JPH0222195A - Method for liquid-phase crystal growth and apparatus therefor - Google Patents

Method for liquid-phase crystal growth and apparatus therefor

Info

Publication number
JPH0222195A
JPH0222195A JP33310987A JP33310987A JPH0222195A JP H0222195 A JPH0222195 A JP H0222195A JP 33310987 A JP33310987 A JP 33310987A JP 33310987 A JP33310987 A JP 33310987A JP H0222195 A JPH0222195 A JP H0222195A
Authority
JP
Japan
Prior art keywords
substrate
melt
cavity
crystal growth
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33310987A
Other languages
Japanese (ja)
Other versions
JPH0566915B2 (en
Inventor
Hideo Kusuzawa
楠澤 英夫
Kiyotaka Benzaki
辨崎 清隆
Masaaki Sakata
雅昭 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP33310987A priority Critical patent/JPH0222195A/en
Publication of JPH0222195A publication Critical patent/JPH0222195A/en
Publication of JPH0566915B2 publication Critical patent/JPH0566915B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To uniformize the thickness of a grown crystal in a temperature- difference continuous liquid-phase growth process by using a substrate smaller than the opening of a melt tank and placing the substrate just above the area encircled by a cavity in a cooling plate having a specific shape and area. CONSTITUTION:The bottom opening of a melt tank 11 containing a melt 13 for crystal growth is closed with a slider 15. A substrate 19 having smaller area than the area of the opening of the tank 11 is placed in the recess 17 at the center of the slider 15, which is slid on a hollow rail 23 of a cooling plate 21. A cavity 25 is formed in the cooling plate 21 under the circumferential part of the melt tank 11 in such a manner as to encircle the region corresponding to the substrate 19. The inner wall of the cavity 25 has nearly the same area as that of the substrate 19 or the recess 17. The substrate 19 is placed just above the area encircled by the cavity. A metal 31 melting at the growth temperature is partially filled in the cavity 25 to leave an upper space 33 filled with an atmospheric gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液相結晶成長に関し、特に溶質を溶解したメル
ト内に一定の温度差を設け、高温部より低温部に連続的
に溶質を搬送して低温部で結晶を成長させる温度差法連
続液相成長に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to liquid phase crystal growth, and in particular to a process in which a certain temperature difference is created in a melt containing dissolved solute, and the solute is continuously transported from a high temperature area to a low temperature area. This paper relates to continuous liquid phase growth using a temperature difference method in which crystals are grown in a low-temperature region.

[従来の技術] 液相結晶成長は特に化合物半導体の結晶成長技術として
広く用いられている、液相結晶成長法として徐冷法や温
度差法等が知られている。
[Prior Art] Liquid phase crystal growth is widely used especially as a crystal growth technique for compound semiconductors. As liquid phase crystal growth methods, slow cooling method, temperature difference method, etc. are known.

徐冷法は、たとえば、結晶材料をルツボ内で加熱して溶
融し、徐々に冷却して結晶化させる方法である。冷却方
法、ルツボ形状等によりストックバーガ法、ブリッジマ
ン法等に分かれる。
The slow cooling method is, for example, a method in which a crystalline material is heated and melted in a crucible, and then gradually cooled and crystallized. It is divided into the Stockburger method, Bridgman method, etc. depending on the cooling method, crucible shape, etc.

温度差法は一定の温度差(ないし温度勾配)を持つ高温
部低温部を形成し、高温部から原料を供給して低温部で
結晶を析出させる方法であり、広義にはフローティング
ゾーン法等も含むが、狭義には溶液(メルト)内に温度
差を設け、高温部で溶質を溶解(供給)すると共に低温
部で過飽和溶液から溶質を析出させる方法をさす、すな
わち、温度差法液相結晶成長法は、成長用材料(溶質)
を溶解した溶液(メルト)に温度差をっけ、温度勾配と
拡散によって溶質を基板方向に輸送し′、基板上に結晶
を成長させる方法で、一定温度で成長できるため均一な
不純物濃度や組成をもつ結晶性の良い結晶が多数枚連続
して得られる方法である。
The temperature difference method is a method in which a high-temperature zone and a low-temperature zone are formed with a certain temperature difference (or temperature gradient), and raw materials are supplied from the high-temperature zone and crystals are precipitated in the low-temperature zone. However, in a narrow sense, it refers to a method in which a temperature difference is created in a solution (melt), the solute is dissolved (supplied) in the high temperature part, and the solute is precipitated from a supersaturated solution in the low temperature part, that is, temperature difference method liquid phase crystallization. Growth method uses growth material (solute)
A method in which a temperature difference is applied to a solution (melt) in which the solute is dissolved, and the solute is transported toward the substrate by the temperature gradient and diffusion, and crystals are grown on the substrate. Because the crystal can be grown at a constant temperature, a uniform impurity concentration and composition can be achieved. This method allows a large number of crystals with good crystallinity to be obtained in succession.

例えば、GaAlAs系結晶の場合、グラファイトから
なるメルト槽にGa溶液からなるメルトを入れ、800
℃−1000℃で10℃−200°Cの温度差を設けて
結晶成長を行う、この方法により、特性の優れた発光ダ
イオードやレーザー等が製作されている。
For example, in the case of a GaAlAs-based crystal, a melt made of a Ga solution is placed in a melt tank made of graphite,
Light emitting diodes, lasers, etc. with excellent characteristics are manufactured by this method, in which crystal growth is performed with a temperature difference of 10°C to 200°C between 1000°C and 1000°C.

[発明が解決しようとする問題点] 溶質を基板に向けて輸送するために基板面に垂直の方向
に温度差をつける。しかし基板面内にわたり均一に成長
させるためには面内方向に均一な温度分布を設けること
が必要である。しかし面に垂直な温度差と面内の均一な
温度との両者を両立させることは容易ではない。
[Problems to be Solved by the Invention] In order to transport solute toward the substrate, a temperature difference is created in the direction perpendicular to the substrate surface. However, in order to grow uniformly over the substrate surface, it is necessary to provide a uniform temperature distribution in the in-plane direction. However, it is not easy to achieve both a temperature difference perpendicular to the surface and a uniform temperature within the surface.

従来は、特公昭59−43087号公報に示されている
ように、加熱用炉体や冷却源のバランスをとることによ
り基板面内の温度分布を均一にしようとしていた。
Conventionally, as disclosed in Japanese Patent Publication No. 59-43087, attempts have been made to make the temperature distribution within the substrate surface uniform by balancing the heating furnace body and the cooling source.

しかし、これらの方法で均°−な温度分布を実現するの
は困龍であり、第12図に示すような均一でない厚み分
布の成長結果が多く、また、炉体の成長システムのわず
かな相違、変動により厚み分布が変動してしまう。
However, it is difficult to achieve a uniform temperature distribution using these methods, and there are many growth results with uneven thickness distribution as shown in Figure 12, and slight differences in the growth system of the furnace body. , the thickness distribution changes due to the fluctuation.

このような均一でない厚み分布は1発光ダイオードの製
造においては発光効率のバラツキに直結しており、製造
歩留まりの低下の主要な原因である。
Such non-uniform thickness distribution is directly linked to variations in luminous efficiency in the production of single light emitting diodes, and is a major cause of reduction in production yield.

そこで1本発明の目的は均一な面内温度分布を実現でき
る温度差法液相結晶成長技術を提供することである。
Therefore, one object of the present invention is to provide a temperature difference method liquid phase crystal growth technique that can realize a uniform in-plane temperature distribution.

[問題点を解決するためにおこなった検討]上記の問題
点を解決するために、温度差法連続液相結晶成長での結
晶成長のメカニズムを検討した。
[Studies conducted to solve the problems] In order to solve the above problems, we investigated the mechanism of crystal growth in continuous liquid phase crystal growth using the temperature difference method.

第5図に温度差法液相成長装置の例を概略的に示す、入
口側予備室51内には半導体基板を載せたスライダ53
が収められており、スライダ押上機構55により順次ゲ
ートバルブ62を通って押し上げられる。入口側予備室
51は予備加熱炉59で予熱されているのが好ましい、
押し上げられたスライダはスライダ駆動a楕61により
成長室57内にゲートバルブ63を通って送られる。成
長室57内にはメルト槽64が設けられ、主ヒータ67
がメルト槽64を加熱している。スライダ53上の基板
69はメルト槽64の下部でメルトと接触し結晶成長を
行う、結晶成長の終わった基板を載せたスライダはゲー
トバルブ73を介して成長室57の外に送られ、スライ
ダ受取機構77によってゲートバルブ74を介して出口
側予備室79に収められる。
FIG. 5 schematically shows an example of a temperature difference method liquid phase growth apparatus. Inside the entrance side preliminary chamber 51 is a slider 53 on which a semiconductor substrate is placed.
are housed therein, and are successively pushed up through the gate valve 62 by the slider push-up mechanism 55. Preferably, the entrance side preliminary chamber 51 is preheated in a preliminary heating furnace 59.
The pushed-up slider is sent into the growth chamber 57 through the gate valve 63 by the slider driving a-ellipse 61. A melt tank 64 is provided in the growth chamber 57, and a main heater 67
is heating the melt tank 64. The substrate 69 on the slider 53 contacts the melt at the lower part of the melt tank 64 to perform crystal growth.The slider carrying the substrate on which the crystal growth has been completed is sent out of the growth chamber 57 via the gate valve 73, and is received by the slider. The mechanism 77 stores the liquid in the outlet side preliminary chamber 79 via the gate valve 74.

第6図はメルト槽64部分の1例の拡大説明図である。FIG. 6 is an enlarged explanatory view of one example of the melt tank 64 portion.

溶媒であるGaの中に溶質のAI、GaAsが溶解され
て、Pメルト槽65とNメルト槽66に収容されている
。さらに不純物としてPメルト槽65にはZnがNメル
ト槽にはTeが溶解されている。後から成長するN型領
域のバンドギャップをP型領域のバンドギャップより大
きくするためNメルト槽66中のAIの量はPメルト槽
65中のAIの量より大きくするのがよい、たとえば、
赤色発光Ga    AI  As発光ダイ第1−x 
  x −ドを得るには、AlAsの組成割合Xをp型領域で約
0.35.n型領域で約0.6−0.85となるように
AIとGaAsの量を決める1両メルト槽65,66内
には図中右に示すような垂直方向の温度差が設定される
。たとえば、800℃−tooo℃の温度で温度差を1
0℃−200℃設ける。溶質を連続的に供給するには高
温部であるメルト上部に溶質を浮かせておくか溶質収容
部を作ってメルトと接触させる。溶質は高温部で飽和溶
解度まで溶解し、拡散で低温部に輸送される。
Solutes AI and GaAs are dissolved in Ga, which is a solvent, and stored in a P melt tank 65 and an N melt tank 66. Further, as impurities, Zn is dissolved in the P melt tank 65, and Te is dissolved in the N melt tank. In order to make the bandgap of the N-type region to be grown later larger than that of the P-type region, the amount of AI in the N-melt tank 66 is preferably larger than the amount of AI in the P-melt tank 65. For example,
Red light emitting Ga AI As light emitting die No. 1-x
In order to obtain the x-do, the composition ratio X of AlAs in the p-type region is set to about 0.35. A vertical temperature difference as shown on the right side of the figure is set in the two melt tanks 65 and 66 in which the amounts of AI and GaAs are determined to be about 0.6-0.85 in the n-type region. For example, at a temperature of 800℃-toooo℃, the temperature difference is 1
Set the temperature between 0°C and 200°C. To continuously supply solute, the solute is floated above the melt, which is a high-temperature part, or a solute storage part is created and brought into contact with the melt. The solute dissolves to saturation solubility in the high temperature section and is transported to the low temperature section by diffusion.

通常溶解度は温度と共に増加するので、低温部では過飽
和溶液となって析出できる状態となる。このようなメル
ト低温部へ多数枚の基板6つを順次接触させる。たとえ
ば、成長時間約60分で50−60μmの成長層が得ら
れる。
Since the solubility usually increases with temperature, it becomes a supersaturated solution in a low temperature region, and is in a state where it can be precipitated. A large number of six substrates are sequentially brought into contact with such a melt low temperature section. For example, a growth time of about 60 minutes yields a growth layer of 50-60 μm.

第7図は温度と時間との関係を示す3図から判るように
温度分布は一定に保たれる。初め1番目の基盤がPメル
トの下に接し、P型層を成長させる1次にスライダを移
動させて1番目の基板がNメルトの下に接し、2番目の
基板がPメルトの下に接するようにする。そこで、それ
ぞれの成長層を形成する。これで1番目の基板上には下
にP型層、上にN型層が成長され、ダイオードが形成さ
れる。このようにして多数枚の基板上にエピタキシャル
成長を行う。
As can be seen from Figure 7, which shows the relationship between temperature and time, the temperature distribution is kept constant. Initially, the first substrate is in contact with the bottom of the P melt, and the P type layer is grown.First, the slider is moved so that the first substrate is in contact with the bottom of the N melt, and the second substrate is in contact with the bottom of the P melt. do it like this. Therefore, respective growth layers are formed. Now, on the first substrate, a P-type layer is grown on the bottom and an N-type layer is grown on top, forming a diode. In this way, epitaxial growth is performed on a large number of substrates.

さて、結晶成長を行えるのはメルト下部の低温部である
が、メルトと通常グラファイトであるメルト槽を作って
いる耐熱材とは熱伝導率等の熱的特性が異なる。メルト
下部で面内均一な温度分布を実現するために解明すべき
問題の1つはグラファイトに囲まれたメルトと基板との
関係であろう。
Now, crystal growth can occur in the low-temperature area at the bottom of the melt, but the melt and the heat-resistant material that makes up the melt tank, which is usually graphite, have different thermal properties such as thermal conductivity. One of the issues that must be solved in order to achieve uniform in-plane temperature distribution at the bottom of the melt is the relationship between the melt surrounded by graphite and the substrate.

そこで、以下の場合に分けて検討した。Therefore, we considered the following cases separately.

[A、メルトの底面の大きさと基板の大きさがほぼ等し
い場合] (第8図、第9図参照)基板中心付近81に
比べて周辺部83の成長速度が遅いにれはメルト槽の内
壁からは溶質の供給がないことが1つの原因と考、えら
れる、またメルト槽のrPJ壁(グラファイト)の熱伝
導率はメルト(Ga)の熱伝導率より大きい、このため
、基板中心付近81に比べて周辺部83の温度勾配が小
さい、したがって濃度勾配が小さく周辺部83の成長速
度が遅いと考えられる。
[A, When the size of the bottom surface of the melt and the size of the substrate are almost equal] (See Figures 8 and 9) If the growth rate of the peripheral part 83 is slower than that of the vicinity 81 of the substrate center, the inner wall of the melt tank It is thought that one cause is that there is no supply of solute from It is considered that the temperature gradient in the peripheral part 83 is smaller than that in the peripheral part 83, and therefore the concentration gradient is small and the growth rate in the peripheral part 83 is slow.

[B、メルトの底面の大きさが基板の大きさより大きい
場合] (第10図、第11図参照)基板の大きさがメ
ルトの底面の大きさより小さいなめ、基板周辺部87も
メルト槽の側壁から離れ基板中心付近85と基板の周辺
部87との温度勾配の差は[Alに比べ大きくない、ま
た基板面内の温度分布も[Alに比べより一均−である
。したがって成長速度は[Alより面内で比較的均一に
なる。
[B. When the size of the bottom surface of the melt is larger than the size of the substrate] (See FIGS. 10 and 11) Since the size of the substrate is smaller than the size of the bottom surface of the melt, the peripheral part 87 of the substrate also becomes the side wall of the melt tank. The difference in temperature gradient between the center of the substrate 85 and the periphery 87 of the substrate is not as large as that of Al, and the temperature distribution within the substrate surface is also more uniform than that of Al. Therefore, the growth rate is relatively uniform in the plane compared to [Al].

しかし、基板より外の周辺部89のメルト底面が、基板
より熱伝導率が大きくかつその上に結晶をエピタキシャ
ル成長させることのできないグラファイトからなるスラ
イダ53に接している。したがって基板外の周辺部89
において基板面内85.87においてと同等またはそれ
以上の熱がメルトからスライダに向かって流れる。すな
わち。
However, the bottom surface of the melt in the peripheral portion 89 outside the substrate is in contact with the slider 53 made of graphite, which has a higher thermal conductivity than the substrate and on which crystals cannot be epitaxially grown. Therefore, the peripheral part 89 outside the board
At 85.87, the same or more heat flows from the melt toward the slider than in the plane of the substrate. Namely.

この領域においても、拡散による溶質の輸送は常に行わ
れている。しかし基板結晶がないため輸送された溶質は
過飽和状態となり、メルト内のスライダ表面近傍におい
て微結晶を析出させる。溶質の輸送が常に行われている
ため、この微結晶が種となりさらに連続して微結晶への
析出が行われる。
Even in this region, solute transport by diffusion is always occurring. However, since there are no substrate crystals, the transported solute becomes supersaturated, causing microcrystals to precipitate in the melt near the slider surface. Since the solute is constantly being transported, these microcrystals serve as seeds and are continuously precipitated into microcrystals.

この基板外の周辺部89のメルト内での微結晶析出のた
めに、基板内周辺部87での溶質の輸送が影響され、中
心部85に比べ基板内周辺部87の成長速度が小さくな
る。
Due to the precipitation of microcrystals within the melt in the peripheral portion 89 outside the substrate, the transport of solute in the inner peripheral portion 87 of the substrate is affected, and the growth rate of the inner peripheral portion 87 of the substrate is lower than that in the central portion 85 .

[A]  [B]いずれの場合も均一な厚み分布の成長
が実現されず、たとえば、第12図に示すように周辺部
の成長厚が中心部より小さくなりやすい、さらに[A]
  [B]いずれの場合もスライダの移動により温度変
動が起こると、その影響を十分吸収出来ず、連続して多
数枚成長させたときの厚みや分布の変動を生ずる。
[A] [B] In either case, growth with a uniform thickness distribution is not achieved, and for example, as shown in FIG. 12, the growth thickness at the periphery tends to be smaller than at the center.
[B] In either case, if temperature fluctuation occurs due to the movement of the slider, the effect cannot be sufficiently absorbed, resulting in variations in thickness and distribution when a large number of sheets are grown in succession.

以上の検討に基すいたとき、[B〕において基板外周辺
部8つのメルト内での微結晶の析出を抑制するならばよ
り均一な厚みの結晶成長が可能になるものと考えられる
Based on the above study, it is considered that if the precipitation of microcrystals in the eight melts around the outer periphery of the substrate is suppressed in [B], crystal growth with a more uniform thickness will be possible.

[問題点を解決するための手段] 本発明によれば、成長用材料を溶解した溶液(メルト)
を底部に開口を有するメルト槽に収容し、上部が下部よ
り高温となるように温度差をつけ、メルト槽の開口の位
置で基板をメルトと接触させ、基板上にメルトから結晶
をエピタキシャル成長させる温度差法液相結晶成長にお
いて、基板をメルト槽開口部より小さくし、基板の外側
下部の冷却板の内部に基板の上から見て基板を囲むよう
に空洞を設け、この空洞の内周が仕る面積を基板とほぼ
同じ面積として基板外側の熱抵抗を大きくしこの領域を
流れる熱を抑制する。
[Means for solving the problem] According to the present invention, a solution (melt) in which a growth material is dissolved
is placed in a melt tank with an opening at the bottom, a temperature difference is set so that the upper part is higher than the lower part, the substrate is brought into contact with the melt at the opening of the melt tank, and the temperature at which crystals are epitaxially grown from the melt on the substrate is set. In differential method liquid phase crystal growth, the substrate is made smaller than the opening of the melt tank, and a cavity is provided inside the cooling plate at the bottom of the outside of the substrate so as to surround the substrate when viewed from above, and the inner periphery of this cavity is The area of the substrate is set to be approximately the same as that of the substrate, and the thermal resistance on the outside of the substrate is increased to suppress the heat flowing through this area.

さらに、この空洞に成長温度で液状となる金属(液状金
属)をo−1oo%充填するのが好ましい。
Furthermore, it is preferable to fill this cavity with o-100% of a metal that becomes liquid at the growth temperature (liquid metal).

この方法はGaAlAsの他GaP  GaAsInP
  InGaAsPある意は、Zn5eZnTe、Hg
CdTeその他の温度差法液相エピタキシャル結晶成長
法による結晶の成長に適用できる。
This method is applicable to GaP, GaAsInP, as well as GaAlAs.
InGaAsP in a sense, Zn5eZnTe, Hg
It can be applied to the growth of CdTe and other crystals by the temperature difference liquid phase epitaxial crystal growth method.

[作用] 第1図、第2図で例示すると、冷却板21の中央部27
を囲んで空洞25を作り、空洞には気体および液体を入
れる。たとえば、グラファイトの冷却板21に基板19
とほぼ同断面積の中央部27を囲むように25を作り、
Ga等成長温度で液体となる金属31を部分的に充填し
、上部空間33にはH2,Arなとの雰囲気ガスが入る
ようにする。熱伝導率は 冷却板の材質 〉液体金属 )ガス となるので熱流は空洞部分では制限され、主として空洞
で囲まれた中央部27を通る。この部分は基板とほぼ同
一面積であるので基板外側の周辺部の熱抵抗を高くシ、
そこでのメルト内の微結晶の析出を抑制し、かる基板面
内の熱的条件を均一に保ち易くする。
[Function] As illustrated in FIGS. 1 and 2, the central portion 27 of the cooling plate 21
A cavity 25 is formed surrounding the cavity 25, and gas and liquid are filled in the cavity. For example, the substrate 19 may be placed on a graphite cooling plate 21.
25 is made to surround the central part 27 having approximately the same cross-sectional area as
It is partially filled with a metal 31 that becomes liquid at the growth temperature, such as Ga, and an atmospheric gas such as H2 or Ar is introduced into the upper space 33. Thermal conductivity depends on the material of the cooling plate (>liquid metal).Since the heat flow is gas, the heat flow is restricted in the cavity and mainly passes through the central part 27 surrounded by the cavity. Since this part has almost the same area as the board, it is possible to increase the thermal resistance of the peripheral area on the outside of the board.
Precipitation of microcrystals within the melt is suppressed, making it easier to maintain uniform thermal conditions within the plane of the substrate.

さらにこの空洞に成長温度において液状となる金属(例
Ga)をいれると液体金属は熱対流によって移動する。
Furthermore, when a metal (eg Ga) that becomes liquid at the growth temperature is placed in this cavity, the liquid metal moves by thermal convection.

基板面内に不均一温度分布があっても均熱化される1局
部的な不均一温度分布は液体金属内の対流などにより均
一化されるので基板面内の均一温度分布がさらに得易く
なる。
Even if there is a non-uniform temperature distribution within the substrate surface, the temperature is equalized. Local non-uniform temperature distribution is made uniform by convection within the liquid metal, making it easier to obtain a uniform temperature distribution within the substrate surface. .

さらにこの液体金属の量を調節することにより空間の容
積を変え基板外周辺の熱抵抗を変えることができるので
、加熱用炉体や冷却源などの成長システムのわずかな相
違による成長結果の相違を調節補償することができる。
Furthermore, by adjusting the amount of this liquid metal, it is possible to change the volume of the space and change the thermal resistance around the outside of the substrate. Adjustment can be compensated.

基板の下方には空洞がなく、熱抵抗は大きく影響されな
いので、成長速度は従来例とほぼ同様であり、高輝度発
光ダイオードに必要な成長厚みが確保される。
Since there is no cavity under the substrate and the thermal resistance is not greatly affected, the growth rate is almost the same as in the conventional example, and the growth thickness necessary for high brightness light emitting diodes is ensured.

[実施例] 第1図、第2図に本発明の1実施例による液相結晶成長
装置を部分的に示す。
[Embodiment] FIGS. 1 and 2 partially show a liquid phase crystal growth apparatus according to an embodiment of the present invention.

メルト槽11の中には結晶成長用のメルト13が収容さ
れている。メルト槽11の底は開いていてスライダ15
が底の開口を塞ぐようになっている。スライダ15の中
央部には凹部17が設けられ、成長下地となる半導体基
板19が収められている。従って半導体基板19の上面
はメルト13の底部中央部と接する。スライダは冷却板
21の凹状レール23内を摺動し1図面の紙面と垂直の
方向に動く、冷却板の内部には基板に対応する領域を囲
むようにメルト槽の周辺部下方に空洞部25が形成され
ている。空洞の外周寸法は本実施例ではスライダ15と
ほぼ同じ寸法としであるが。
The melt tank 11 contains a melt 13 for crystal growth. The bottom of the melt tank 11 is open and the slider 15
is designed to cover the opening at the bottom. A recess 17 is provided in the center of the slider 15, and a semiconductor substrate 19 serving as a growth base is housed therein. Therefore, the upper surface of the semiconductor substrate 19 is in contact with the bottom central portion of the melt 13. The slider slides within the concave rail 23 of the cooling plate 21 and moves in a direction perpendicular to the plane of the drawing. Inside the cooling plate, there is a cavity 25 below the periphery of the melt tank so as to surround an area corresponding to the substrate. is formed. In this embodiment, the outer circumferential dimension of the cavity is approximately the same as that of the slider 15.

これに限らない、但しメルト13の横断面積とほぼ同じ
かそれ以上の横断面積をもつことが好ましい、空洞部2
5の内側壁は中央部27が基板19ないしスライダの凹
部17とほぼ同じ横断面積をもつよう設計される。さら
にこの空洞部25と外部とを結ぶ連絡孔29が形成され
、液体金属や雰囲気ガスの出入りを可能にしている。空
洞部25に液体金属(例えばGa)31を入れていくと
液と冷却板の中央部27の側面とが接する。この時も中
央部27の周囲では液面上に空間33が残っている。液
面を上げていくと空間33は次第に小さくなり、中央部
27は液体金属31の中になかば没するようになる。
Although not limited to this, the cavity 2 preferably has a cross-sectional area that is approximately the same as or larger than the cross-sectional area of the melt 13.
The inner wall of 5 is designed such that the central part 27 has approximately the same cross-sectional area as the substrate 19 or the recess 17 of the slider. Furthermore, a communication hole 29 is formed that connects this cavity 25 with the outside, allowing liquid metal and atmospheric gas to enter and exit. When a liquid metal (for example, Ga) 31 is poured into the cavity 25, the liquid comes into contact with the side surface of the central portion 27 of the cooling plate. Also at this time, a space 33 remains above the liquid level around the central portion 27. As the liquid level increases, the space 33 gradually becomes smaller, and the central portion 27 comes to be partially submerged in the liquid metal 31.

メルト槽11.スライダ15.冷却板21はグラファイ
トのような耐熱材料で作られている。メルト13は通常
成長すべき半導体材料の構成元素の1つを溶媒としてい
る。G五As、GaAlAs、GaAIAsP、GaP
、GaSb等の場合はGa、InAs、InAsP等の
場合はInを用いる。液体金属31は使用温度(はぼ結
晶成長温度)で液体であれば良<、Ga、In、Hg等
が用いられる。メルト13の主成分と液体金属の主成分
とを一致させておくのが不純物防止、熱的設計等の面か
ら好ましいことが多い、均一な厚さの結晶成長を得るに
は基板1つ上での温度分布が面内均一でかつ温度勾配も
面内均一であり、さらに基板19より外側の部分89で
は微結晶が発生しないことが望ましい、そのためには基
板19の断面積内において均一な熱流が上から下に流れ
Melt tank 11. Slider 15. The cooling plate 21 is made of a heat resistant material such as graphite. The melt 13 normally uses one of the constituent elements of the semiconductor material to be grown as a solvent. G5As, GaAlAs, GaAIAsP, GaP
, GaSb, etc. use Ga, and InAs, InAsP, etc. use In. The liquid metal 31 may be made of Ga, In, Hg, etc. as long as it is liquid at the operating temperature (crystal growth temperature). It is often preferable to match the main components of the melt 13 and the main components of the liquid metal from the viewpoint of preventing impurities and thermal design. It is desirable that the temperature distribution is uniform within the plane and the temperature gradient is also uniform within the plane, and that microcrystals are not generated in the portion 89 outside the substrate 19. To achieve this, uniform heat flow within the cross-sectional area of the substrate 19 is desirable. flows from top to bottom.

その外側では上から下への熱流が制限されることが望ま
しい。
On the outside it is desirable that the heat flow from top to bottom is restricted.

基板19の断面積内では上からメルト13基板19、ス
ライダ15.冷却板21の上部、冷却板の中央部27.
冷却板21の下部と熱が流れる。
Within the cross-sectional area of the substrate 19, from above, the melt 13 substrate 19, the slider 15. The upper part of the cooling plate 21, the central part 27 of the cooling plate.
Heat flows to the lower part of the cooling plate 21.

その外側では冷却板21の内部に気体空間33ないし液
体金属31が存在する。
Outside thereof, a gas space 33 or liquid metal 31 is present inside the cooling plate 21 .

基板19の断面積内では構造が面内で均一であり均一な
熱流を作り易くしている。
The structure is uniform within the cross-sectional area of the substrate 19, making it easy to create a uniform heat flow.

基板19の外側では熱回路中に空洞部25(基体空間3
3ないし液体金属31)が入る。気体の熱伝導率はグラ
ファイト等の耐熱材料の熱伝導率より各段に少な髪λの
で熱流は大きく制限される。
On the outside of the substrate 19, a cavity 25 (substrate space 3) is formed in the thermal circuit.
3 or liquid metal 31) enters. The thermal conductivity of gas is much lower than that of heat-resistant materials such as graphite by λ, so the heat flow is greatly restricted.

このため、基板19より外側の部分89での微結晶析出
は抑制される。
Therefore, precipitation of microcrystals in the portion 89 outside the substrate 19 is suppressed.

たとえば、構成材料の熱伝導率(300°K)[W/c
m−deg]の代表例は以下の通りである。
For example, the thermal conductivity (300°K) of the constituent materials [W/c
Representative examples of [m-deg] are as follows.

H20,0018 Ga        0. 335 グラフアイト  1,2 GaAs    0.54 さらに空洞部25内の液体金属31は熱伝導のみでなく
熱対流によっても熱を輸送できるので。
H20,0018 Ga 0. 335 Graphite 1,2 GaAs 0.54 Furthermore, the liquid metal 31 within the cavity 25 can transport heat not only by thermal conduction but also by thermal convection.

温度分布に不均一が生じた場合対流によって均熱化する
役割を果たす。
It plays the role of equalizing heat by convection when temperature distribution is uneven.

この液体金属31の熱対流による均熱化と基板外周辺領
域89における微結晶析出の抑制により。
By equalizing the temperature by thermal convection of the liquid metal 31 and suppressing the precipitation of microcrystals in the outer peripheral region 89 of the substrate.

均一な厚さの成長結晶が得られる。A grown crystal of uniform thickness is obtained.

期待される成長結晶の膜厚分布の例を第3図に示す。An example of the expected thickness distribution of the grown crystal is shown in FIG.

基板の下方の構成は従来と同様であるので熱抵抗は大き
く影響されない、従って、成長速度は従来例とほぼ同様
であり、高輝度発光ダイオードに必要な成長厚みが確保
される。
Since the structure below the substrate is the same as the conventional one, the thermal resistance is not greatly affected. Therefore, the growth rate is almost the same as in the conventional example, and the growth thickness necessary for a high-brightness light emitting diode is secured.

また液体金属の上面に設けられた空間は、細孔により外
部雰囲気と連結されているので、高温になっても内部圧
力が上昇する危険はない。
Furthermore, since the space provided on the upper surface of the liquid metal is connected to the external atmosphere through the pores, there is no risk of internal pressure increasing even at high temperatures.

さらに周辺部での液体金属の上面の空間33の容積を調
節することにより、基板外周辺領域8つにおける基板面
に垂直方向の熱抵抗を調節することもでき、加熱用炉体
や冷却源等の成長システムのわずかな相違による。成長
条件の相違を調節補償することもできる。
Furthermore, by adjusting the volume of the space 33 on the top surface of the liquid metal in the peripheral area, it is possible to adjust the thermal resistance in the direction perpendicular to the substrate surface in the eight peripheral areas outside the substrate. Due to slight differences in the growth system. It is also possible to adjust and compensate for differences in growth conditions.

この方法は、GaAlAsのみならず、GaPGaAs
InP、InP、InGaAsP、あるいは、Zn5e
、ZnTe、HgCdTeその他の温度差法液相絵エピ
タキシャル成長法による結晶の成長に適用できる。
This method applies not only to GaAlAs but also to GaPGaAs.
InP, InP, InGaAsP or Zn5e
, ZnTe, HgCdTe, and other crystals by the temperature difference liquid phase picture epitaxial growth method.

P層N層を連続的に成長して発光ダイオード用ウェーハ
を製造する場合の実施例を第4図に示す。
FIG. 4 shows an example in which a wafer for light emitting diodes is manufactured by continuously growing P layers and N layers.

石英製の反応管35内にグラファイト製の結晶成長機構
37が収容され、ヒータ38,39で加熱されている。
A crystal growth mechanism 37 made of graphite is housed in a reaction tube 35 made of quartz, and heated by heaters 38 and 39.

冷却板21上をスライダ15が滑って図中の右から左へ
移行する。スライダ15上の基板19はまずPメルト4
1の下でP層の成長を受け1次にNメルト42の下でN
層の成長を受ける。各メルト下部には空洞43.44が
設けられ、その中央には基板19とほぼおなし断面形状
の冷却板の中央部45.46が基板19と位置を合わせ
て存在する5中央部45.46の外周には空間47.4
8が形成される。メルト41.42内には図中布に示す
ような垂直方向の一定の温度勾配を形成する。
The slider 15 slides on the cooling plate 21 and moves from right to left in the figure. The substrate 19 on the slider 15 is first coated with P melt 4.
1, the P layer grows under the primary N melt 42.
undergo layer growth. A cavity 43.44 is provided in the lower part of each melt, in the center of which there is a central part 45.46 of a cooling plate having a cross-sectional shape substantially parallel to the substrate 19. There is a space 47.4 on the outer periphery of
8 is formed. A constant temperature gradient in the vertical direction is formed in the melt 41, 42 as shown by the cloth in the figure.

この構成により、基板19.上に均一な熱流をつくり、
その外側での結晶析出を抑制し、特性の良い発光ダイオ
ードを高歩留まりで製造できる。
With this configuration, the substrate 19. Creates a uniform heat flow on top,
By suppressing crystal precipitation on the outside, it is possible to manufacture light-emitting diodes with good characteristics at a high yield.

[発明の効果] 以上のように、基板外の周辺部の熱抵抗を大きくシ、液
体金属を用いる場合はその熱対流による均熱化を加え、
基板外周辺のメルト内での微結晶の析出を抑制し、均一
な厚みの成長結晶が得られる。
[Effects of the invention] As described above, the thermal resistance of the peripheral area outside the substrate can be increased, and when liquid metal is used, it can be equalized by heat convection.
Precipitation of microcrystals in the melt around the outside of the substrate is suppressed, and grown crystals with a uniform thickness can be obtained.

従って、均一な発光効率の発光ダイオード用エピタキシ
ャルウェハが高歩留まりで製造され、安価に大量に高発
光効率の発光ダイオードを供給することができる。
Therefore, epitaxial wafers for light emitting diodes with uniform luminous efficiency can be manufactured at a high yield, and light emitting diodes with high luminous efficiency can be supplied in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例による液相結晶成長装置の部
分概略図、第2図は第1図の部分横断面図、第3図は成
長層の膜厚分布の基4例、第4図は他の実施例による液
相結晶成長装置の部分概略図、第5図は従来の液相結晶
成長装置の概略図。 第6図は第5図の部分拡大図、第7図は成長操作を説明
する温度対時間のグラフ、第8図は従来技術の液相結晶
装置の部分拡大図、第9図は第8図の横断面図、第10
図は従来技術の液相結晶装置の部分拡大図、第11図は
第10図の横断面図。 第12図は従来技術による成長層の膜厚測定例である。 符号の説明 11  メルト槽 メルト スライダ スライダの凹部 基板 冷却板 冷却板の凹状レール 空洞 冷却板の中央部 連絡孔 液体金属 空間 反応管 結晶成長v1構 ヒータ ヒータ Pメルト Nメルト 空洞 空洞 冷却板の中央部 冷却板の中央部 空間 空間
FIG. 1 is a partial schematic diagram of a liquid phase crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, and FIG. FIG. 4 is a partial schematic diagram of a liquid phase crystal growth apparatus according to another embodiment, and FIG. 5 is a schematic diagram of a conventional liquid phase crystal growth apparatus. FIG. 6 is a partially enlarged view of FIG. 5, FIG. 7 is a graph of temperature versus time to explain the growth operation, FIG. 8 is a partially enlarged view of a conventional liquid phase crystal apparatus, and FIG. Cross-sectional view of, No. 10
The figure is a partially enlarged view of a conventional liquid phase crystallization device, and FIG. 11 is a cross-sectional view of FIG. 10. FIG. 12 is an example of measuring the thickness of a grown layer using the conventional technique. Explanation of symbols 11 Melt tank Melt slider Concave part of slider Substrate Cooling plate Concave rail of cooling plate Central part of cavity cooling plate Communication hole Liquid metal space Reaction tube Crystal growth v1 structure Heater Heater P Melt N Melt cavity Cavity Central part of cooling plate central space space

Claims (4)

【特許請求の範囲】[Claims] (1)成長用材料を溶解したメルトを保持し底部に開口
を有し耐熱材料で作られたメルト槽と結晶基板を上に保
持し耐熱材料で作られたスライダと、このスライダをメ
ルト槽の開口側に摺動可能に保持接触させる耐熱材料で
作られた冷却板とを用い、メルト内に上部が下部より高
温となるように温度差をつけ基板をメルト槽の開口と接
するようにスライダを移動し、メルト槽の開口の位置で
基板をメルトと接触させ基板上にメルトから結晶をエピ
タキシャル成長させる温度差法の液相結晶成長の方法に
おいて、基板をメルト槽開口部より小さくし、基板の外
側下方の冷却板の内部に、基板面に垂直な方向から見て
基板を囲むように空洞を設け、この空洞の内周壁が作る
面積を基板とほぼ同じ面積とし、この空洞で囲まれた面
積の真上に基板を配置し、メルトから結晶をエピタキシ
ャル成長させることを特徴とする液相結晶成長の方法
(1) A melt tank made of heat-resistant material that holds the melt containing the growth material and has an opening at the bottom; a slider made of heat-resistant material that holds the crystal substrate on top; Using a cooling plate made of heat-resistant material that is slidably held in contact with the opening side, a temperature difference is created in the melt so that the upper part is higher than the lower part, and the slider is placed so that the substrate is in contact with the opening of the melt tank. In the liquid phase crystal growth method using the temperature difference method, in which the substrate is brought into contact with the melt at the opening of the melt tank and crystals are epitaxially grown from the melt on the substrate, the substrate is made smaller than the opening of the melt tank, and A cavity is provided inside the lower cooling plate so as to surround the substrate when viewed from the direction perpendicular to the substrate surface, and the area created by the inner circumferential wall of this cavity is approximately the same as that of the substrate, and the area surrounded by this cavity is A liquid phase crystal growth method characterized by placing a substrate directly above and epitaxially growing a crystal from a melt.
(2)前記空洞が結晶成長温度で液体となる金属を収め
ている特許請求の範囲第1項記載の液相結晶成長の方法
(2) The method for liquid phase crystal growth according to claim 1, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature.
(3)成長用材料を溶解したメルトを保持するための底
部に開口を有し耐熱材料で作られたメルト槽と、結晶基
板を上に保持するための耐熱材料でつくられたスライダ
と、このスライダをメルト槽の開口側に摺動可能に保持
接触させるための耐熱材料で作られた冷却板とを有し、
メルト内に上部が下部より高温となるように温度差をつ
け基板をメルト槽の開口と接するようにスライダを移動
し、メルト槽の開口の位置で基板をメルトと接触させ基
板上にメルトから結晶をエピタキシャル成長させるため
の温度差法の液相結晶成長の装置において、基板の外側
下方の冷却板の内部に、基板面に垂直な方向から見て基
板を囲むように空洞を設け、この空洞の内周壁が作る面
積を基板とほぼ同じ面積とし、この空洞で囲まれた面積
の真上に基板を配置し、メルトから結晶をエピタキシャ
ル成長させるようにしたことを特徴とする液相結晶成長
の装置。
(3) A melt tank made of heat-resistant material and having an opening at the bottom to hold the melt containing the growth material; a slider made of heat-resistant material to hold the crystal substrate on top; a cooling plate made of a heat-resistant material for slidably holding and contacting the slider with the opening side of the melt tank;
Create a temperature difference in the melt so that the upper part is hotter than the lower part, move the slider so that the substrate is in contact with the opening of the melt tank, bring the substrate into contact with the melt at the opening of the melt tank, and crystallize from the melt onto the substrate. In a liquid phase crystal growth apparatus using a temperature difference method for epitaxial growth, a cavity is provided inside a cooling plate below the outside of the substrate so as to surround the substrate when viewed from a direction perpendicular to the substrate surface. A liquid phase crystal growth apparatus characterized in that the area formed by the peripheral wall is approximately the same as the substrate, the substrate is placed directly above the area surrounded by the cavity, and the crystal is grown epitaxially from the melt.
(4)前記空洞が結晶成長温度で液体となる金属を収め
ている特許請求の範囲第3項記載の液相結晶成長の装置
(4) The liquid phase crystal growth apparatus according to claim 3, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature.
JP33310987A 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor Granted JPH0222195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33310987A JPH0222195A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33310987A JPH0222195A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH0222195A true JPH0222195A (en) 1990-01-25
JPH0566915B2 JPH0566915B2 (en) 1993-09-22

Family

ID=18262383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33310987A Granted JPH0222195A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0222195A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656316B1 (en) 2010-12-22 2020-04-29 Koninklijke Philips N.V. Visualization of flow patterns

Also Published As

Publication number Publication date
JPH0566915B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
JPS6236999B2 (en)
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US4918029A (en) Method for liquid-phase thin film epitaxy
JPH0222195A (en) Method for liquid-phase crystal growth and apparatus therefor
JPS59188118A (en) Manufacture of vapor phase epitaxial crystal
JPH0222194A (en) Method for liquid-phase crystal growth and apparatus therefor
JPH0222197A (en) Method for liquid-phase crystal growth and apparatus therefor
JPH0566916B2 (en)
JPS60176995A (en) Preparation of single crystal
JPS58156598A (en) Method for crystal growth
JP2599767B2 (en) Solution growth equipment
JP2533760B2 (en) Mixed crystal manufacturing method
JP4211897B2 (en) Liquid phase epitaxial growth method
JPS5820795A (en) Growing method of single crystal
JP2003267794A (en) Method and apparatus for growing crystal
JPH01164792A (en) Method for growing liquid phase crystal by temperature difference
JP2538009B2 (en) Liquid phase epitaxial growth method
JPH0456128A (en) Manufacture of group ii-vi compound semiconductor device
JPH0572359B2 (en)
JPH02120298A (en) Semi-insulating gallium arsenide single crystal and production thereof
JPS60236220A (en) Method for liquid-phase epitaxial growth
JPS6385084A (en) Production of crystal
JPS63198318A (en) Epitaxial growth method
JPS62202895A (en) Production of compound semiconductor crystal
JPH0697098A (en) Growing method for semiconductor crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees