 outside the substrate is in contact with the slider 53 made of graphite, which has a higher thermal conductivity than the substrate and on which crystals cannot be epitaxially grown. Therefore, in the peripheral part 89 outside the board, the inside of the board 8
At 5,87, an equal or greater amount of heat flows from the melt toward the slider. That is, even in this region, solute transport by diffusion is always occurring. However, since there are no substrate crystals, the transported solute becomes supersaturated, causing microcrystals to precipitate in the melt near the slider surface. Since the solute is constantly being transported, this microcrystal becomes the main component, and further precipitation into microcrystals occurs continuously. Due to the precipitation of microcrystals within the melt in the peripheral area 89 outside the substrate, solute transport in the internal peripheral area 87 of the substrate is affected, and compared to the central area 85 , the transport of solutes in the internal peripheral area 87 of the substrate is affected.
7 growth rate becomes smaller.
[A][B]いずれの場合も均一な厚み分布の
成長が実現されず、たとえば、第12図に示すよ
うに周辺部の成長厚が中心部より小さくなりやす
い。さらに[A][B]いずれの場合もスライダ
の移動により温度変動が起こると、その影響を十
分吸収出来ず、連続して多数枚成長させたときの
厚みや分布の変動を生ずる。 [A] [B] In either case, growth with a uniform thickness distribution is not achieved, and for example, as shown in FIG. 12, the growth thickness in the peripheral area tends to be smaller than that in the central area. Furthermore, in both [A] and [B], if temperature fluctuation occurs due to slider movement, the effect cannot be sufficiently absorbed, resulting in variations in thickness and distribution when a large number of sheets are grown in succession.
以上の検討に基ずいたとき、[B]において基
板外周辺部89のメルト内での微結晶の析出を抑
制するならばより均一な厚みの結晶成長が可能に
なるものと考えられる。 Based on the above study, it is considered that if the precipitation of microcrystals in the melt in the outer peripheral portion 89 of the substrate is suppressed in [B], crystal growth with a more uniform thickness will be possible.
[問題点を解決するための手段]
本発明によれば、成長用材料を溶解した溶液
(メルト)を底部に開口を有するメルト槽に収容
し、上部が下部より高温となるように温度差をつ
け、メルト槽の開口の位置で基板をメルトと接触
させ、基板上にメルトから結晶をエピタキシヤル
成長させる温度差法液相結晶成長において、基板
をメルト槽開口部より小さくし、基板の外側下部
の冷却板の内部に基板の上から見て基板を囲むよ
うに空洞を設け、この空洞の内周が作る面積を基
板とほぼ同じ面積として基板外側の熱抵抗を大き
くしこの領域を流れる熱を抑制する。[Means for Solving the Problems] According to the present invention, a solution (melt) in which a growth material is dissolved is stored in a melt tank having an opening at the bottom, and a temperature difference is created so that the upper part is higher than the lower part. In temperature difference method liquid phase crystal growth, in which the substrate is brought into contact with the melt at the opening of the melt tank, and crystals are grown epitaxially from the melt onto the substrate, the substrate is made smaller than the opening of the melt tank, and the substrate is placed in contact with the melt at the outside bottom of the substrate. A cavity is provided inside the cooling plate to surround the board when viewed from above, and the area created by the inner periphery of this cavity is set to be approximately the same area as the board, increasing the thermal resistance on the outside of the board to reduce the heat flowing through this area. suppress.
さらに、この空洞に成長温度で液状となる金属
(液状金属)を0−100%充填するのが好ましい。 Furthermore, it is preferable to fill this cavity with 0-100% of a metal that becomes liquid at the growth temperature (liquid metal).
この方法はGaAlAsの他GaP GaAsInP
InGaAsPある意は、ZnSeZnTe、HgCdTeその他
の温度差法液相エピタキシヤル結晶成長法による
結晶の成長に適用できる。 This method is applicable to GaAlAs as well as GaP GaAsInP.
InGaAsP can be applied to the growth of ZnSeZnTe, HgCdTe, and other crystals by temperature difference liquid phase epitaxial crystal growth.
[作用]
第1図、第2図に例示すると、冷却板21の中
央部27を囲んで空洞25を作り、空洞には気体
および液体を入れる。たとえば、グラフアイトの
冷却板21に基板19とほぼ同断面積の中央部2
7を囲むように25を作り、Ga等成長温度で液
体となる金属31を部分的に充填し、上部空間3
3にはH2、Arなどの雰囲気ガスが入るようにす
る。熱伝導率は
冷却板の材質>液体金属≫ガス
となるので熱流は空洞部分で制限され、主として
空洞で囲まれた中央部27を通る。この部分は基
板とほぼ同一面積であるので基板外側の周辺部の
熱抵抗を高くし、そこでのメルト内の微結晶の析
出を抑制し、かる基板面内の熱的条件を均一に保
ち易くする。[Function] As illustrated in FIGS. 1 and 2, a cavity 25 is formed surrounding the central portion 27 of the cooling plate 21, and gas and liquid are filled in the cavity. For example, a central portion 2 having approximately the same cross-sectional area as the substrate 19 is attached to the graphite cooling plate 21.
25 is made to surround 7, and is partially filled with a metal 31 that becomes liquid at the growth temperature, such as Ga, to fill the upper space 3.
Atmospheric gas such as H2 or Ar should be introduced into 3. Since the thermal conductivity is as follows: material of cooling plate>liquid metal>>gas, heat flow is restricted in the cavity and mainly passes through the central part 27 surrounded by the cavity. Since this area has almost the same area as the substrate, it increases the thermal resistance of the peripheral area outside the substrate, suppresses the precipitation of microcrystals in the melt there, and makes it easier to maintain uniform thermal conditions within the substrate plane. .
さらにこの空洞に成長温度において液状となる
金属(例Ga)をいれると液体金属は熱対流によ
つて移動する。基板面内に不均一温度分布があつ
ても均熱化される。局部的な不均一温度分布は液
体金属内の対流などにより均一化されるので基板
面内の均一温度分布がさらに得易くなる。 Furthermore, when a metal (eg Ga) that becomes liquid at the growth temperature is placed in this cavity, the liquid metal moves by thermal convection. Even if there is non-uniform temperature distribution within the substrate surface, the temperature can be equalized. Since the locally non-uniform temperature distribution is made uniform by convection within the liquid metal, it becomes easier to obtain a uniform temperature distribution within the substrate surface.
さらにこの液体金属の量を調節することにより
空間の容積を変え基板外周辺の熱抵抗を変えるこ
とができるので、加熱用炉体や冷却源などの成長
システムのわずかな相違による成長結果の相違を
調節補償することができる。 Furthermore, by adjusting the amount of this liquid metal, it is possible to change the volume of the space and change the thermal resistance around the outside of the substrate. Adjustment can be compensated.
基板の下方には空洞がなく、熱抵抗は大きく影
響されないので、成長速度は従来例とほぼ同様で
あり、高輝度発光ダイオードに必要な成長厚みが
確保される。 Since there is no cavity under the substrate and the thermal resistance is not greatly affected, the growth rate is almost the same as in the conventional example, and the growth thickness necessary for high brightness light emitting diodes is ensured.
[実施例]
第1図、第2図に本発明の1実施例による液相
結晶成長装置を部分的に示す。[Embodiment] FIGS. 1 and 2 partially show a liquid phase crystal growth apparatus according to an embodiment of the present invention.
メルト槽11の中には結晶成長用のメルト13
が収容されている。メルト槽11の底は開いてい
てスライダ15が底の開口を塞ぐようになつてい
る。スライダ15の中央部には凹部17が設けら
れ、成長下地となる半導体基板19が収められて
いる。従つて半導体基板19の上面はメルト13
の底部中央部と接する。スライダは冷却板21の
凹状レール23内を摺動し、図面の紙面と垂直の
方向に動く、冷却板の内部には基板に対応する領
域を囲むようにメルト槽の周辺部下方に空洞部2
5が形成されている。空洞の外周寸法は本実施例
ではスライダ15とほぼ同じ寸法としてあるが、
これらに限らない。但しメルト13の横断面積と
ほぼ同じかそれ以上の横断面積をもつことが好ま
しい。空洞部25の内側壁は中央部27が基板1
9ないしスライダの凹部17とほぼ同じ横断面積
をもつよう設計される。さらにこの空洞部25と
外部とを結ぶ連絡孔29が形成され、液体金属や
雰囲気ガスの出入りを可能にしている。空洞部2
5に液体金属(例えばGa)31を入れていくと
液体と冷却板の中央部27の側面とが接する。こ
の時も中央部27の周囲では液面上に空間33が
残つている。液面を上げていくと空間33は次第
に小さくなり、中央部27は液体金属31の中に
なかば没するようになる。 Inside the melt tank 11 is a melt 13 for crystal growth.
is accommodated. The bottom of the melt tank 11 is open, and the slider 15 closes the bottom opening. A recess 17 is provided in the center of the slider 15, and a semiconductor substrate 19 serving as a growth base is housed therein. Therefore, the upper surface of the semiconductor substrate 19 is covered with the melt 13.
It touches the center of the bottom. The slider slides within the concave rail 23 of the cooling plate 21 and moves in a direction perpendicular to the plane of the drawing.
5 is formed. In this embodiment, the outer circumferential dimension of the cavity is approximately the same as that of the slider 15;
Not limited to these. However, it is preferable that the cross-sectional area is approximately the same as or larger than the cross-sectional area of the melt 13. The center portion 27 of the inner wall of the cavity 25 is connected to the substrate 1.
9 to have approximately the same cross-sectional area as the recess 17 of the slider. Furthermore, a communication hole 29 is formed that connects this cavity 25 with the outside, allowing liquid metal and atmospheric gas to enter and exit. Cavity part 2
When a liquid metal (for example, Ga) 31 is poured into the cooling plate 5, the liquid comes into contact with the side surface of the central portion 27 of the cooling plate. Also at this time, a space 33 remains above the liquid level around the central portion 27. As the liquid level increases, the space 33 gradually becomes smaller, and the central portion 27 comes to be partially submerged in the liquid metal 31.
メルト槽11、スライダ15、冷却板21はグ
ラフアイトとのような耐熱材料で作られている。
メルト13は通常成長すべき半導体材料の構成元
素の1つを溶媒としている。GaAs、GaAlAs、
GaAlAsP、GaP、GaSb等の場合はGa、InAs、
InAsP等の場合はInを用いる。液体金属31は使
用温度(ほぼ結晶成長温度)で液体であれば良
く、Ga、In、Hg等が用いられる。メルト13の
主成分と液体金属の主成分とを一致させておくの
が不純物防止、熱的設計等の面から好ましいこと
が多い。均一な厚さの結晶成長を得るには基板1
9上での温度分布が面内均一でかつ温度勾配も面
内均一であり、さらに基板19より外側の部分8
9では微結晶が発生しないことが望ましい。その
ためには基板19の断面積内において均一な熱流
が上から下に流れ、その外側では上から下への熱
流が制限されることが望ましい。 The melt tank 11, slider 15, and cooling plate 21 are made of a heat-resistant material such as graphite.
The melt 13 normally uses one of the constituent elements of the semiconductor material to be grown as a solvent. GaAs, GaAlAs,
For GaAlAsP, GaP, GaSb, etc., Ga, InAs,
In the case of InAsP etc., In is used. The liquid metal 31 only needs to be liquid at the operating temperature (approximately the crystal growth temperature), and Ga, In, Hg, etc. are used. It is often preferable to match the main components of the melt 13 with the main components of the liquid metal from the viewpoint of impurity prevention, thermal design, etc. To obtain crystal growth with uniform thickness, substrate 1
The temperature distribution on the substrate 9 is uniform in the plane, and the temperature gradient is also uniform in the plane, and furthermore, the temperature distribution on the substrate 19 is uniform in the plane.
9, it is desirable that no microcrystals be generated. For this purpose, it is desirable that a uniform heat flow flows from top to bottom within the cross-sectional area of the substrate 19, and that heat flow from top to bottom is restricted outside of the cross-sectional area.
基板19の断面積内では上からメルト13基板
19、スライダ15、冷却板21の上部、冷却板
の中央部27、冷却板21の下部と熱が流れる。
その外側では冷却板21の内部に気体空間33な
いし液体金属31が存在する。 Within the cross-sectional area of the substrate 19, heat flows from above to the melt 13 substrate 19, the slider 15, the upper part of the cooling plate 21, the central part 27 of the cooling plate, and the lower part of the cooling plate 21.
Outside thereof, a gas space 33 or liquid metal 31 is present inside the cooling plate 21 .
基板19の断面積内では構造が面内で均一であ
り均一な熱流を作り易くしている。 The structure is uniform within the cross-sectional area of the substrate 19, making it easy to create a uniform heat flow.
基板19の外側では熱回路中に空洞部25(基
体空間33ないし液体金属31)が入る。気体の
熱伝導率はグラフアイト等の耐熱材料の熱伝導率
より各段に少ないので熱流は大きく制限される。
このため、基板19より外側の部分89での微結
晶析出は抑制される。 On the outside of the substrate 19, a cavity 25 (substrate space 33 or liquid metal 31) enters the thermal circuit. Since the thermal conductivity of gas is much lower than that of heat-resistant materials such as graphite, heat flow is greatly restricted.
Therefore, precipitation of microcrystals in the portion 89 outside the substrate 19 is suppressed.
たとえば、構成材料の熱伝導率(300°K)
[W/cm・deg]の代表例は以下の通りである。 For example, the thermal conductivity of the constituent materials (300°K)
Representative examples of [W/cm·deg] are as follows.
H2 0.0018
Ga 0.335
グラフアイト 1.2
GaAs 0.54
さらに空洞部25内の液体金属31は熱伝導の
みでなく熱対流によつても熱を輸送できるので、
温度分布に不均一が生じた場合対流によつて均熱
化する役割を果たす。 H 2 0.0018 Ga 0.335 Graphite 1.2 GaAs 0.54 Furthermore, since the liquid metal 31 in the cavity 25 can transport heat not only by thermal conduction but also by thermal convection,
If uneven temperature distribution occurs, convection plays a role in equalizing the temperature.
この液体金属31の熱対流による均熱化と基板
外周辺領域89における微結晶析出の抑制によ
り、均一な厚さの成長結晶が得られる。 By equalizing the temperature by heat convection of the liquid metal 31 and suppressing the precipitation of microcrystals in the outer peripheral region 89 of the substrate, a grown crystal with a uniform thickness can be obtained.
期待される成長結晶の膜厚分布の例を第3図に
示す。 An example of the expected thickness distribution of the grown crystal is shown in FIG.
基板の下方の構成は従来と同様であるので熱抵
抗は大きく影響されない。従つて、成長速度は従
来例とほぼ同様であり、高輝度発光ダイオードに
必要な成長厚みが確保される。 Since the structure below the substrate is the same as the conventional one, thermal resistance is not greatly affected. Therefore, the growth rate is almost the same as that of the conventional example, and the growth thickness necessary for a high-brightness light emitting diode is ensured.
また液体金属の上面に設けられた空間は、細孔
により外部雰囲気と連結されているので、高温に
なつても内部圧力が上昇する危険はない。 Furthermore, since the space provided on the upper surface of the liquid metal is connected to the outside atmosphere through the pores, there is no risk of internal pressure increasing even at high temperatures.
さらに周辺部での液体金属の上面の空間33の
容積を調節することにより、基板外周辺領域89
における基板面に垂直方向の熱抵抗を調節するこ
ともでき、加熱用炉体や冷却源等の成長システム
のわずかな相違による、成長条件の相違を調節補
償することもできる。 Furthermore, by adjusting the volume of the space 33 on the upper surface of the liquid metal in the peripheral area, the outer peripheral area 89 of the substrate can be adjusted.
It is also possible to adjust the thermal resistance in the direction perpendicular to the substrate plane, and to compensate for differences in growth conditions due to slight differences in growth systems such as heating furnaces and cooling sources.
この方法は、GaAlAsのみならず、
GaPGaAsInP、InP、InGaAsP、あるいは、
ZnSe、ZnTe、HgCdTeその他の温度差法液相絵
エピタキシヤル成長法による結晶の成長に適用で
きる。 This method is applicable not only to GaAlAs but also to
GaPGAAsInP, InP, InGaAsP, or
It can be applied to the growth of crystals such as ZnSe, ZnTe, HgCdTe, etc. by the temperature difference liquid phase picture epitaxial growth method.
P層N層を連続的に成長して発光ダイオード用
ウエーハを製造する場合の実施例を第4図に示
す。 FIG. 4 shows an example in which a wafer for light emitting diodes is manufactured by continuously growing P layers and N layers.
石英製の反応管35内にグラフアイト製の結晶
成長機構37が収容され、ヒータ38,39で加
熱されている。冷却板21上をスライダ15が滑
つて図中の右から左へ移行する。スライダ15上
の基板19はまずPメルト41の下でP層の成長
を受け、次にNメルト42の下でN層の成長を受
ける。各メルト下部には空洞43,44が設けら
れ、その中央には基板19とほぼおなじ断面形状
の冷却板の中央部45,46が基板19と位置を
合わせて存在する。中央部45,46の外周には
空間47,48が形成される。メルト41,42
内には図中右に示すような垂直方向の一定の温度
勾配を形成する。 A crystal growth mechanism 37 made of graphite is housed in a reaction tube 35 made of quartz and heated by heaters 38 and 39. The slider 15 slides on the cooling plate 21 and moves from right to left in the figure. Substrate 19 on slider 15 first undergoes P layer growth under P melt 41 and then N layer growth under N melt 42. Cavities 43 and 44 are provided in the lower part of each melt, and central portions 45 and 46 of cooling plates having substantially the same cross-sectional shape as the substrate 19 are located in the center of the cavities 43 and 44 in alignment with the substrate 19. Spaces 47 and 48 are formed around the outer periphery of the central portions 45 and 46. Melt 41, 42
A constant temperature gradient is formed in the vertical direction as shown on the right side of the figure.
この構成により、基板19上に均一な熱流をつ
くり、その外側での結晶析出を抑制し、特性の良
い発光ダイオードを高歩留まりで製造できる。 With this configuration, a uniform heat flow is created on the substrate 19, crystal precipitation on the outside thereof is suppressed, and light emitting diodes with good characteristics can be manufactured at a high yield.
[発明の効果]
以上のように、基板外の周辺部の熱抵抗を大き
くし、液体金属を用いる場合はその熱対流による
均熱化を加え、基板外周辺のメルト内の微結晶の
析出を抑制し、均一な厚みの成長結晶が得られ
る。[Effects of the invention] As described above, by increasing the thermal resistance of the peripheral area outside the substrate, and when using liquid metal, it is possible to equalize the temperature by heat convection, and to prevent the precipitation of microcrystals in the melt around the outside of the substrate. growth crystals with uniform thickness can be obtained.
従つて、均一な発光効率の発光ダイオード用エ
ピタキシヤルウエハが高歩留まりで製造され、安
価に大量に高発光効率の発光ダイオードを供給す
ることができる。 Therefore, epitaxial wafers for light emitting diodes with uniform luminous efficiency can be manufactured at a high yield, and light emitting diodes with high luminous efficiency can be supplied in large quantities at low cost.
第1図は本発明の1実施例による液相結晶成長
装置の部分概略図、第2図は第1図の部分横断面
図、第3図は成長層の膜厚分布の例、第4図は他
の実施例による液相結晶成長装置の部分概略図、
第5図は従来の液相結晶成長装置の概略図、第6
図は第5図の部分拡大図、第7図は成長操作を説
明する温度対時間のグラフ、第8図は従来技術の
液相結晶装置の部分拡大図、第9図は第8図の横
断面図、第10図は従来技術の液相結晶装置の部
分拡大図、第11図は第10図の横断面図、第1
2図は従来技術による成長層の膜厚測定例であ
る。
符号の説明、11……メルト槽、13……メル
ト、15……スライダ、17……スライダの凹
部、19……基板、21……冷却板、23……冷
却板の凹状レール、25……空洞、27……冷却
板の中央部、29……連絡孔、31……液体金
属、33……空間、35……反応管、37……結
晶成長機構、38……ヒータ、39……ヒータ、
41……Pメルト、42……Nメルト、43……
空洞、44……空洞、45……冷却板の中央部、
46……冷却板の中央部、47……空間、48…
…空間。
FIG. 1 is a partial schematic diagram of a liquid phase crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, FIG. 3 is an example of the film thickness distribution of the grown layer, and FIG. 4 is a partial schematic diagram of a liquid phase crystal growth apparatus according to another embodiment,
Figure 5 is a schematic diagram of a conventional liquid phase crystal growth apparatus;
The figure is a partially enlarged view of Fig. 5, Fig. 7 is a graph of temperature versus time to explain the growth operation, Fig. 8 is a partially enlarged view of a conventional liquid phase crystallization device, and Fig. 9 is a cross section of Fig. 10 is a partially enlarged view of a conventional liquid phase crystal device, FIG. 11 is a cross-sectional view of FIG. 10, and FIG.
FIG. 2 shows an example of measuring the thickness of a grown layer using the conventional technique. Explanation of symbols, 11...Melt tank, 13...Melt, 15...Slider, 17...Slider recess, 19...Substrate, 21...Cooling plate, 23...Concave rail of cooling plate, 25... Cavity, 27...Central part of cooling plate, 29...Communication hole, 31...Liquid metal, 33...Space, 35...Reaction tube, 37...Crystal growth mechanism, 38...Heater, 39...Heater ,
41...P melt, 42...N melt, 43...
Cavity, 44...Cavity, 45...Central part of cooling plate,
46...Central part of cooling plate, 47...Space, 48...
…space.
Claims (1)
開口を有し耐熱材料で作られたメルト槽と結晶基
板を上に保持し耐熱材料で作られたスライダと、
このスライダをメルト槽の開口側に摺動可能に保
持接触させる耐熱材料で作られた冷却板とを用
い、メルト内に上部が下部より高温となるように
温度差をつけ基板をメルト槽の開口と接するよう
にスライダを移動し、メルト槽の開口の位置で基
板をメルトと接触させ基板上にメルトから結晶を
エピタキシヤル成長させる温度差法の液相結晶成
長の方法において、基板をメルト槽開口部より小
さくし、基板の外側下方の冷却板の内部に、基板
面に垂直な方向から見て基板を囲むように空洞を
設け、この空洞の内周壁が作る面積を基板とほぼ
同じ面積とし、この空洞で囲まれた面積の真上に
基板を配置し、メルトから結晶をエピタキシヤル
成長させることを特徴とする液相結晶成長の方
法。 2 前記空洞が結晶成長温度で液体となる金属を
収めている特許請求の範囲第1項記載の液相結晶
成長の方法。 3 成長用材料を溶解したメルトを保持するため
の底部に開口を有し耐熱材料で作られたメルト槽
と、結晶基板を上に保持するための耐熱材料でつ
くられたスライダと、このスライダをメルト槽の
開口側に摺動可能に保持接触させるための耐熱材
料で作られた冷却板とを有し、メルト内に上部が
下部より高温となるように温度差をつけ基板をメ
ルト槽の開口と接するようにスライダを移動し、
メルト槽の開口の位置で基板をメルトと接触させ
基板上にメルトから結晶をエピタキシヤル成長さ
せるための温度差法の液相結晶成長の装置におい
て、基板の外側下方の冷却板の内部に、基板面に
垂直な方向から見て基板を囲むように空洞を設
け、この空洞の内周壁が作る面積を基板とほぼ同
じ面積とし、この空洞で囲まれた面積の真上に基
板を配置し、メルトから結晶をエピタキシヤル成
長させるようにしたことを特徴とする液相結晶成
長の装置。 4 前記空洞が結晶成長温度で液体となる金属を
収めている特許請求の範囲第3項記載の液相結晶
成長の装置。[Scope of Claims] 1. A melt tank made of a heat-resistant material and having an opening at the bottom and holding a melt in which a growth material is dissolved; a slider made of a heat-resistant material and holding a crystal substrate thereon;
This slider is slidably held and brought into contact with the opening side of the melt tank using a cooling plate made of a heat-resistant material, and a temperature difference is created in the melt so that the upper part is hotter than the lower part, and the substrate is placed at the opening of the melt tank. In the liquid phase crystal growth method using the temperature difference method, in which the slider is moved so that it is in contact with the melt at the opening of the melt tank, and the crystal is epitaxially grown from the melt on the substrate, the substrate is brought into contact with the melt at the opening of the melt tank. A cavity is provided inside the cooling plate below the outside of the substrate so as to surround the substrate when viewed from a direction perpendicular to the substrate surface, and the area formed by the inner circumferential wall of this cavity is approximately the same area as the substrate, A liquid phase crystal growth method characterized by placing a substrate directly above the area surrounded by the cavity and epitaxially growing a crystal from a melt. 2. The method of liquid phase crystal growth according to claim 1, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature. 3. A melt tank made of heat-resistant material and having an opening at the bottom to hold the melt containing the growth material, a slider made of heat-resistant material to hold the crystal substrate on top, and this slider. It has a cooling plate made of heat-resistant material to slidably hold and contact with the opening side of the melt tank, and the board is placed in the opening of the melt tank by creating a temperature difference in the melt so that the upper part is hotter than the lower part. Move the slider so that it touches
In a liquid phase crystal growth apparatus using a temperature difference method for epitaxially growing crystals from the melt on the substrate by bringing the substrate into contact with the melt at the opening of the melt tank, the substrate is placed inside a cooling plate below the outside of the substrate. A cavity is provided to surround the substrate when viewed from the direction perpendicular to the plane, the area created by the inner peripheral wall of this cavity is approximately the same area as the substrate, and the substrate is placed directly above the area surrounded by this cavity. A liquid phase crystal growth apparatus characterized in that a crystal is grown epitaxially from a crystal. 4. The liquid phase crystal growth apparatus according to claim 3, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33310987A JPH0222195A (en) | 1987-12-29 | 1987-12-29 | Method for liquid-phase crystal growth and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33310987A JPH0222195A (en) | 1987-12-29 | 1987-12-29 | Method for liquid-phase crystal growth and apparatus therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222195A JPH0222195A (en) | 1990-01-25 |
JPH0566915B2 true JPH0566915B2 (en) | 1993-09-22 |
Family
ID=18262383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33310987A Granted JPH0222195A (en) | 1987-12-29 | 1987-12-29 | Method for liquid-phase crystal growth and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0222195A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9727999B2 (en) | 2010-12-22 | 2017-08-08 | Koninklijke Philips N.V. | Visualization of flow patterns |
-
1987
- 1987-12-29 JP JP33310987A patent/JPH0222195A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9727999B2 (en) | 2010-12-22 | 2017-08-08 | Koninklijke Philips N.V. | Visualization of flow patterns |
Also Published As
Publication number | Publication date |
---|---|
JPH0222195A (en) | 1990-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3632431A (en) | Method of crystallizing a binary semiconductor compound | |
US4918029A (en) | Method for liquid-phase thin film epitaxy | |
JPH0566915B2 (en) | ||
JPH0566914B2 (en) | ||
JPH0566917B2 (en) | ||
JP4248276B2 (en) | Group III nitride crystal manufacturing method | |
JPH0566916B2 (en) | ||
JP4784095B2 (en) | Compound semiconductor single crystal and method and apparatus for manufacturing the same | |
JPH0319211A (en) | Chemical vapor deposition device | |
JP2008300603A (en) | Semiconductor production apparatus | |
JP2599767B2 (en) | Solution growth equipment | |
JPS58156598A (en) | Method for crystal growth | |
Zhang et al. | GaN Substrate Material for III–V Semiconductor Epitaxy Growth | |
JP2003267794A (en) | Method and apparatus for growing crystal | |
JP2533760B2 (en) | Mixed crystal manufacturing method | |
JP4211897B2 (en) | Liquid phase epitaxial growth method | |
JPH07165488A (en) | Apparatus for producing single crystal and method therefor | |
Plaskett | The Synthesis of Bulk GaP from Ga Solutions | |
JPH01164792A (en) | Method for growing liquid phase crystal by temperature difference | |
JPS5820795A (en) | Growing method of single crystal | |
JPS6385084A (en) | Production of crystal | |
JPH0572359B2 (en) | ||
JP2538009B2 (en) | Liquid phase epitaxial growth method | |
JPH02120298A (en) | Semi-insulating gallium arsenide single crystal and production thereof | |
JPH07315984A (en) | Vertical liquid phase epitaxy and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |